首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
Mutator mutations mutL25, mutR34, and mutU4 had similar effects on the reversion of 4 trp frameshift mutations of known sequence. The mutation trpE9777, which resulted from the addition of an A–T base-pair to a run of 5 A–T base-pairs, was most strongly reverted by the 4 mutators. Reversion of trpE9777 was also increased by mutation polA1 (DNA polymerase I) and dnaE486 and dnaE511 (DNA polymerase III). No effect was found with the ligase mutations, lig-4 or lig-ts7. Mutations polAex1 and polA107, both deficient in the 5′ → 3′ exonuclease activity of DNA polymerase I, had different mutator effects; the factor increase in reversion of trpE9777 was 28-fold for polAex1, 6-fold for polA107, and 21-fold for polA1. The trpE9777 mutation is a useful indicator of frameshift mutator activity.  相似文献   

4.
DNA polymerase activities in fractionated cell extract of Aeropyrum pernix, a hyperthermophilic crenarchaeote, were investigated. Aphidicolin-sensitive (fraction I) and aphidicolin-resistant (fraction II) activities were detected. The activity in fraction I was more heat stable than that in fraction II. Two different genes (polA and polB) encoding family B DNA polymerases were cloned from the organism by PCR using degenerated primers based on the two conserved motifs (motif A and B). The deduced amino acid sequences from their entire coding regions contained all of the motifs identified in family B DNA polymerases for 3'-->5' exonuclease and polymerase activities. The product of polA gene (Pol I) was aphidicolin resistant and heat stable up to 80 degrees C. In contrast, the product of polB gene (Pol II) was aphidicolin sensitive and stable at 95 degrees C. These properties of Pol I and Pol II are similar to those of fractions II and I, respectively, and moreover, those of Pol I and Pol II of Pyrodictium occultum. The deduced amino acid sequence of A. pernix Pol I exhibited the highest identities to archaeal family B DNA polymerase homologs found only in the crenarchaeotes (group I), while Pol II exhibited identities to homologs found in both euryarchaeotes and crenarchaeotes (group II). These results provide further evidence that the subdomain Crenarchaeota has two family B DNA polymerases. Furthermore, at least two DNA polymerases work in the crenarchaeal cells, as found in euryarchaeotes, which contain one family B DNA polymerase and one heterodimeric DNA polymerase of a novel family.  相似文献   

5.
Bacteriophage T4 rnh encodes an RNase H that removes ribopentamer primers from nascent DNA chains during synthesis by the T4 multienzyme replication system in vitro (H. C. Hollingsworth and N. G. Nossal, J. Biol. Chem. 266:1888-1897, 1991). This paper demonstrates that either T4 RNase HI or Escherichia coli DNA polymerase I (Pol I) is essential for phage replication. Wild-type T4 phage production was not diminished by the polA12 mutation, which disrupts coordination between the polymerase and the 5'-to-3' nuclease activities of E. coli DNA Pol I, or by an interruption in the gene for E. coli RNase HI. Deleting the C-terminal amino acids 118 to 305 from T4 RNase H reduced phage production to 47% of that of wild-type T4 on a wild-type E. coli host, 10% on an isogenic host defective in RNase H, and less than 0.1% on a polA12 host. The T4 rnh(delta118-305) mutant synthesized DNA at about half the rate of wild-type T4 in the polA12 host. More than 50% of pulse-labelled mutant DNA was in short chains characteristic of Okazaki fragments. Phage production was restored in the nonpermissive host by providing the T4 rnh gene on a plasmid. Thus, T4 RNase H was sufficient to sustain the high rate of T4 DNA synthesis, but E. coli RNase HI and the 5'-to-3' exonuclease of Pol I could substitute to some extent for the T4 enzyme. However, replication was less accurate in the absence of the T4 RNase H, as judged by the increased frequency of acriflavine-resistant mutations after infection of a wild-type host with the T4 rnh (delta118-305) mutant.  相似文献   

6.
To cure Escherichia coli for plasmids derived from the ColE1 replicon advantage is taken of the fact that maintenance of this replicon requires a wild-type allele of polA, encoding DNA polymerase I. Curing is achieved by cotransduction of a mutant polA allele with metE::Tn10, fadAB::Tn10 or other transposon insertions near polA. Reciprocal transduction to Met(+) Pol(+) or to Fad(+) Pol(+) ensures reestablishment of the original genotype except for loss of the plasmid. A set of useful bacterial strains is provided.  相似文献   

7.
Haemophilus influenzae was found to produce a DNA polymerase that was similar to polymerase I of Escherichia coli. E. coli polA mutants were used as backgrounds for the selection of H. influenzae polA suppressor genes. Six different H. influenzae fragments were isolated that could suppress E. coli polA mutations. None of the suppressors appeared to encode the H. influenzae equivalent of the E. coli polA gene. One type of clone, represented by pGW41, caused a polymerase I activity to appear in a suppressed polA1 mutant. Plasmids from the pGW41 class contained two genes (pol-2 and pol-3) that were both required for polA suppression. Mutated nonsuppressing derivatives of the pGW41 class were used to create H. influenzae mutants that were deficient in polymerase I.  相似文献   

8.
An Escherichia coli mutant (polA1), defective in deoxyribonucleic acid (DNA) polymerase I, (EC 2.7.7.7) is unable to maintain colicinogenic factor E1 (ColE1), whereas several sex factor plasmids are maintained normally in this strain. polA1 mutant strains containing these sex factor plasmids do not exhibit a readily detectable plasmid-induced polymerase activity. A series of E. coli mutants that are temperature sensitive for ColE1 maintenance, but able to maintain other plasmids, were isolated and shown to fall into two phenotypic groups. Mutants in one group are defective specifically in ColE1 maintenance at 43 C, but exhibit normal DNA polymerase I activity. Mutations in the second group map in the polA gene of E. coli, and bacteria carrying these mutations are sensitive to methylmethanesulfonate (MMS). Revertants that were selected either for MMS resistance or the ability to maintain ColE1 were normal for both properties. The DNA polymerase I enzyme of two of these mutants shows a pronounced temperature sensitivity when compared to the wild-type enzyme. An examination of the role of DNA polymerase I in ColE1 maintenance indicates that it is essential for normal replication of the plasmid. In addition, the presence of a functional DNA polymerase I in both the donor and recipient cell is required for the ColV-promoted conjugal transfer of ColE1 and establishment of the plasmid in the recipient cell.  相似文献   

9.
Ultraviolet-Sensitive Mutator Strain of Escherichia coli K-12   总被引:30,自引:20,他引:10       下载免费PDF全文
An ultraviolet (UV)-sensitive mutator gene, mutU, was identified in Escherichia coli K-12. The mutation mutU4 is very close to uvrD, between metE and ilv, on the E. coli chromosome. It was recessive as a mutator and as a UV-sensitive mutation. The frequency of reversion of trpA46 on an F episome was increased by mutU4 on the chromosome. The mutator gene did not increase mutation frequencies in virulent phages or in lytically grown phage lambda. The mutU4 mutation predominantly induced transitional base changes. Mutator strains were normal for recombination and host-cell reactivation of UV-irradiated phage T1. They were normally resistant to methyl methanesulfonate and were slightly more sensitive to gamma irradiation than Mut(+) strains. UV irradiation induced mutations in a mutU4 strain, and phage lambda was UV-inducible. Double mutants containing mutU4 and recA, B, or C were extremely sensitive to UV irradiation; a mutU4 uvrA6 double mutant was only slightly more sensitive than a uvrA6 strain. The mutU4 uvrA6 and mutU4 recA, B, or C double mutants had mutation rates similar to that of a mutU4 strain. Two UV-sensitive mutators, mut-9 and mut-10, isolated by Liberfarb and Bryson in E. coli B/UV, were found to be co-transducible with ilv in the same general region as mutU4.  相似文献   

10.
A major factor in removing RNA primers during the processing of Okazaki fragments is DNA polymerase I (Pol I). Pol I is thought to remove the RNA primers and to fill the resulting gaps simultaneously. RNase H, encoded by rnh genes, is another factor in removing the RNA primers, and there is disagreement with respect to the essentiality of both the polA and rnh genes. In a previous study, we looked for the synthetic lethality of paralogs in Bacillus subtilis and detected several essential doublet paralogs, including the polA ypcP pair. YpcP consists of only the 5'-3' exonuclease domain. In the current study, we first confirmed that the polA genes of both Escherichia coli and B. subtilis could be completely deleted. We found that the 5'-3' exonuclease activity encoded by either polA or ypcP xni was required for the growth of B. subtilis and E. coli. Also, the 5'-3' exonuclease activity of Pol I was indispensable in the cyanobacterium Synechococcus elongatus. These results suggest that a 5'-3' exonuclease activity is essential in these organisms. Our success in constructing a B. subtilis strain that lacked all RNase H genes indicates that the enzymatic activity is dispensable, at least in the wild type. Increasing the 5'-3' exonuclease activity partially compensated for a defective phenotype of an RNase H-deficient mutant, suggesting cooperative functions for the two enzyme systems. Our search for the distribution of the 5'-3' exonuclease domain among 250 bacterial genomes resulted in the finding that all eubacteria, but not archaea, possess this domain.  相似文献   

11.
It is shown here that plasmids containing the replication origin of Escherichia coli (oriC) cannot replicate in an extrachromosomal state in E. coli cells with the polA1hip3 double mutation. This E. coli mutant is deficient in the polymerizing function of DNA polymerase I (Pol I) and is unable to produce functional IHF protein. The inability of the oriC minichromosomes to replicate in the absence of IHF is dependent on the absence of Pol I; cells with the polA+himA- or polA+hip- mutation, which are deficient in the alpha and beta subunits of the IHF heterodimer, respectively, can support replication of the oriC replicons. We propose that IHF-deficient cells utilize an alternative pathway of the DNA replication in which Pol I is required. In vitro DNA binding assays revealed that the IHF binding site resides between the oriC coordinates 110 and 122 and is adjacent to the DnaA "box" 1. Within the area protected by IHF we found at least 1 out of 11 GATC methylation sites present in oriC. The consequences of lack of IHF protein binding to the oriC and the indirect effects of the IHF deficiency on the oriC replication are discussed.  相似文献   

12.
dnaE, the gene encoding one of the two replication-specific DNA polymerases (Pols) of low-GC-content gram-positive bacteria (E. Dervyn et al., Science 294:1716-1719, 2001; R. Inoue et al., Mol. Genet. Genomics 266:564-571, 2001), was cloned from Bacillus subtilis, a model low-GC gram-positive organism. The gene was overexpressed in Escherichia coli. The purified recombinant product displayed inhibitor responses and physical, catalytic, and antigenic properties indistinguishable from those of the low-GC gram-positive-organism-specific enzyme previously named DNA Pol II after the polB-encoded DNA Pol II of E. coli. Whereas a polB-like gene is absent from low-GC gram-positive genomes and whereas the low-GC gram-positive DNA Pol II strongly conserves a dnaE-like, Pol III primary structure, it is proposed that it be renamed DNA polymerase III E (Pol III E) to accurately reflect its replicative function and its origin from dnaE. It is also proposed that DNA Pol III, the other replication-specific Pol of low-GC gram-positive organisms, be renamed DNA polymerase III C (Pol III C) to denote its origin from polC. By this revised nomenclature, the DNA Pols that are expressed constitutively in low-GC gram-positive bacteria would include DNA Pol I, the dispensable repair enzyme encoded by polA, and the two essential, replication-specific enzymes Pol III C and Pol III E, encoded, respectively, by polC and dnaE.  相似文献   

13.
A large range of acridines, including several anilinoacridines which are active as antitumour agents, have been studied for their ability to revert derivatives of Salmonella typhimurium strains carrying the frameshift marker hisC3076. The strains used all carried deep-rough (rfa) mutations, and were either wild-type with respect to DNA-repair capacity or carried uvrB, polA1 or polA3 (amber) mutations. Derivatives with and without the mutation-enhancing N group plasmid pKM101 were also used. 9-Aminoacridine and other acridines appeared similar to the anilinoacridines for the most part, in that frameshift mutagenesis and toxicity appeared to be unaffected by the uvrB mutation or by the presence of plasmid pKM101. Exceptions were ICR191, 3-NO2-acridine and 1- or 3-NO2-anilinoacridine derivatives in which mutagenesis was increased in uvrB strains and also when pKM101 was present. These compounds were slightly more toxic in the uvrB background, but less toxic when pKM101 was present in either the uvrB or wild-type backgrounds. Mutagenesis by most compounds was reduced by the polA1 mutation and virtually eliminated (except in the case of ICR191) by the polA3 mutation. Plasmid pKM101 occasionally enhanced mutagenesis in the polA1 strain, whereas in the polA3 it appeared to have no effect whatsoever. Again, there were no obvious differences in toxicity between Pol+ and Pol- strains.  相似文献   

14.
15.
E. coli strains bearing the recA441 mutation and various mutations in the polA gene resulting in enzymatically well-defined deficiencies of DNA polymerase I have been constructed. It was found that the recA441 strains bearing either the polA1 or polA12 mutation causing deficiency of the polymerase activity of pol I are unable to grow at 42 degrees C on minimal medium supplemented with adenine, i.e., when the SOS response is continuously induced in strains bearing the recA441 mutation. Under these conditions the inhibition of DNA synthesis is followed in recA441 polA12 by DNA degradation and loss of cell viability. A similar lethal effect is observed with the recA730 polA12 mutant. The recA441 strain bearing the polA107 mutation resulting in the deficiency of the 5'-3' exonuclease activity of pol I shows normal growth under conditions of continuous SOS response. We postulate that constitutive expression of the SOS response leads to an altered requirement for the polymerase activity of pol I.  相似文献   

16.
Evidence documenting the requirement for a functional DNA polymerase I when Salmonella typhimurium LT2 uses ethanolamine (EA), 1,2-propanediol (1,2-PDL), or propionate (PRP) as the sole carbon and energy source is presented. Providing rat polymerase beta in trans demonstrated that the growth phenotypes observed were due exclusively to the lack of DNA polymerase I functions. The location of the mutation (a MudI1734 insertion) that rendered cells unable to grow on EA, 1,2-PDL, or PRP was determined by DNA sequencing to be within the polA gene. polA mutants of this bacterium may be unable to repair the damage caused by reactive aldehydes generated during the catabolism of EA, 1,2-PDL, or PRP. Consistent with this hypothesis, the inhibitory effects of acetaldehyde and propionaldehyde on the growth of this polA mutant were demonstrated. A derivative of the polA mutant unable to synthesize glutathione (GSH) was markedly more sensitive to acetaldehyde and propionaldehyde than was the polA mutant proficient in GSH synthesis. This finding was in agreement with the recently proposed role of GSH as a mechanism for quenching reactive aldehydes generated during the catabolism of these compounds (M. R. Rondon, R. Kazmierczack, and J. C. Escalante-Semerena, J. Bacteriol. 177:5434-5439, 1995).  相似文献   

17.
Previous attempts to clone the Escherichia coli polA+ gene onto a high copy number plasmid were unsuccessful. The apparent lethality of unregulated overproduction of DNA polymerase I can be eliminated by cutting at a BglII site 100 nucleotides upstream from the ATG start codon of the polA gene. This permitted the construction of plasmid pMP5 which contains both the coding sequence for DNA polymerase I and the lambda pL promoter for conditional control of polA gene expression. BglII cutting only damages but does not eliminate the polA promoter activity; the BglII site thus lies within the polA promoter region. Leakiness of the damaged polA promoter results in overproduction of DNA polymerase I even under conditions where pL is fully repressed. This overproduction is inhibitory of cell growth, as reflected in both growth rate and in the frequency of appearance of mutant plasmids which are nonproducers of DNA polymerase I. Transformation of plasmid pMP5 into E. coli N4830 yields strain ATL100 which under inducing conditions provides 138-fold amplification of DNA polymerase I. Optimization of growth and expression conditions are presented together with an optimized rapid polymerase purification scheme. In addition to providing a convenient source for preparation of DNA polymerase I, this work serves as the basis for a future detailed molecular genetic analysis of the polA gene product.  相似文献   

18.
Using strains of Escherichia coli K-12 that are deleted for the polA gene, we have reexamined the role of DNA polymerase I (encoded by polA) in postreplication repair after UV irradiation. The polA deletion (in contrast to the polA1 mutation) made uvrA cells very sensitive to UV radiation; the UV radiation sensitivity of a uvrA delta polA strain was about the same as that of a uvrA recF strain, a strain known to be grossly deficient in postreplication repair. The delta polA mutation interacted synergistically with a recF mutation in UV radiation sensitization, suggesting that the polA gene functions in pathways of postreplication repair that are largely independent of the recF gene. When compared to a uvrA strain, a uvrA delta polA strain was deficient in the repair of DNA daughter strand gaps, but not as deficient as a uvrA recF strain. Introduction of the delta polA mutation into uvrA recF cells made them deficient in the repair of DNA double-strand breaks after UV irradiation. The UV radiation sensitivity of a uvrA polA546(Ts) strain (defective in the 5'----3' exonuclease of DNA polymerase I) determined at the restrictive temperature was very close to that of a uvrA delta polA strain. These results suggest a major role for the 5'----3' exonuclease activity of DNA polymerase I in postreplication repair, in the repair of both DNA daughter strand gaps and double-strand breaks.  相似文献   

19.
The dinB gene of Escherichia coli is known to be involved in the untargeted mutagenesis of lambda phage. Recently, we have demonstrated that this damage-inducible and SOS-controlled gene encodes a novel DNA polymerase, DNA Pol IV, which is able to dramatically increase the untargeted mutagenesis of F' plasmid. At the amino acid level, DNA Pol IV shares sequence homologies with E. coli UmuC (DNA Pol V), Rev1p, and Rad30p (DNA polymerase eta) of Saccharomyces cerevisiae and human Rad30A (XPV) proteins, all of which are involved in translesion DNA synthesis. To better characterize the Pol IV-dependent untargeted mutagenesis, i.e., the DNA Pol IV mutator activity, we analyzed the genetic requirements of this activity and determined the forward mutation spectrum generated by this protein within the cII gene of lambda phage. The results indicated that the DNA Pol IV mutator activity is independent of polA, polB, recA, umuDC, uvrA, and mutS functions. The analysis of more than 300 independent mutations obtained in the wild-type or mutS background revealed that the mutator activity clearly promotes single-nucleotide substitutions as well as one-base deletions in the ratio of about 1:2. The base changes were strikingly biased for substitutions toward G:C base pairs, and about 70% of them occurred in 5'-GX-3' sequences, where X represents the base (T, A, or C) that is mutated to G. These results are discussed with respect to the recently described biochemical characteristics of DNA Pol IV.  相似文献   

20.
Three different mutations were introduced in the polA gene of Streptococcus pneumoniae by chromosomal transformation. One mutant gene encodes a truncated protein that possesses 5' to 3' exonuclease but has lost polymerase activity. This mutation does not affect cell viability. Other mutated forms of polA that encode proteins with only polymerase activity or with no enzymatic activity could not substitute for the wild-type polA gene in the chromosome unless the 5' to 3' exonuclease domain was encoded elsewhere in the chromosome. Thus, it appears that the 5' to 3' exonuclease activity of the DNA polymerase I is essential for cell viability in S. pneumoniae. Absence of the polymerase domain of DNA polymerase I slightly diminished the ability of S. pneumoniae to repair DNA lesions after ultraviolet irradiation. However, the polymerase domain of the pneumococcal DNA polymerase I gave almost complete complementation of the polA5 mutation in Escherichia coli with respect to resistance to ultraviolet irradiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号