首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
Naumoff DG 《Proteins》2001,42(1):66-76
Comparison of the amino acid sequences of four families of glycosyl hydrolases reveals that they are homologous and have several common conserved regions. Two of these families contain beta-fructosidases (glycosyl hydrolase families GH32 and GH68) and the other two include alpha-L-arabinases and beta-xylosidases (families GH43 and GH62). The latter two families are proposed to be grouped together with the former two into the beta-fructosidase (furanosidase) superfamily. Several ORFs can be considered as a fifth family of the superfamily on the basis of sequence similarity. It is shown for the first time that a glycosyl hydrolase superfamily can include enzymes with both inversion and retention mechanism of action. Composition of the active center for enzymes of the superfamily is discussed.  相似文献   

2.
Culture independent PCR: an alternative enzyme discovery strategy   总被引:1,自引:0,他引:1  
Degenerate primers were designed for use in a culture-independent PCR screening of DNA from composite fungal communities, inhabiting residues of corn stovers and leaves. According to similarity searches and alignments amplified clone sequences affiliated with glycosyl hydrolase family 7 and glycosyl hydrolase family 45 though significant sequence divergence was observed. Glycosyl hydrolases from families 7 and 45 play a crucial role in biomass conversion to fuel ethanol. Research in this renewable energy source has two objectives: (i) To contribute to development of a renewable alternative to world's limited crude fossil oil reserves and (ii) to reduce air pollution. Amplification with 18S rDNA-specific primers revealed species within the ascomycetous orders Sordariales and Hypocreales as well as basidiomycetous order Agaricales to be present in these communities. Our study documents the value of culture-independent PCR in microbial diversity studies and could add to development of a new enzyme screening technology.  相似文献   

3.
Raffinose and stachyose are ubiquitous galactosyl-sucrose oligosaccharides in the plant kingdom which play major roles, second only to sucrose, in photoassimilate translocation and seed carbohydrate storage. These sugars are initially metabolised by alpha-galactosidases (alpha-gal). We report the cloning and functional expression of the first genes, CmAGA1 and CmAGA2, encoding for plant alpha-gals with alkaline pH optima from melon fruit (Cucumis melo L.), a raffinose and stachyose translocating species. The alkaline alpha-gal genes show very high sequence homology with a family of undefined 'seed imbibition proteins' (SIPs) which are present in a wide range of plant families. In order to confirm the function of SIP proteins, a representative SIP gene, from tomato, was expressed and shown to have alkaline alpha-gal activity. Phylogenetic analysis based on amino acid sequences shows that the family of alkaline alpha-gals shares little homology with the known prokaryotic and eukaryotic alpha-gals of glycosyl hydrolase families 27 and 36, with the exception of two cross-family conserved sequences containing aspartates which probably function in the catalytic step. This previously uncharacterised, plant-specific alpha-gal family of glycosyl hydrolases, with optimal activity at neutral-alkaline pH likely functions in key processes of galactosyl-oligosaccharide metabolism, such as during seed germination and translocation of RFO photosynthate.  相似文献   

4.
Tsai CF  Qiu X  Liu JH 《Anaerobe》2003,9(3):131-140
Cellulase family and some other glycosyl hydrolases of anaerobic fungi inhabiting the digestive tract of ruminants are believed to form an enzyme complex called cellulosome. Study of the individual component of cellulosome may shed light on understanding the organization of this complex and its functional mechanism. We have analysed the primary sequences of two cellulase clones, cel5B and cel6A, isolated from the cDNA library of ruminal fungus, Piromyces rhizinflata strain 2301. The deduced amino acid sequences of the catalytic domain of Cel5B, encoded by cel5B, showed homology with the subfamily 4 of the family 5 (subfamily 5(4)) of glycosyl hydrolases, while cel6A encoded Cel6A belonged to family 6 of glycosyl hydrolases. Phylogenetic tree analysis suggested that the genes of subfamily 5(4) glycosyl hydrolases of P. rhizinflata might have been acquired from rumen bacteria. Cel5B and Cel6A were modular enzymes consisting of a catalytic domain and dockerin domain(s), but not a cellulose binding domain. The occurrence of dockerin domains indicated that both enzymes were cellulosome components. The catalytic domain of the Cel5B (Cel5B') and Cel6A (Cel6A') recombinant proteins were purified. The optimal activity conditions with carboxymethyl cellulose (CMC) as the substrate were pH 6.0 and 50 degrees C for Cel5B', and pH 6.0 and 37-45 degrees C for Cel6A'. Both Cel5B' and Cel6A' exhibited activity against CMC, barley beta-glucan, Lichenan, and oat spelt xylan. Cel5B' could also hydrolyse p-nitrophenyl-beta-d-cellobioside, Avicel and filter paper while Cel6A' did not show any activity on these substrates. It is apparent that Cel6A' acted as an endoglucanase and Cel5B' possessed both endoglucanase and exoglucanase activities. No synergic effect was observed for these recombinant enzymes in vitro on Avicel and CMC.  相似文献   

5.
SENSITIVE TO FREEZING 2 (SFR2) is classified as a family I glycosyl hydrolase but has recently been shown to have galactosyltransferase activity in Arabidopsis thaliana. Natural occurrences of apparent glycosyl hydrolases acting as transferases are interesting from a biocatalysis standpoint, and knowledge about the interconversion can assist in engineering SFR2 in crop plants to resist freezing. To understand how SFR2 evolved into a transferase, the relationship between its structure and function are investigated by activity assay, molecular modeling, and site-directed mutagenesis. SFR2 has no detectable hydrolase activity, although its catalytic site is highly conserved with that of family 1 glycosyl hydrolases. Three regions disparate from glycosyl hydrolases are identified as required for transferase activity as follows: a loop insertion, the C-terminal peptide, and a hydrophobic patch adjacent to the catalytic site. Rationales for the effects of these regions on the SFR2 mechanism are discussed.  相似文献   

6.
The 3D structure-oriented alignment of the primary sequences of fourteen chitosanases, mainly of bacterial origin and belonging to families 46 and 80 of glycoside hydrolases, resulted in the identification of the following pattern common to all these enzymes: E-[DNQ]-x(8,17)-Y-x(7)-D-x-[RD]-[GP]-x-[TS]-x(3)-[AIVFLY]-G- x(5,11)-D. This pattern is proposed as the molecular signature of the chitosanases from families 46 and 80. It includes several amino acids essential for enzyme activity and (or) stability as shown by site-directed mutagenesis studies on the chitosanase from Streptomyces sp. N174. In particular, it includes two carboxylic residues directly involved in catalysis. We suggest that there is a continuum of sequence similarity between all the analyzed chitosanases, and that all these enzymes should probably be classified in one family.  相似文献   

7.
The clan GH-A is a group of more than 200 proteins representingnine established families of glycosyl hydrolases that act ona large variety of substrates. This clan includes five enzymesimplicated in lysosomal storage diseases: ß-glucuronidase(Sly disease), ß-glucocerebrosidase (Gau-cher disease),ß-galactosidase (Landing disease and Morquio typeB disease), ß-mannosidase (mannosidosis) and  相似文献   

8.
Recently, the gene coding for a new beta-glucuronidase enzyme has been identified and cloned from Streptococcus equi subsp. zooepidemicus. This is another report of a beta-glucuronidase gene cloned from bacterial species. The ORF Finder analysis of a sequenced DNA (EMBL, AJ890474) revealed a presence of 1,785 bp large ORF potentially coding for a 594 aa protein. Three protein families in (Pfam) domains were identified using the Conserved Domain Database (CDD) analysis: Pfam 02836, glycosyl hydrolases family 2, triose phosphate isomerase (TIM) barrel domain; Pfam 02837, glycosyl hydrolases family 2, sugar binding domain; and Pfam 00703, glycosyl hydrolases family 2, immunoglobulin-like beta-sandwich domain. To gain more insight into the enzymatic activity, the domains were used to generate a bootstrapped unrooted distance tree using ClustalX. The calculated distances for two domains, TIM barrel domain, and sugar-binding domain were comparable and exhibited similarity pattern based on function and thus being in accordance with recently published works confirming beta-glucuronidase activity of the enzyme. The calculated distances and the tree arrangement in the case of centrally positioned immonoglobulin-like beta-sandwich domain were somewhat higher when compared to other two domains but clustering with other beta-glucuronidases was rather clear. Nine proteins, including beta-glucuronidases, beta-galactosidase, and mannosidase were selected for multiple alignment and subsequent distance tree creation.  相似文献   

9.
Studies of gene expression in haloarchaea have been greatly hindered by the lack of a convenient reporter gene. In a previous study, a beta-galactosidase from Haloferax alicantei was purified and several peptide sequences determined. The peptide sequences have now been used to clone the entire beta-galactosidase gene (designated bgaH) along with some flanking chromosomal DNA. The deduced amino acid sequence of BgaH was 665 amino acids (74 kDa) and showed greatest amino acid similarity to members of glycosyl hydrolase family 42 [classification of Henrissat, B., and Bairoch, A. (1993) New families in the classification of glycosyl hydrolases based on amino acid sequence similarities. Biochem J 293: 781-788]. Within this family, BgaH was most similar (42-43% aa identity) to enzymes from extremely thermophilic bacteria such as Thermotoga and Thermus. Family 42 enzymes are only distantly related to the Sulfolobus LacS and Escherichia coli LacZ enzymes (families one and two respectively). Three open reading frames (ORFs) upstream of bgaH were readily identified by database searches as glucose-fructose oxidoreductase, 2-dehydro-3-deoxyphosphogluconate aldolase and 2-keto-3-deoxygluconate kinase, enzymes that are also involved in carbohydrate metabolism. Downstream of bgaH there was an ORF which contained a putative fibronectin III motif. The bgaH gene was engineered into a halobacterial plasmid vector and introduced into Haloferax volcanii, a widely used strain that lacks detectable beta-galactosidase activity. Transformants were shown to express the enzyme; colonies turned blue when sprayed with Xgal and enzyme activity could be easily quantitated using a standard ONPG assay. In an accompanying publication, Patenge et al. (2000) have demonstrated the utility of bgaH as a promoter reporter in Halobacterium salinarum.  相似文献   

10.
The white-rot basidiomycete Phanerochaete chrysosporium employs extracellular enzymes to completely degrade the major polymers of wood: cellulose, hemicellulose, and lignin. Analysis of a total of 10,048 v2.1 gene models predicts 769 secreted proteins, a substantial increase over the 268 models identified in the earlier database (v1.0). Within the v2.1 'computational secretome,' 43% showed no significant similarity to known proteins, but were structurally related to other hypothetical protein sequences. In contrast, 53% showed significant similarity to known protein sequences including 87 models assigned to 33 glycoside hydrolase families and 52 sequences distributed among 13 peptidase families. When grown under standard ligninolytic conditions, peptides corresponding to 11 peptidase genes were identified in culture filtrates by mass spectrometry (LS-MS/MS). Five peptidases were members of a large family of aspartyl proteases, many of which were localized to gene clusters. Consistent with a role in dephosphorylation of lignin peroxidase, a mannose-6-phosphatase (M6Pase) was also identified in carbon-starved cultures. Beyond proteases and M6Pase, 28 specific gene products were identified including several representatives of gene families. These included 4 lignin peroxidases, 3 lipases, 2 carboxylesterases, and 8 glycosyl hydrolases. The results underscore the rich genetic diversity and complexity of P. chrysosporium's extracellular enzyme systems.  相似文献   

11.
Three beta-galactosidase genes from Bifidobacterium bifidum DSM20215 and one beta-galactosidase gene from Bifidobacterium infantis DSM20088 were isolated and characterized. The three B. bifidum beta-galactosidases exhibited a low degree of amino acid sequence similarity to each other and to previously published beta-galactosidases classified as family 2 glycosyl hydrolases. Likewise, the B. infantis beta-galactosidase was distantly related to enzymes classified as family 42 glycosyl hydrolases. One of the enzymes from B. bifidum, termed BIF3, is most probably an extracellular enzyme, since it contained a signal sequence which was cleaved off during heterologous expression of the enzyme in Escherichia coli. Other exceptional features of the BIF3 beta-galactosidase were (i) the monomeric structure of the active enzyme, comprising 1,752 amino acid residues (188 kDa) and (ii) the molecular organization into an N-terminal beta-galactosidase domain and a C-terminal galactose binding domain. The other two B. bifidum beta-galactosidases and the enzyme from B. infantis were multimeric, intracellular enzymes with molecular masses similar to typical family 2 and family 42 glycosyl hydrolases, respectively. Despite the differences in size, molecular composition, and amino acid sequence, all four beta-galactosidases were highly specific for hydrolysis of beta-D-galactosidic linkages, and all four enzymes were able to transgalactosylate with lactose as a substrate.  相似文献   

12.
Heparanase is a beta-D-endoglucuronidase that cleaves heparan sulfate (HS) and has been implicated in many important physiological and pathological processes, including tumor cell metastasis, angiogenesis, and leukocyte migration. We report herein the identification of active-site residues of human heparanase. Using PSI-BLAST and PHI-BLAST searches of sequence databases, similarities were identified between heparanase and members of several of the glycosyl hydrolase families (10, 39, and 51) from glycosyl hydrolase clan A (GH-A), including strong local identities to regions containing the critical active-site catalytic proton donor and nucleophile residues that are conserved in this clan of enzymes. Furthermore, secondary structure predictions suggested that heparanase is likely to contain an (alpha/beta)(8) TIM-barrel fold, which is common to the GH-A families. On the basis of sequence alignments with a number of glycosyl hydrolases from GH-A, Glu(225) and Glu(343) of human heparanase were identified as the likely proton donor and nucleophile residues, respectively. The substitution of these residues with alanine and the subsequent expression of the mutant heparanases in COS-7 cells demonstrated that the HS-degrading capacity of both was abolished. In contrast, the alanine substitution of two other glutamic acid residues (Glu(378) and Glu(396)), both predicted to be outside the active site, did not affect heparanase activity. These data suggest that heparanase is a member of the clan A glycosyl hydrolases and has a common catalytic mechanism that involves two conserved acidic residues, a putative proton donor at Glu(225) and a nucleophile at Glu(343).  相似文献   

13.
Abstract Genes encoding for glycosyl hydrolases (GH) in multiple families were recovered from an expression sequence tag library of Coptotermes formosanus, a xylophagous lower termite species. Functional analyses of these genes not only shed light on the mechanisms the insect employs to successfully use cellulosic materials as energy sources, which may serve as strategic targets for designing molecular-based bio-pesticides, but also enrich discoveries of new cellulolytic enzymes for conversion of biomass into biofuel. Our study demonstrated that cellulose could be converted to glucose by two recombinant endogenous glycosyl hydrolases (endo-β-1,4 glucanase in GH9 and β-glucosidase in GH1). While the former cleaved cellulose to cellobiose and cellotriose, the resulting simple cellodextrins were digested to glucose. Both of the Escherichia coli-expressed recombinant proteins showed properties that could be incorporated in a glucose-based ethanol production program.  相似文献   

14.
Chitinases (EC 3.2.1.14) are glycosyl hydrolases that catalyze the hydrolysis of beta-(1, 4)-glycosidic bonds in chitin, the major structural polysaccharide present in the cuticle and gut peritrophic matrix of insects. Two conserved regions have been identified from amino acid sequence comparisons of family 18 glycosyl hydrolases, which includes Manduca sexta (tobacco hornworm) chitinase as a member. The second of these regions in M. sexta chitinase contains three very highly conserved acidic amino acid residues, D142, D144 and E146, that are probably active site residues. In this study the functional roles of these three residues were investigated using site-directed mutagenesis for their substitutions to other amino acids. Six mutant proteins, D142E, D142N, D144E, D144N, E146D and E146Q, as well as the wild-type enzyme, were produced using a baculovirus-insect cell line expression system. The proteins were purified by anion-exchange chromatography, after which their physical, kinetic and substrate binding properties were determined. Circular dichroism spectra of the mutant proteins were similar to that of the wild-type protein, indicating that the presence of mutations did not change the overall secondary structures. E146 was required for enzymatic activity because mutants E146Q and E146D were devoid of activity. D144E retained most of the enzymatic activity, but D144N lost nearly 90%. There was a shift in the pH optimum from alkaline pH to acidic pH for mutants D142N and D144E with minimal losses of activity relative to the wild-type enzyme. The pH-activity profile for the D142E mutation resembled that of the wild-type enzyme except activity in the neutral and acidic range was lower. All of the mutant proteins bound to chitin. Therefore, none of these acidic residues was essential for substrate binding. The results indicate that E146 probably functions as an acid/base catalyst in the hydrolytic mechanism, as do homologous residues in other glycosyl hydrolases. D144 apparently functions as an electrostatic stabilizer of the positively charged transition state, whereas D142 probably influences the pKa values of D144 and E146.  相似文献   

15.
An evolving hierarchical family classification for glycosyltransferases   总被引:4,自引:0,他引:4  
Glycosyltransferases are a ubiquitous group of enzymes that catalyse the transfer of a sugar moiety from an activated sugar donor onto saccharide or non-saccharide acceptors. Although many glycosyltransferases catalyse chemically similar reactions, presumably through transition states with substantial oxocarbenium ion character, they display remarkable diversity in their donor, acceptor and product specificity and thereby generate a potentially infinite number of glycoconjugates, oligo- and polysaccharides. We have performed a comprehensive survey of glycosyltransferase-related sequences (over 7200 to date) and present here a classification of these enzymes akin to that proposed previously for glycoside hydrolases, into a hierarchical system of families, clans, and folds. This evolving classification rationalises structural and mechanistic investigation, harnesses information from a wide variety of related enzymes to inform cell biology and overcomes recurrent problems in the functional prediction of glycosyltransferase-related open-reading frames.  相似文献   

16.
The gene encoding a 2,6-beta-D-fructan 6-levanbiohydrolase (LF2ase) (EC 3.2.1.64) that converts levan into levanbiose was cloned from the genomic DNA of Streptomyces exfoliatus F3-2. The gene encoded a signal peptide of 37 amino acids and a mature protein of 482 amino acids with a total length of 1560 bp and was successfully expressed in Escherichia coli. The similarities of primary structure were observed with levanases from Clostridium acetobutylicum, Bacillus subtilis, B. stearothermophilus (51.0-54.3%) and with LF2ase from Microbacterium levaniformans (53.9%). The enzyme from S. exfoliatus F3-2 shared the conserved six domains and the completely conserved five amino acid residues with family 32 glycosyl hydrolases, which include levanase, inulinase, and invertase. These observations led to the conclusion that the enzyme belongs to family 32 glycosyl hydrolases.  相似文献   

17.
Sato Y  Niimura Y  Yura K  Go M 《Gene》1999,238(1):93-101
Xylanases are classified into two families, numbered F/10 and G/11 according to the similarity of amino acid sequences of their catalytic domain (Henrissat, B., Bairoch, A., 1993. New families in the classification of glycosyl hydrolases based on amino acid sequence similarities. Biochem. J. 293, 781-788). Three-dimensional structure of the catalytic domain of the family F/10 xylanase was reported (White, A., Withers, S.G., Gilkes, N.R., Rose, D.R., 1994. Crystal structure of the catalytic domain of the beta-1,4-glycanase Cex from Cellulomonas fimi. Biochemistry 33, 12546-12552). The domain was decomposed into 22 modules by centripetal profiles (Go, M., Nosaka, M., 1987. Protein architecture and the origin of introns. Cold Spring Harbor Symp. Quant. Biol. 52, 915-924; Noguti, T., Sakakibara, H., Go, M., 1993. Localization of hydrogen-bonds within modules in barnase. Proteins 16, 357-363). A module is a contiguous polypeptide segment of amino acid residues having a compact conformation within a globular domain. Collected 31 intron sites of the family F/10 xylanase genes from fungus were found to be correlated to module boundaries with considerable statistical force (p values <0.001). The relationship between the intron locations and protein structures provides supporting evidence for the ancient origin of introns, because such a relationship cannot be expected by random insertion of introns into eukaryotic genes, but it rather suggests pre-existence of introns in the ancestral genes of prokaryotes and eukaryotes. A phylogenetic tree of the fungal and bacterial xylanase sequences made two clusters; one includes both the bacterial and fungal genes, but the other consists of only fungal genes. The mixed cluster of bacterial genes without introns and the fungal genes with introns further supports the ancient origin of introns. Comparison of the conserved base sequences of introns indicates that sliding of a splice site occurred in Aspergillus kawachii gene by one base from the ancestral position. Substrate-binding sites of xylanase are localized on eight modules, and introns are found at both termini of six out of these functional modules. This result suggests that introns might play a functional role in shuffling the exons encoding the substrate-binding modules.  相似文献   

18.
Mannan-degrading enzymes from Cellulomonas fimi.   总被引:1,自引:0,他引:1  
The genes man26a and man2A from Cellulomonas fimi encode mannanase 26A (Man26A) and beta-mannosidase 2A (Man2A), respectively. Mature Man26A is a secreted, modular protein of 951 amino acids, comprising a catalytic module in family 26 of glycosyl hydrolases, an S-layer homology module, and two modules of unknown function. Exposure of Man26A produced by Escherichia coli to C. fimi protease generates active fragments of the enzyme that correspond to polypeptides with mannanase activity produced by C. fimi during growth on mannans, indicating that it may be the only mannanase produced by the organism. A significant fraction of the Man26A produced by C. fimi remains cell associated. Man2A is an intracellular enzyme comprising a catalytic module in a subfamily of family 2 of the glycosyl hydrolases that at present contains only mammalian beta-mannosidases.  相似文献   

19.
Addition of crystalline cellulose to semi-desert soil shifts the microbial population; this was assessed by following the 16S rRNA gene, glycosyl hydrolase, and measuring its functional diversity in the bacterial population. Quantification of the glycosyl hydrolase gene showed an increase from 1 × 104 g−1 of unamended soil to 3 × 104 g−1 of crystalline-cellulose-amended soil by the 15th day of crystalline cellulose utilization. The indigenous glycosyl hydrolase community in unamended soil was dominated by the clone families that were closely related to the glycosyl hydrolases from Betaproteobacteria and Firmicutes. The addition of crystalline cellulose induced a shift in the glycosyl hydrolase population toward an increase in the relative abundance of the glycosyl hydrolase that was consistent with those of Bacteroidetes and Flavobacteria. The population shift of glycosyl hydrolase was also supported by the comparison of the 16S rRNA gene families in unamended and crystalline-cellulose-amended soil libraries. The most abundant 16S rRNA gene sequences retrieved in the unamended soil were identical to Pseudomonas, Massilia, Paenibacillus, and Bacillus spp., while Cytophaga and Flavobacterium spp. dominated in crystalline-cellulose-amended soil.  相似文献   

20.
The nucleotide sequence of the gene encoding the cellulose-binding protein A (CBPA) of Eubacterium cellulosolvens 5 was determined. The gene consists of an open reading frame of 3453 nucleotides and encodes a protein of 1151 amino acids with a molecular mass of 126408 Da. The deduced amino acid sequence of CBPA contained one domain highly similar to a catalytic domain of glycosyl hydrolases belonging to family 9, two linker-like domains and four domains of unknown function. Among the four domains of unknown function, the domains 1 and 2 region had significant homology in amino acid sequence with the cellulose-binding domains in the family 9 glycosyl hydrolases. The cloned gene was inserted into an expression vector, pBAD-TOPO, and expressed in Escherichia coli as a fused protein. The fused protein was detected by immunoblotting using antiserum against CBPA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号