首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Sensitivity of Resistance to Net Blotch in Barley   总被引:1,自引:0,他引:1  
The aim of this study was to demonstrate various methods of analysing terminal net blotch, Pyrenophora teres Drechs. f. teres Smedeg., severity data from 15 spring barleys, Hordeum vulgare L., grown in Finnish official variety trials in five environments. The analyses have been developed and used principally by plant breeders for assessing crop yield, but lend themselves to use by plant pathologists. Pyrenophora teres is the major barley phytopathogen in Finland and improved resistance to it is sought. Joint regression analysis (JRA) and an additive main effects and multiplicative interaction (AMMI) model were used to investigate the data. Statistically significant genotype by environment (GE) interaction for resistance was indicated, and this included qualitative (crossover) interactions among genotypes over environments. A stable, non-sensitive, response to net blotch over environments, combined with a low mean score for terminal severity of the disease characterized the six-row barley 'Thule' which showed statistically significant crossover interaction only with 'Tyra'. 'Kustaa' exhibited the lowest mean terminal net blotch severity, but was relatively sensitive to net blotch. 'Arve' exhibited severe terminal net blotch in all environments, was relatively sensitive to environment and exhibited no crossover interaction with other genotypes. AMMI analysis appeared to represent a useful method for analysing these disease severity data, facilitating the selection of useful sources of resistance. Plots of AMMI-adjusted mean net blotch severities against first principal component axis (PCA) scores were informative for differentiating genotype response over environments, and are therefore potentially useful to plant pathologists and barley breeders seeking to gauge and subsequently improve the resistance status of barley to net blotch.  相似文献   

2.
Net blotch, caused by Pyrenophora teres, is one of the most economically important diseases of barley worldwide. Here, we used a barley doubled-haploid population derived from the lines SM89010 and Q21861 to identify major quantitative trait loci (QTLs) associated with seedling resistance to P. teres f. teres (net-type net blotch (NTNB)) and P. teres f. maculata (spot-type net blotch (STNB)). A map consisting of simple sequence repeat (SSR) and amplified fragment length polymorphism (AFLP) markers was used to identify chromosome locations of resistance loci. Major QTLs for NTNB and STNB resistance were located on chromosomes 6H and 4H, respectively. The 6H locus (NTNB) accounted for as much as 89% of the disease variation, whereas the 4H locus (STNB resistance) accounted for 64%. The markers closely linked to the resistance gene loci will be useful for marker-assisted selection.  相似文献   

3.
S J Molnar  L E James  K J Kasha 《Génome》2000,43(2):224-231
A doubled haploid barley (Hordeum vulgare L.) population that was created from a cross between cultivars 'Léger' and 'CI 9831' was characterized by RAPD (random amplified polymorphic DNA) markers for resistance to isolate WRS857 of Pyrenophora teres Drechs. f. sp. maculata Smedeg., the causal agent of the spot form of net blotch. Resistance, which initially appeared to be conferred by a single gene from the approximate 1:1 (resistant : susceptible) segregation ratio of the doubled-haploid (DH) progeny, was found to be associated with three different genomic regions by RAPD analysis. Of 500 RAPD random primers that were screened against the parents, 195 revealed polymorphic bands, seven showed an association to the resistance in bulks, and these seven markers were mapped to three unlinked genomic regions. Two of these regions, one of which was mapped to chromosome 2, have major resistance genes. The third region has some homology to the chromosome 2 region. This study demonstrates the simultaneous location of markers for more than one gene governing a trait by using RAPD and bulked segregant analysis (BSA).  相似文献   

4.
Net blotch of barley (Hordeum vulgare L.), caused by the fungal phytopathogen Pyrenophora teres Drechs. f. teres Smedeg., constitutes one of the most serious constraints to barley production worldwide. Two forms of the disease, the net form, caused by P. teres f. teres, and the spot form, caused by P. teres f. maculata, are differentiated by the type of symptoms on leaves. Several barley lines with major gene resistance to net blotch have been identified. Earlier, one of these was mapped in the Rolfi x CI 9819 cross to barley chromosome 6H, using a mixture of 4 Finnish isolates of P. teres f. teres. In this study, we used the same barley progeny to map resistance to 4 spot-type isolates and 4 net-type isolates of P. teres. With all net-type isolates, a major resistance gene was located on chromosome 6H, in the same position as described previously, explaining up to 88% of the phenotypic variation in infection response in the progeny. We designate this gene Rpt5. Several minor resistance genes were located on chromosomes 1H, 2H, 3H, 5H, and 7H. These minor genes were not genuinely isolate-specific, but their effect varied among isolates and experiments. When the spot-type isolates were used for infection, a major isolate-specific resistance gene was located on chromosome 5H, close to microsatellite marker HVLEU, explaining up to 84% of the phenotypic variation in infection response in the progeny. We designate this gene Rpt6. No minor gene effects were detected in spot-type isolates. The Ethiopian 2-rowed barley line CI 9819 thus carries at least 2 independent major genes for net-blotch resistance: Rpt5, active against net-type isolates; and Rpt6, active against specific spot-type isolates.  相似文献   

5.
Monoconidial cultures of Pyrenophora teres, the causal agent of barley net blotch, were isolated from leaves collected from six populations of the barley landrace "S'orgiu sardu" growing in five agro-ecological areas of Sardinia, Italy, and genotyped using AFLPs. The 150 isolates were from lesions of either the "net form" (P. teres f. sp. teres) or the "spot form" (P. teres f. sp. maculata) of the disease. Of 121 AFLP markers, 42%, were polymorphic. Cluster analysis resolved the isolates into two strongly divergent groups (F(ST) = 0.79), corresponding to the net (45% of the isolates) and the spot (55% of the isolates) forms (designated the NFR and SFR groups, respectively). The absence of intermediate genotypes and the low number of shared markers between the two groups indicated that hybridization between the two formae is rare or absent under the field condition of Sardinia. Five of the barley populations hosted both forms but in different proportions. The SFR populations were similar in overall polymorphism to the NFR populations. However, compared to the SFR form, the NFR occurred in all fields sampled and showed a higher population divergence (F(ST) = 0.43 versus F(ST) = 0.09 with all isolates; F(ST) = 0.37 versus F(ST) = 0.06 with clone corrected samples) probably due to a lower migration rate. AFLP fingerprints resolved 117 distinct genotypes among the 150 isolates sampled (78%), 87% in SFR and 68% in NFR isolates. Although the absolute numbers may be a function of the number of AFLP markers assayed, the relative difference suggests that clonality is more prevalent among the NFR isolates (with 11 of 46 haplotypes observed more than once), compared with SFR isolates (7 of 71 haplotypes). Both digenic and multilocus linkage disequilibrium analyses suggested that sexual reproduction occurs at significant levels within the NFR and SFR populations, and that the relative contribution of sexual and asexual reproduction varies among different environments.  相似文献   

6.
7.
Net blotch of barley, caused by Pyrenophora teres Drechs., is an important foliar disease worldwide. Deployment of resistant cultivars is the most economic and eco-friendly control method. This report describes mapping of quantitative trait loci (QTL) associated with net blotch resistance in a doubled-haploid (DH) barley population using diversity arrays technology (DArT) markers. One hundred and fifty DH lines from the cross CDC Dolly (susceptible)/TR251 (resistant) were screened as seedlings in controlled environments with net-form net blotch (NFNB) isolates WRS858 and WRS1607 and spot-form net blotch (SFNB) isolate WRS857. The population was also screened at the adult-plant stage for NFNB resistance in the field in 2005 and 2006. A high-density genetic linkage map of 90 DH lines was constructed using 457 DArT and 11 SSR markers. A major NFNB seedling resistance QTL, designated QRpt6, was mapped to chromosome 6H for isolates WRS858 and WRS1607. QRpt6 was associated with adult-plant resistance in the 2005 and 2006 field trials. Additional QTL for NFNB seedling resistance to the more virulent isolate WRS858 were identified on chromosomes 2H, 4H, and 5H. A seedling resistance QTL (QRpts4) for the SFNB isolate WRS857 was detected on chromosome 4H as was a significant QTL (QRpt7) on chromosome 7H. Three QTL (QRpt6, QRpts4, QRpt7) were associated with resistance to both net blotch forms and lines with one or more of these demonstrated improved resistance. Simple sequence repeat (SSR) markers tightly linked to QRpt6 and QRpts4 were identified and validated in an unrelated barley population. The major 6H QTL, QRpt6, may provide adequate NFNB field resistance in western Canada and could be routinely selected for using molecular markers in a practical breeding program.  相似文献   

8.
This study was conducted to identify stable resistance to net form of net blotch (NFNB) in spring barley in Moroccan environments. Seedling resistance to NFNB was evaluated by inoculating 336 barley genotypes with two NFNB isolates LDNH04Ptt-19 and TD-10 in the greenhouse. These genotypes were evaluated for adult plant resistance to NFNB under seven environments in Morocco in 2015 and 2016. The disease severity was estimated at GS 77–87 on barley leaves using a double-digit scale. To investigate stability of resistance, 149 barley genotypes were subjected to AMMI analysis. At the seedling stage, differential responses of barley genotypes to different NFNB isolates were identified, whereas genotypes had variable stability to NFNB resistance at the adult stages. Five genotypes, AM-68, AM-95, AM-250, AM-267 and AM-322, were resistant to both NFNB isolates at the seedling stage. There were significant (< .001) effects of genotype (G) and G × E interaction on NFNB severity for barley genotypes at the adult stage. The principal components, IPCA1 and IPCA2, accounted for 48.4% and 18.7% variation for NFNB severity, respectively. The AMMI stability values (ASVs) ranged from 0.01 to 15.5, and fifty-nine barley genotypes had stable responses (ASV ≤ 0.05) across all seven environments. Specifically, two stable genotypes, AM-187 and AM-244, had lower mean NFNB severities across all environments, suggesting a quantitative resistance in these genotypes. Divergent environmental responses of NFNB severity were measured in Sidi El Ayedi 2015 and Sidi Allal Tazi 2016, suggesting that these environments may be suitable to capture resistance to diverse pathotypes. These stable genotypes are valuable resources for introgression of both qualitative resistance and quantitative resistance to NFNB in future.  相似文献   

9.

Key message

Association mapping of resistance to Pyrenophora teres f. teres in a collection of Nordic barley germplasm at different developmental stages revealed 13 quantitative loci with mostly small effects.

Abstract

Net blotch, caused by the necrotrophic fungus Pyrenophora teres, is one of the major diseases in barley in Norway causing quantitative and qualitative yield losses. Resistance in Norwegian cultivars and germplasm is generally insufficient and resistance sources have not been extensively explored yet. In this study, we mapped quantitative trait loci (QTL) associated with resistance to net blotch in Nordic germplasm. We evaluated a collection of 209 mostly Nordic spring barley lines for reactions to net form net blotch (NFNB; Pyrenophora teres f. teres) in inoculations with three single conidia isolates at the seedling stage and in inoculated field trials at the adult stage in 4 years. Using 5669 SNP markers genotyped with the Illumina iSelect 9k Barley SNP Chip and a mixed linear model accounting for population structure and kinship, we found a total of 35 significant marker-trait associations for net blotch resistance, corresponding to 13 QTL, on all chromosomes. Out of these QTL, seven conferred resistance only in adult plants and four were only detectable in seedlings. Two QTL on chromosomes 3H and 6H were significant during both seedling inoculations and adult stage field trials. These are promising candidates for breeding programs using marker-assisted selection strategies. The results elucidate the genetic background of NFNB resistance in Nordic germplasm and suggest that NB resistance is conferred by a number of genes each with small-to-moderate effects, making it necessary to pyramid these genes to achieve sufficient levels of resistance.
  相似文献   

10.
广西玉米种质资源对纹枯病的抗性鉴定   总被引:2,自引:1,他引:1  
在人工接种条件下,对860份玉米材料进行了纹枯病抗性鉴定和评价,旨在为进一步开展玉米纹枯病抗性育种和分子生物学研究奠定基础。结果显示,在鉴定的860份玉米材料中,没有发现免疫的材料,高抗、抗、中抗、感和高感的比例分别为3.49%、28.60%、26.16%、10.35%和31.40%;在农家种、群体种和杂交种(组合)等杂合体中,抗病材料所占比例较大,而自交系等纯合体中,感病材料所占比例较大,表明玉米杂合体种质资源材料中可能蕴藏着不同的抗纹枯病基因,特别是广西农家种中可能存在对纹枯病具有稳定抗性的材料,值得进一步研究和利用。  相似文献   

11.
Spot blotch and net blotch are important foliar barley (Hordeum vulgare L.) diseases in Canada and elsewhere. These diseases result in significant yield reduction and, more importantly, loss of grain quality, downgrading barley from malt to feed. Combining resistance to these diseases is a breeding priority but is a significant challenge using conventional breeding methodology. In the present investigation, an evaluation of the inheritance of resistance to spot and net blotch was conducted in a doubled-haploid barley population from the cross CDC Bold (susceptible)?×?TR251 (resistant). The population was screened at the seedling stage in the Phytotron and at the adult-plant stage in the field for several years. Chi-squared analysis indicated one- to four-gene segregation depending on disease, isolate, plant development stage, location and year. A major seedling and adult-plant resistance quantitative trait locus (QTL), designated QRpt6, was re-confirmed for net-form net blotch resistance, explaining 32?C61% of phenotypic variation in different experiments. Additional QTL for seedling and adult-plant resistance to net blotch were identified. For spot blotch resistance, a major seedling resistance QTL (QRcss1) was detected on chromosome 1H for isolate WRS1909, explaining 79% of the phenotypic variation. A highly significant QTL on 3H (QRcs3) was identified for seedling resistance to isolate WRS1908 and adult-plant resistance at Brandon, MB, Canada in 2008. The identification of QTL at only one location or from 1?year suggests spot blotch resistance is complex and highly influenced by the environment. Efforts are being made to combine spot and net blotch resistance in elite barley lines using molecular marker-assisted selection.  相似文献   

12.
Local cultivars adapted to specific environmental conditions are the chief source of seed for farmers in Ethiopia and deserve research priority. The aim of this study was, therefore, to determine the genetic relationships between different barley landraces, from north Shewa in Ethiopia so as to differentiate genotypes known by different local names and facilitate their conservation and use in breeding new varieties. Five AFLP primer combinations were analyzed for 19 barley landraces and five malting varieties. The number of scoreable fragments amplified by each AFLP primer combination varied from 49 to 118 with an average of 84.5 and polymorphic fragments for each primer combination varied from 27 to 77 with an average of 58.5. The average percent polymorphism was 69.9% with values ranging from 55.1% to 75.8%. Cluster analysis placed the accessions and malting varieties into one main group while all the farmers’ cultivars, with the exception of two, were in the other main group. It was shown that sampling of germplasm at a given locality might not represent the whole array of genetic variability of locally grown famers’ cultivars. A comprehensive study of all the farmers’ barley cultivars, grown in different parts of Ethiopia, is required to maximize the efforts of germplasm conservation and utilization in national and regional breeding programs.  相似文献   

13.
Four hundred and twenty-two spring wheat germplasm (Triticum aestivum L.) lines belonging to Indian, CIMMYT and Chinese wheat programme were evaluated for their tolerance against natural epiphytotic conditions of spot blotch caused by Bipolaris sorokiniana at the hot spot location, Pusa, Bihar, India. Of the 422 entries screened, none of the genotype showed immunity to the disease, whereas 52 were resistant, 180 moderately susceptible, 171 susceptible and 19 highly susceptible. Indian germplasm lines tended to be more susceptible than lines originated from CIMMYT and China. Chirya 3, Chirya 7 and Mayoor from CIMMYT showed high degree of resistance to the disease both under field and polyhouse conditions. On the basis of the disease severity under field conditions, 20 promising resistant genotypes and 10 highly susceptible lines were isolated for further testing under artificial epiphytotic conditions in polyhouse for genetic analysis and their potential for spot blotch resistance breeding.  相似文献   

14.
在人工接种条件下,对860份玉米材料进行了纹枯病抗性鉴定和评价,旨在为进一步开展玉米纹枯病抗性育种和分子生物学研究奠定基础。结果显示,在鉴定的860份玉米材料中,没有发现免疫的材料,高抗、抗、中抗、感和高感的比例分别为3.49%、28.60%、26.16%、10.35%和31.40%;在农家种、群体种和杂交种(组合)等杂合体中,抗病材料所占比例较大,而自交系等纯合体中,感病材料所占比例较大,表明玉米杂合体种质资源材料中可能蕴藏着不同的抗纹枯病基因,特别是广西农家种中可能存在对纹枯病具有稳定抗性的材料,值得进一步研究和利用。  相似文献   

15.
Pyrenophora teres, causal agent of net blotch of barley, exists in two forms, designated P. teres f. teres and P. teres f. maculata, which induce net form net blotch (NFNB) and spot form net blotch (SFNB), respectively. Significantly more work has been performed on the net form than on the spot form although recent activity in spot form research has increased because of epidemics of SFNB in barley-producing regions. Genetic studies have demonstrated that NFNB resistance in barley is present in both dominant and recessive forms, and that resistance/susceptibility to both forms can be conferred by major genes, although minor quantitative trait loci have also been identified. Early work on the virulence of the pathogen showed toxin effector production to be important in disease induction by both forms of pathogen. Since then, several laboratories have investigated effectors of virulence and avirulence, and both forms are complex in their interaction with the host. Here, we assemble recent information from the literature that describes both forms of this important pathogen and includes reports describing the host-pathogen interaction with barley. We also include preliminary findings from a genome sequence survey. TAXONOMY: Pyrenophora teres Drechs. Kingdom Fungi; Phylum Ascomycota; Subphylum Pezizomycotina; Class Dothideomycete; Order Pleosporales; Family Pleosporaceae; Genus Pyrenophora, form teres and form maculata. IDENTIFICATION: To date, no clear morphological or life cycle differences between the two forms of P. teres have been identified, and therefore they are described collectively. Towards the end of the growing season, the fungus produces dark, globosely shaped pseudothecia, about 1-2mm in diameter, on barley. Ascospores measuring 18-28μm × 43-61μm are light brown and ellipsoidal and often have three to four transverse septa and one or two longitudinal septa in the median cells. Conidiophores usually arise singly or in groups of two or three and are lightly swollen at the base. Conidia measuring 30-174μm × 15-23μm are smoothly cylindrical and straight, round at both ends, subhyaline to yellowish brown, often with four to six pseudosepta. Morphologically, P. teres f. teres and P. teres f. maculata are indistinguishable. HOST RANGE: Comprehensive work on the host range of P. teres f. teres has been performed; however, little information on the host range of P. teres f. maculata is available. Hordeum vulgare and H. vulgare ssp. spontaneum are considered to be the primary hosts for P. teres. However, natural infection by P. teres has been observed in other wild Hordeum species and related species from the genera Bromus, Avena and Triticum, including H. marinum, H. murinum, H. brachyantherum, H. distichon, H. hystrix, B. diandrus, A. fatua, A. sativa and T. aestivum (Shipton et al., 1973, Rev. Plant Pathol. 52:269-290). In artificial inoculation experiments under field conditions, P. teres f. teres has been shown to infect a wide range of gramineous species in the genera Agropyron, Brachypodium, Elymus, Cynodon, Deschampsia, Hordelymus and Stipa (Brown et al., 1993, Plant Dis. 77:942-947). Additionally, 43 gramineous species were used in a growth chamber study and at least one of the P. teres f. teres isolates used was able to infect 28 of the 43 species tested. However, of these 28 species, 14 exhibited weak type 1 or 2 reactions on the NFNB 1-10 scale (Tekauz, 1985). These reaction types are small pin-point lesions and could possibly be interpreted as nonhost reactions. In addition, the P. teres f. teres host range was investigated under field conditions by artificially inoculating 95 gramineous species with naturally infected barley straw. Pyrenophora teres f. teres was re-isolated from 65 of the species when infected leaves of adult plants were incubated on nutrient agar plates; however, other than Hordeum species, only two of the 65 host species exhibited moderately susceptible or susceptible field reaction types, with most species showing small dark necrotic lesions indicative of a highly resistant response to P. teres f. teres. Although these wild species have the potential to be alternative hosts, the high level of resistance identified for most of the species makes their role as a source of primary inoculum questionable. DISEASE SYMPTOMS: Two types of symptom are caused by P. teres. These are net-type lesions caused by P. teres f. teres and spot-type lesions caused by P. teres f. maculata. The net-like symptom, for which the disease was originally named, has characteristic narrow, dark-brown, longitudinal and transverse striations on infected leaves. The spot form symptom consists of dark-brown, circular to elliptical lesions surrounded by a chlorotic or necrotic halo of varying width.  相似文献   

16.
大麦主栽品种亲缘系数和对叶斑病的抗性分析   总被引:2,自引:0,他引:2  
为明确我国大麦主栽品种的遗传多样性及其对叶斑病的抗性来源,采用亲缘系数(COP,coefficient of parentage)分析方法对155个主栽大麦品种的遗传系谱进行聚类分析,同时对其中79个供试大麦品种在苗期和成株期分别接种2个强毒性菌株进行抗性鉴定。结果显示,155个品种聚为6个类群,有亲缘关系的品种占全部品种14.77%。在品种间组成的11935个组合中,1763个组合间存在亲缘关系,其COP值变化范围在0~0.7500之间,亲缘系数总和为157.5867,平均值为0.0132。根据系谱分析发现了不同育种单位所育品种的核心亲本,并追溯其主要的祖先亲本。此外,通过对叶斑病的抗性鉴定,发现大多数供试的大麦品种感叶斑病,高抗品种主要集中在垦啤麦系列品种和蒙啤麦3号,部分华大麦和驻大麦系列的品种在苗期或成株期中抗叶斑病。系谱分析及抗性鉴定结果揭示了我国大麦叶斑病抗性基因存在不同来源,分析结果有利于提高抗叶斑病基因筛选效率和缩小筛选范围,也将促进抗叶斑病新基因资源的发掘和利用。  相似文献   

17.
Net blotch [Pyrenophora teres (Died.) Drechsl.] and scald [Rhynchosporium secalis (Oudem.) J.J. Davis] are the two most important foliar diseases of barley (Hordeum vulgare L.) in Tunisia. The use of cultivars with double resistance is the most effective method in controlling both diseases. A doubled‐haploid barley population derived from Tunisian cultivars was evaluated to both net blotch and scald during two growing seasons in the field. Mass disease index (MDI), area under the disease progress curve (AUDPC) and apparent infection type (r) were used to assess disease reaction. MDI of net blotch and scald reached up to 65% and 90% respectively. Least significant difference (LSD) test and comparison of the reaction of the doubled haploid (DH) lines to the overall population mean value were efficient in identifying lines with double resistance to both diseases. From the 59 DH lines screened, lines 21, 33, 37, 46 and 47 showed the best level of adult plant resistance to both diseases and may be used in a breeding program for diseases resistance. Interactions between R. secalis and P. teres were investigated at the level of the whole plant under variable epidemic conditions. Under low epidemic conditions, net blotch and scald developments were usually independent, but positively associated for tolerant lines for both diseases. Under high epidemic conditions, competition effects were obtained for susceptible and resistant genotypes. This competition seems to be an exploitation competition that is associated with decreasing resource availability as it occurs only with high levels of infestation or/and when susceptible lines are infected. This study demonstrates the variability of net blotch and scald interaction with epiphytotic conditions and group of resistance.  相似文献   

18.
Screening for resistant barley genotypes in response to fungal toxin of Bipolaris sorokiniana was assessed on standing barley plants as well as in selected callus lines of the same. For the standing lines tested, those manifesting chlorosis in response to toxin infiltration showed a significantly slower disease progress as compared to the necrotic lines. Also, necrosis in the callus tissues of the susceptible cultivar in MS medium supplemented with different concentrations of the crude toxin was significantly higher than in the callus tissues of the chlorotic lines studied. Similar host response to the toxin in in vitro and field situations open up the possibility of screening barley cultivars for resistance to spot blotch using callus culture as against classical methods of screening in order to increase accuracy and save time and space.  相似文献   

19.
Net form of net blotch (NFNB) caused by the fungus Pyrenophora teres f. teres is an economically important foliar disease of barley (Hordeum vulgare) in southern and eastern Africa. Little attention has been given to disease resistance breeding, and knowledge about the presence of NFNB resistance in breeding lines is limited. Deploying resistance into varieties used in this region is important for future control of the disease. We have identified NFNB disease resistance in existing South African breeders’ lines and have mapped the resistance in line UVC8. Six different trials, three conducted in South Africa and another three in Australia, were used to identify resistance QTL. A major QTL was identified on chromosome 6H having a LOD score of 40.5 and 55% of the phenotypic variance explained. Kompetitive Allele Specific PCR (KASP?) markers were designed for this QTL region. These and microsatellite markers can now be used to routinely select for NFNB resistance.  相似文献   

20.
The main objective of this study was to investigate the efficiency of RAPD, AFLP, and SAMPL marker systems in detecting genetic polymorphism in cowpea landraces (Vigna unguiculata subsp. unguiculata (L.) Walp.) that probably share a similar genetic pool. A second objective was to determine the level of diversity among landraces from a restricted area, to define the most appropriate strategy of on-farm conservation. Each marker system was able to discriminate among the materials analysed, but a clear distinction between all the local varieties was only obtained with AFLP and SAMPL markers. The average diversity index was quite similar for each marker system, but owing to the differences in the effective multiplex ratio values the marker index was higher for the AFLP and SAMPL systems than for the RAPD system. The AFLP and SAMPL techniques appear to be more useful than the RAPD technique in the analysis of limited genetic diversity among the cowpea landraces tested. The significant correlations of SAMPL similarity and cophenetic matrices with those of the other markers, and the lower number of primer combinations required, indicate that this technique is the most valuable. The low genetic similarity detected among landraces suggests that all the cowpea landraces should be maintained on the respective farms from which they came.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号