首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cationic cotton was prepared by a designed two-bath pad-bake process with 3-chloro-2-hydroxypropyltrimethylammonium chloride as cationizing reagent to realize recycle utilization of the reagent and continuous processing of cationization. Experiments showed that 8.0% (o.w.bath) of the reagent, 1:1 of molar ratio of sodium hydroxide to the reagent, 60 °C and 6 min of baking temperature and time were selected for cationization and the obtained cationic cotton was suitable for application in salt-free reactive dyeing. The structures of both the untreated and cationic fibers were investigated by X-ray diffraction and scanning electronic microscopy. Higher dye utilization and color yields could be realized on the cationic cotton than that on the untreated one in the conventional dyeing. Levelness dyeing and good fastness properties of the dyes on the cationic fabrics were obtained. Besides, colorimetric properties and mechanical strength of the dyed fabrics were both evaluated to show applicability of this preparation process of cationic cotton.  相似文献   

2.
Cotton fabrics were treated with finishing bath formulation containing emulsion lattices based on acrylate monomers, chitosan and polyethylene glycol (PEG) to provide cotton fabrics with antibacterial, UV-protection as well as improvement of dyeing properties with direct, acid and reactive dyes. The terpolymer emulsion, chitosan and PEG concentrations as well as fabric pretreatment with alkali significantly affected the performance properties, antimicrobial activity, UV-protection and dyeing behavior of treated cotton fabric. The finished fabrics were characterized in terms of FTIR, X-ray diffraction, scanning electron microscope (SEM) as well as mechanical properties such as tensile strength, elongation at break (%), abrasion resistance and air permeability. The obtained data showed that the tested fabrics have appropriate antibacterial activity with highly UV-protection properties with increasing chitosan concentration up to 3%. The mechanical properties expressed as tensile strength and abrasion resistance increased after finishing treatment. Moreover, the performance of the finished fabrics and dyeing properties with different dyes classes were greatly influenced by the action of alkali pretreatment of cotton fabrics, adding the polyethylene glycol to the finishing bath formulation as well as emulsion and chitosan concentrations.  相似文献   

3.
Boric acid and compound containing nitrogen, 2,4,6-tri[(2-hydroxy-3-trimethyl-ammonium)propyl]-1,3,5-triazine chloride (Tri-HTAC) were used to finish cotton fabric. The flame retardant properties of the finished cotton fabrics and the synergetic effects of boron and nitrogen elements were investigated and evaluated by limited oxygen index (LOI) method. The mechanism of cross-linking reaction among cotton fiber, Tri-HTAC, and boric acid was discussed by FTIR and element analysis. The thermal stability and surface morphology of the finished cotton fabrics were investigated by thermogravimetric analysis (TGA) and scanning electron microscope (SEM), respectively. The finishing system of the mixture containing boron and nitrogen showed excellent synergistic flame retardancy for cotton fabric. The cotton fabric finished with mixture system had excellent flame retardancy. The LOI value of the treated cotton fabric increased over 27.5. Tri-HTAC could form covalent bonds with cellulose fiber and boric acid. The flame retardant cotton fabric showed a slight decrease in tensile strength and whiteness. The surface morphology of flame retardant cotton fiber was smooth.  相似文献   

4.
Microwave heating has been proved to be more rapid, uniform and efficient, and easily penetrate to particle inside. To investigate the effect of microwave irradiation on the physical property and morphological structure of cotton cellulose, cellulose fabric was treated with microwave irradiation at different conditions. The physical properties of the treated cellulose fabric were investigated. The morphological structures and thermal stabilities of the untreated and treated cellulose were investigated with differential scanning calorimetry (DSC) and X-ray diffraction. The results show that the physical properties of the treated cellulose fabrics were improved and the recoverability had not significant change. The thermal stability of the treated cellulose was changed. The crystallinity and preferred orientation of the treated cotton cellulose increased.  相似文献   

5.
Cotton fabric was thermally crosslinked with poly (N-vinyl-2-pyrrolidone) (PVP) at different conditions including temperature, time, PVP concentrations and molecular weights. Results indicated that treating the cotton fabrics with 4% aqueous solution of PVP of molecular weight 10,000 Dalton followed by drying at 85 °C for 5 min then curing at 160 °C for 3 min results in crosslinking as will as an improvement in some performance properties of that fabrics such as resiliency, tensile strength, and acid dyeability. Post-treating PVP crosslinked fabric with 5% iodine in ethanol solution for 5 h at 50 °C imparts antibacterial activity against Staphylococcus aureus and Escherichia coli. Moreover, incorporation of PVP in the easy-care finishing of cotton fabrics, as polymer additive, with N,N-dimethylol 4,5-dihydroxyethylene urea as a crosslinker enhances some of the performance properties of finished fabrics such as the nitrogen content, tensile strength and acid dyeability along with decreasing resiliency as well as whiteness index, whereas the ester crosslinking with citric acid, in presence of PVP, enhances resilience, tensile strength and whiteness indices accompanied with a reduction in the %N of the treated fabrics. Infra red spectrum of PVP crosslinked fabric as well as EDX analysis of loaded iodine on PVP crosslinked cotton fabric were investigated.  相似文献   

6.
Four different types of cotton-based fabrics, namely, loom-state cotton, cotton/polyester (50/50), cotton/polyester (35/65) and grey mercerized fabrics were bioscoured and bleached. The four substrates are given enzymatic treatment using cellulase enzyme to affect bio-polishing followed by crosslinking using N,N-dimethylol 4,5-dihydroxyethylene urea (DMDHEU) to affect easy care finishing. In another series of experiments the said bioscoured–bleached substrates were similarly crosslinked followed by bio-polishing. Technical properties of the treated fabric that were monitored include: nitrogen content, loss in fabric weight, tensile strength, elongation at break, tear strength, whiteness index, surface roughness and wrinkle recovery angle. Scanning electron micrograph was also examined. Conclusions arrived at from these studies indicated that: post-crosslinking and pre-crosslinking revealed marginal differences in N%, wrinkle recovery angle and whiteness index, a point which validates the argument that cellulase enzyme could not break down the DMDHEU crosslinks within the molecular structure of cotton-containing fabrics. Meanwhile the surface roughness obtained with pre-crosslinking is a bit higher than those of post-crosslinking. Moreover, post-crosslinking caused higher losses in strength properties than pre-crosslinking. Scanning electron micrograph shows that cotton sample pre-crosslinked is almost smooth than those post-crosslinked.  相似文献   

7.
《农业工程》2020,40(6):473-477
To enhance the efficiency of biological, chemical and physical properties like antibacterial activity, wash durability, air-permeability and biocompatibility of cotton fabric finished with chitosan and herbal nanocomposites. Extracts of Cassia angustifolia and Tamarindus indica with chitosan solution was bulk finished on 40s cotton fabrics. To increase the functional properties, chitosan and herbal extract nanocomposites were finished on to another set of fabrics (nanocomposite finishing). Different functional properties were carried out for both the sets of fabrics and comparatively analyzed. Antibacterial activity, physical properties and biocompatible properties of the finished fabric were determined. Antibacterial activity of nanocomposite finished fabrics showed inhibitory zones of 33 mm for E. coli and 31.6 mm for S. aureus. Nanocomposite finished fabrics showed good durable properties and physical properties than bulk finished fabrics. The study concludes that, nanocomposites could provide better functional properties than the bulk finished fabrics. The nano sized particles in the composites was considered significant for its functional applications in hospital based fabrics to prevent the transmission of nosocomial infections.  相似文献   

8.
The target of our current work was designed to prepare titanium oxide doped silver nanoparticles (Ag/TiO2NPs) and their impact on the functionalization of cotton fabrics. Additionally, the effect of Ag/TiO2NPs was compared with the individually prepared silver nanoparticles (AgNPs) and titanium oxide nanoparticles (TiO2NPs). In this work, AgNPs were prepared in the solid state using arabic gum as efficient stabilizing and reducing agent. Then, two concentrations of the as-synthesized nanoparticles were used to functionalize the cotton fabrics by pad-dry-cure treatment in the presence of fixing agent to increase the durability of treated cotton fabrics against vigorous washing cycles. The findings implied that the as-prepared nanoparticles were successfully synthesized in nano-size with spherical shape and homogeneity. The efficacy of the functionalized cotton fabrics with those nanoparticles were evaluated in terms of multifunctional properties including antimicrobial and ultraviolet protection factor (UPF) and the mechanical features before and after many washing cycles; 10, 15 and 20 times. The resultant also proved that Ag/TiO2NPs-treated cotton fabrics exhibited the greater values of both antimicrobial and UPF properties with enhancement in the tensile strength and elongation features. Thus, the combination between these two nanoparticles through doping reaction is suitable for imparting superior antimicrobial properties against the four tested microbial species (Staphylococcus aureus, Escherichia coli, Candida albicans, and Aspergillus niger) and good UPF properties. Depending on the promising obtained results of the multi-finishing fabrics, these nanoparticles of Ag/TiO2NPs can be applied for the production of an efficient medical clothes for doctors, nurses and bed sheets for patients in order to kill and prevent the spread of bacteria and then, reduce the transmission of infection to others.  相似文献   

9.
A new microwave curing system was used to affect crosslinking of cotton fabric with nonformaldehyde finishes, namely, glyoxal, glutaraldehyde and 1,2,3,4 butanetetracarboxylic acid (BTCA). Water soluble chitosan was incorporated in the finishing bath in order to impart antibacterial activity to the fabric in addition to the ease of care characteristics. Glyoxal proved to be the best finish and, hence, it was studied along with the chitosan under a variety of conditions including chitosan concentrations, power and time of microwave curing. Besides the crease recovery and strength properties of the finished fabrics, the latter were also monitored for N%, antibacterial activity and characterized using scanning electron microscope (SEM) and FTIR spectra when compared. With conventional curing system, the microwave curing system was found advantageous in production of cotton fabrics with easy care antibacterial properties without high losses in strength properties.  相似文献   

10.
The preparation of amino silicone based softeners with different emulsifiers was carried out and adsorbed onto the surfaces of cotton and blends of cotton/polyester fabrics. The softened fabrics have high surface area, so poorly performance in washing and rubbing fastness. It is obvious from the results of colorfastness to rubbing and washing that some of the samples of the dyed fabric treated with prepared softeners have shown some poor rating as compared to the untreated fabrics. However the other two samples have shown acceptable rubbing fastness results without losing softness and permanent handle. It can be observed that washing of the printed treated fabric remains unaffected almost in all the studied samples. Moreover, the application of the prepared softeners has imparted anti pilling property to the fabric. It can be seen that there is a remarkable increase in weights of treated fabrics as compared to the untreated fabrics.  相似文献   

11.
Chitosan, a naturally available biopolymer which is now increasingly being used as a functional finish on textile substrates to impart antimicrobial characteristics and increase dye uptake of fabrics was applied on wool fabrics. Henna a natural dye with proven bactericidal properties was applied on wool fabrics along with chitosan to impart antimicrobial characteristics. The effect of chitosan application on the dyeing properties of wool fabrics was studied by measuring the K/S values of the treated substrates at various concentrations of chitosan and the dye. The antimicrobial properties of chitosan and natural dyes both when applied independently and collectively on fabrics were assessed. The results proved that the chitosan treated wool fabrics showed increase dye uptake of fabrics. The treated fabrics were found to be antimicrobial and the chitosan treatment enhances the antimicrobial characteristics of the dyes. Fastness properties of the applied finish to washing, rubbing and perspiration have also been discussed.  相似文献   

12.
Alkaline pectinases have been proven to be effective as bioscouring agents of cotton fabrics. In order to monitor the scouring degree of cotton fabrics quantificationally, a kinetic study of the degradation of pectins in cotton by an alkaline pectinase ‘Bioprep 3000L’ was performed and the influences of initial pectinase concentration and treatment time on bioscouring were evaluated quantitatively. The results showed that although the degradation products increased as pectinase concentration grew higher at same incubation time, the growth multiples of the maximum degradation rate which was used as the starting degradation rate were less than those of initial enzyme concentration. The degradation kinetics of pectins in cotton fibers with a pectinase could be described by modified Ghose–Walseth kinetic empirical equations which had been previously applied to the degradation reaction of cellulose.  相似文献   

13.
An antimicrobial finishing for cotton fabric was prepared from commercial (iSys AG, Germany) silver chloride (Ag) dispersed at different concentrations in a reactive organic–inorganic binder (RB) (iSys MTX (CHT, Germany). Pad-dry-cure and exhaustion methods were used for the sols application, giving Ag-RB coating with Ag concentration from ca. 48 to ca. 290 ppm on the cotton fabric. The presence of silver on the cotton finishes was confirmed by measuring its concentration in the fabrics with the help of inductively coupled plasma mass spectroscopy (ICP-MS). The morphology of the finished fabrics was investigated by SEM, while their composition was established from EDXS measurements combined with the results of FT-IR spectral analysis. The antimicrobial activity of variously treated cotton fabrics was assessed before and after repetitive (up to 10×) washing by the application of standard tests: for the fungi Aspergillus niger (ATCC 6275) and Chaetomium globosum (ATCC 6205) by the modified DIN 53931 standard method, while the presence of Gram-negative bacterium Escherichia coli (ATCC 25922) was followed by using ISO 20645:2004 (E) and AATCC 100-1999 standard methods. Results revealed that the antimicrobial activity of the coatings strongly depended on the concentration of Ag in the corresponding Ag-RB dispersions, indirectly depending on the preparation method (pad-dry-cure vs. exhaustion) and that the Ag-RB coatings were more effective for bacteria than for fungi. The Ag concentrations on the cotton fabrics achieved by the pad-dry-cure method (48 and 52 ppm) were not sufficient to impart satisfactory antifungal activity to the cotton fabrics, though they assured excellent reduction of the bacterium E. coli (98–100%). A minimal inhibitory concentration of Ag in the coating providing a sufficient bacterial reduction of 60% was ca. 24 ppm. Effective antifungal activity was achieved only by applying the exhaustion method, enabling high initial Ag concentration in the Ag-RB coating (>100 ppm). The antibacterial activity depended on the washing treatment. No antifungal activity was noted for washed cotton fabric, even those with highly concentrated Ag (290 ppm) in the Ag-RB coating, but a 94% bacterial reduction was obtained for the corresponding cotton fabric, after 10 repetitive washings, corroborated by the Ag concentration on washed fabric of about 65 ppm.  相似文献   

14.
The application of an odorant binding protein for odour control and fragrance delayed release from a textile surface was first explored in this work. Pig OBP-1 gene was cloned and expressed in Escherichia coli, and the purified protein was biochemically characterized. The IC50 values (concentrations of competitor that caused a decay of fluorescence to half-maximal intensity) were determined for four distinct fragrances, namely, citronellol, benzyl benzoate, citronellyl valerate and ethyl valerate. The results showed a strong binding of citronellyl valerate, citronellol and benzyl benzoate to the recombinant protein, while ethyl valerate displayed weaker binding. Cationized cotton substrates were coated with porcine odorant binding protein and tested for their capacity to retain citronellol and to mask the smell of cigarette smoke. The immobilized protein delayed the release of citronellol when compared to the untreated cotton. According to a blind evaluation of 30 assessors, the smell of cigarette smoke, trapped onto the fabrics’ surface, was successfully attenuated by porcine odorant binding protein (more than 60 % identified the weakest smell intensity after protein exposure compared to β-cyclodextrin-treated and untreated cotton fabrics). This work demonstrated that porcine odorant binding protein can be an efficient solution to prevent and/or remove unpleasant odours trapped on the large surface of textiles. Its intrinsic properties make odorant binding proteins excellent candidates for controlled release systems which constitute a new application for this class of proteins.  相似文献   

15.
The adherent behaviour of the Gram-positive Staphylococcus aureus and Staphylococcus epidermidis and the Gram-negative Escherichia coli on cotton, polyester and their blends through contact in aqueous suspensions was studied. Staphylococcus epidermidis was found to adhere to fabrics much more so than Staph. aureus. The adherence of both Staph. epidermidis and Staph. aureus to fabrics increased as the content of polyester fibres in the fabrics increased. The attachment of E. coli to all fabrics was very low and was not affected by the fibre contents. Total numbers of adherent bacteria on cotton and polyester fabrics were related directly to the concentrations of the bacterial suspensions. The extents of adherence, expressed by the percentage of adherent bacteria from the suspension, however, were independent of the concentration. The length of contact with bacteria was also found to affect the adherence of bacteria on fabrics studied.  相似文献   

16.
The adherent behaviour of the Gram-positive Staphylococcus aureus and Staphylococcus epidermidis and the Gram-negative Escherichia coli on cotton, polyester and their blends through contact in aqueous suspensions was studied. Staphylococcus epidermidis was found to adhere to fabrics much more so than Staph. aureus. The adherence of both Staph. epidermidis and Staph. aureus to fabrics increased as the content of polyester fibres in the fabrics increased. The attachment of E. coli to all fabrics was very low and was not affected by the fibre contents. Total numbers of adherent bacteria on cotton and polyester fabrics were related directly to the concentrations of the bacterial suspensions. The extents of adherence, expressed by the percentage of adherent bacteria from the suspension, however, were independent of the concentration. The length of contact with bacteria was also found to affect the adherence of bacteria on fabrics studied.  相似文献   

17.
新疆棉田土壤质量综合评价方法   总被引:3,自引:0,他引:3  
以新疆主要棉区为研究对象,测定了哈密、博乐、昌吉、奎屯、石河子、阿克苏及喀什棉田土壤耕层的pH、盐分、有机质、全氮、速效磷、速效钾及Cr、Cu、Zn、As、Pb 共计11个指标,综合分析土壤理化性质和重金属含量,采用土壤质量综合指数(SQI)对新疆主要棉区棉田土壤质量进行综合评价.结果表明: 新疆棉区棉田土壤呈碱性,pH均值为7.87,盐分含量均值为3.44 g·kg-1,为轻度盐化土壤,有机质和全氮含量均偏低,速效磷、速效钾含量较为丰富,与第二次全国土壤普查数据相比,土壤pH、盐分含量、有机质和全氮均呈下降趋势,土壤速效磷明显增长,部分地区土壤速效钾呈现出不同程度的升高趋势;Cr、Cu、Zn、As、Pb 5种重金属含量分别为45.88、40.66、68.30、12.88、16.68 mg·kg-1,均未超过国家二级标准,但与新疆土壤元素背景值相比,Cu、Zn、As均有累积现象.当重金属内梅罗综合污染指数(PN)小于0.5时,土壤理化性质越好,土壤综合质量越好.土壤有机质、全氮、Cu、Zn和As是影响新疆棉区棉田土壤质量的重要因素.新疆棉区棉田土壤质量总体属于中等水平,昌吉、奎屯质量最高,SQI为0.52,阿克苏质量最低,SQI为0.31,不同棉区土壤质量呈现为:北疆>东疆>南疆.  相似文献   

18.
Poly-N-vinyl-2-pyrrolidone functionalization was done for improved the dyeability of dichlorotriazine dyes on cotton fabric. The synthesized ZnO nanoparticles were padded on functionalized cotton fabrics to improve antibacterial activity. The modification effects were characterized by FTIR, XRD, SEM and EDX studies. The antibacterial activity was done against Staphylococcus aureus and Escherichia coli bacterium. The dye exhaustion and fastness properties were analyzed for dyeing with sodium chloride, sodium sulfate and trisodium citrate bio-salt as exhausting agents. The functionalized cotton fabric showed improved dye uptake and good fastness properties. Poly-N-vinyl-2-pyrrolidone with ZnO nanoparticles padded fabrics showed very good antibacterial activity.  相似文献   

19.
The study was aimed at increasing the resistance of lignocellulosic textiles to bacteria and mould action using a biocide of plant origin. The biocide used in the study was thyme essential oil. This kind of oil is characterized by low toxicity for humans and the environment. The antimicrobial efficiency of thyme essential oil applied to linen–cotton blended fabric and linen fabric was evaluated by determining bacterial growth, degree of mould growth, and their impact on fabric strength. Thyme essential oil applied as 8% concentration in methanol to linen–cotton blended fabric showed very high antibacterial and antifungal activity – no mould growth and no significant loss of breaking force were observed. Microscopic evaluation of the tested fabrics was also performed by Scanning Electron Microscopy. Applying the eco-friendly biocide to fabrics containing natural fibres in the finishing process produces antimicrobial barrier properties.  相似文献   

20.
This research studied the adherent behaviour of gram-negative Escherichia coli on different weft knitted textile fabrics made of cotton, polyester filaments and polyester (staple)-cotton blended yarn. We compared the bacterial adherence of 18-h-old E. coli cells on all the three types of fabrics under the same experimental conditions. The maximum adherence was found in cotton, followed by the polyester blend; the least adherence was in polyester fabrics. Scanning electron micrographs showed that surface morphology of fabrics also plays an important role during adherence. Cotton fabric, with a rough surface, attracted more bacterial cells compared to the smooth polyester surface. Comparing the FTIR spectra of different fabrics and E. coli it was found that both cotton and E. coli have abundant free hydroxyl groups that may interact strongly with each other and with other hydrophilic groups such as carboxyl, phosphate, and amides. This may be one of the reasons for the greater adherence on cotton as compared to hydrophobic polyester fabric. Finally, the effect of bacterial adherence on loss of strength in different fabrics was analysed. It was found that the maximum decrease in strength occurred in cotton fabrics and the least in polyester fabrics. The present study suggests a procedure for quantifying bacterial adherence on different textile fabrics. This technique can be used with different bacterial strains and varieties of fabrics for quantifying the adherent bacterial cells, and would be of great use in developing and comparing different antimicrobial finished products of the textile industry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号