首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The direction of discharge of the nascent peptides of NADPH-cytochrome c reductase and cytochrome b5 from bound polyribosomes of rough microsomes was investigated in order to elucidate the mechanism of separation of these membrane proteins from secretory proteins, which are also synthesized by the same class of ribosomes of rough endoplasmic reticulum. The nascent peptides of NADPH-cytochrome c reductase and cytochrome b5 in intact rough microsomes were accessible to externally added 125I-Fab's against these proteins, and were susceptible to trypsin digestion, whereas the nascent peptides of serum albumin were not. The nascent peptides of these two microsomal proteins were released into the cytoplasm by puromycin treatment of intact rough microsomes, while the nascent peptides of serum albumin were retained in the microsomal lumen. These observations suggest that the nascent peptides of microsomal proteins, which are present on the cytoplasmic surface of the endoplasmic reticulum membrane, are exposed on the surface of microsomal vesicles, while those of secretory proteins are enclosed inside the vesicles. Therefore, the topographical separation of microsomal membrane proteins from secretory proteins is accomplished at the step of their synthesis by the bound polyribosomes of rough endoplasmic reticulum.  相似文献   

2.
Previous reports have shown that rough microsomes treated with high salt (Warren and Dobberstein, 1978, Nature, 273:569-571) or proteases (Walter et al., 1979, Proc. Natl. Acad. Sci, U. S. A., 76:1,795) are unable to vectorially translocate nascent proteins. Readdition of the high salt or protease extracts restored activity to such inactive rough microsomes. A detailed study was carried out to determine how this factor interacts with the rough microsomal membrane. Proteolytic cleavage was found to be necessary but not sufficient to remove this factor from the membrane. A subsequent treatment with high salt had to be carried out. Endogenous (pancreatic) protease could effect the required cleavage, but low levels of trypsin, clostripain, or elastase were far more efficient. Several proteases were not effective. The minimum level of salt (after proteolysis) required to solubilize the active factor was approximately 200 mM KCl. Salt extracts prepared by treatment with one of the effective proteases were capable of restoring activity to inactive microsomes produced by treatment with one of the others.  相似文献   

3.
The sites of synthesis of microsomal membrane proteins, NADPH-cytochrome c reductase and cytochrome b5, were investigated by three methods; the in vitro synthesis of these proteins by isolated rough microsomes, the immunoprecipitation of polyribosomes carrying their nascent peptides, and the immunoprecipitation of in vivo-labeled nascent peptides. The in vitro incorporation experiment confirmed that the synthesis of these microsomal proteins was carried out by the bound polyribosomes of rough microsomes. When free and bound polyribosomes were separately examined by the other two methods, we found that NADPH-cytochrome c reductase was synthesized by both classes of polyribosomes whereas cytochrome b5 was synthesized only by bound polyribosomes.  相似文献   

4.
A study of intracellular transport of secretory glycoproteins in rat liver   总被引:1,自引:0,他引:1  
To study the transport of secretory glycoproteins in the endoplasmic reticulum of rat liver, the distribution of nascent glycoproteins in the membrane and luminal fraction of rough and smooth microsomes has been examined after a short-time incorporation of radioactive glucosamine in vivo. 50--60% of the radioactivity was associated with the membranes of rough and smooth microsomes, whereas about 10% of the serum albumin was found in the same fractions. The relative amount of radioactivity in the membranes was the same whether the luminal content of the microsomal vesicles was released by sonication, French press, Triton X-100, Brij 35 or sodium deoxycholate. The distribution of labeled glycoproteins between the membrane and luminal fraction of rough and smooth microsomes did not change during the time interval of 15--120 min after administration of the isotope. The similarity of the labeling patterns obtained after sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis indicated that the same set of glycoproteins were located in the lumen and the membrane of rough and smooth microsomes. A specific precipitation of nascent glycoproteins from both the membrane and luminal fractions of rough and smooth microsomes were obtained with rabbit antiserum against rat serum. The nascent glycoproteins associated with the membranes were not released by high ionic strength or treatment with mercaptoethanol. A slow exchange between [14C]glucosamine-labeled glycoproteins in the lumen and membrane fraction was, however, found.  相似文献   

5.
Membrane-bound ribosomes were separated into two distinct classes (loosely-bound and tightly-bound ribosomes) by treatment with 0.6 M KCl, 1 mM puromycin, 0.05% DOC, or 10 mM EDTA. It was also confirmed that any one of these reagents except for EDTA dissociated the same class of ribosomes from the membrane. A population of lighter microsomal vesicles was formed from rough microsomes upon the dissociation of loosely-bound ribosomes by treatment with these chemicals. Rough microsomes were subfractionated into lighter and heavier fractions, L-rMs and H-rMs, by centrifugation using a discontinuous gradient of sucrose consisting of 1.3 M, 1.5 M, and 2.1 M solutions. It was found that L-rMs was rich in loosely-bound ribosomes, whereas H-rMs contained a high proportion of tightly-bound ribosomes. It is likely that loosely-bound and tightly-bound ribosomes are heterogeneously distributed among rough microsomal vesicles. Loosely-bound ribosomes and tightly-bound ribosomes synthesize different kinds of proteins. Two microsomal membrane proteins, NADPH-cytochrome c reductase and cytochrome b5, were exclusively synthesized by loosely-bound ribosomes, whereas serum albumin, which is a major component of the secretory proteins of hepatocytes, was synthesized only by tightly-bound ribosomes. Since the nascent peptides of NADPH-cytochrome c reductase and cytochrome b5 are released from bound ribosomes to the cytoplasmic surface of endoplasmic reticulum, while those of secretory proteins are discharged into the lumen across the membrane, the strength of the association between ribosomes and microsomal membrane seems to be correlated with the direction of release of nascent peptides.  相似文献   

6.
Cytoplasmic free and membrane-bound ribosomes were isolated from bovine adrenal cortex, and characterized. Contributions of free and bound ribosomes to the synthesis of NADPH-adrenodoxin reductase (AdR) and adrenodoxin (Ad) were determined by examining the presence of their nascent peptides on isolated ribosomes. Nascent peptides were released from the ribosomes by [3H]puromycin in a high salt buffer in the presence of a detergent, and the nascent peptides of AdR and Ad were separately isolated by immunoprecipitation using antibodies. AdR nascent peptides were associated with free and loosely-bound ribosomes, whereas Ad nascent peptides were associated with free, loosely-bound and tightly-bound ribosomes. Smaller nascent peptides of AdR were carried by free ribosomes, whereas larger nascent peptides were preferentially carried by loosely-bound ribosomes. In the case of Ad, smaller nascent peptides were more abundant in free ribosomes than in bound ribosomes. The nascent peptides of Ad were released from bound ribosomes of rough microsomes to the aqueous milieu by puromycin treatment, suggesting the release of completed Ad peptides into the cytoplasm in cells.  相似文献   

7.
Saponin permeabilization of rough microsomes in the presence of high salt revealed a novel pool of prothrombin associated by ionic interactions to the microsomal membrane. The lumenal content was obtained by treating rough microsomes with 0.32% saponin in a low salt (0.05 M KCl) buffer. By a subsequent treatment with 0.32% saponin in a slightly alkaline high salt buffer a fraction of peripherally associated membrane prothrombin was released from rough microsomes. Finally, the membrane-bound fraction was solubilized with 2.5% Triton X-100. The lumenal content fraction, the peripherally membrane-associated and the membrane-bound fraction from normal rats contained 55%, 29% and 16% of the total rough microsomal prothrombin, respectively. The corresponding fractions from warfarin-treated rats contained 86%, 5% and 9% of the total prothrombin. Following 14C-γ-carboxylation of intact microsomes for 30 min, the novel membrane-associated and the membrane-bound pool contained 42% and 33%, respectively, of labeled prothrombin. A similar distribution was found with warfarin-treated rats.  相似文献   

8.
Rabbit antibodies against cytochrome P-450 (SCC), P-450 (11 beta), and P-450 (C-21) from bovine adrenal cortex were prepared, and it was confirmed that these three cytochrome P-450 species are immunologically distinct from one another. Cytoplasmic sites of synthesis of P-450 (SCC), P-450 (11 beta), and P-450 (C-21) in bovine adrenal cortex were determined by examining the presence of their nascent peptides on isolated free and bound ribosomes. Nascent peptides were released in vitro from ribosomes by [3H]puromycin in a high salt buffer in the presence of a detergent, and the nascent peptides of P-450 (SCC), P-450 (11 beta), and P-450 (C-21) were isolated by immunoprecipitation. The nascent peptides of these three cytochrome P-450 species were found in both free and bound ribosomal fractions, suggesting that they share common sites of synthesis in the cytoplasm. However, the nascent peptides of mitochondrial P-450 (SCC) and P-450 (11 beta) were more concentrated in the free ribosomal fraction, whereas those of microsomal P-450 (C-21) were more abundant in the bound ribosomal fraction. The nascent peptides of the three cytochrome P-450 species were released from the membrane-bound ribosomes of rough microsomes into the cytoplasmic surface of microsomal vesicles by puromycin treatment.  相似文献   

9.
GTP phosphorylation of rough microsomes in vitro is limited to four integral membrane proteins. Two of these, a phosphoprotein (pp90) and a phosphoglycoprotein (pgp35) were purified as a complex with two nonphosphorylated membrane glycoproteins, gp25H and gp25L. The authenticity of this complex was confirmed using two different purification procedures and by coimmunoprecipitation. By immunofluorescence a reticulated cytoplasmic network was revealed for the proteins which was similar to that for Louvard et al. (Louvard, D., Reggio, H., and Warren, G. (1982) J. Cell Biol. 92, 92-107) marker antisera which also recognized purified pp90 on immunoblots. Amino acid sequencing of peptides derived from pgp35 identified this protein as SSR alpha, an endoplasmic reticulum constituent as identified by cross-linking of translocating nascent chains (G?rlich, D, Prehn, S., Hartmann, E., Herz, J., Otto, A., Kraft, R., Wiedmann, M., Knespel, S., Dobberstein, B., and Rapoport, T. A. (1990) J. Cell Biol. 111, 2283-2294). The sequence of gp25H was determined from cDNA clones and was identical with SSR beta identified by G?rlich et al. (1990) as being tightly bound to SSR alpha. Sequencing of gp25L revealed no similarity of the deduced sequence with other proteins. However, pp90 revealed a high degree of sequence identity with the Ca(2+)-binding protein, calreticulin. 45Ca2+ overlay studies indicated that pp90 bound Ca2+ and the name calnexin is proposed. Surprisingly, pgp25 (SSR alpha) also bound Ca2+ although gp25H (SSR beta) and gp25L did not. Triton X-114 partitioning of the integral membrane proteins of rough microsomes suggested that pgp35 (SSR alpha) and calnexin were major Ca(2+)-binding proteins of the endoplasmic reticulum membrane. We propose that the function of the complex is to regulate Ca(2+)-dependent retention mechanisms for luminal proteins of the endoplasmic reticulum.  相似文献   

10.
A membrane protein fraction was obtained from rat liver rough microsomes by affinity chromatography on a concanavalin A-Sepharose column and then a chelating-Sepharose column. This protein fraction comprised about 2% of the total membrane proteins of rough microsomes and the ribosome-binding activity of ribosome-stripped rough microsomes was predominantly found in this protein fraction, as determined with a liposome assay system. To identify the essential components responsible for the ribosome binding, two approaches were employed. Trypsin treatment of liposomes reconstituted with this protein fraction resulted in the loss of the ribosome-binding activity in parallel with the loss of a dominant band, estimated Mr 34,000, in SDS-polyacrylamide gels. Next, the direct interaction between the binding sites on the membrane of reconstituted liposomes and 60S ribosomal subunits was investigated by photocrosslinking using sulfosuccinimidyl 2-(m-azido-o-nitrobenzamido)-ethyl-1,3'-dithiopropionate (SAND). The photocrosslinked complex was formed between 60S ribosomal subunits pretreated with SAND and binding-site proteins on the membrane of the liposomes. Then, after the liposomes were solubilized, the complex was isolated by sucrose gradient centrifugation of the binding mixture. The crosslinked proteins were released from 60S ribosomal subunits by cleavage of of crosslinks with beta-ME and analyzed by SDS-polyacrylamide gel electrophoresis and 125I-autoradiography. The 34-kDa protein (p34) was the predominant component that crosslinked to the 60S ribosomal subunits and was found in proportion to the amount of 60S ribosomal subunits added to the system. The p34 was distinguishable by immunoblot analysis from urate oxidase, which is the 34-kDa protein of peroxisomal cores contaminating rough microsomes. These results suggest that the present p34 is a likely candidate molecule for the ribosome-binding activity of rough microsomes.  相似文献   

11.
Saturation and competitive binding analyses demonstrated the presence of a high affinity (KD = 0.92 nM), specific antiestrogen binding site (AEBS) in rat liver microsomes and at least 75% of total liver AEBS was recovered in this fraction. When microsomes were further separated into smooth and rough fractions, AEBS was concentrated in the latter. Subsequent dissociation of ribosomes from the rough membranes revealed that AEBS was associated with the membrane and not the ribosomal fraction. Antiestrogen binding activity could not be extracted from membranes with 1 M KCl or 0.5 M acetic acid but could be solubilized with sodium cholate. These data indicate that AEBS is an integral membrane component of the rough microsomal fraction of rat liver.  相似文献   

12.
In a medium of high ionic strength, rat liver rough microsomes can be nondestructively disassembled into ribosomes and stripped membranes if nascent polypeptides are discharged from the bound ribosomes by reaction with puromycin. At 750 mM KCl, 5 mM MgCl2, 50 mM Tris·HCl, pH 7 5, up to 85% of all bound ribosomes are released from the membranes after incubation at room temperature with 1 mM puromycin. The ribosomes are released as subunits which are active in peptide synthesis if programmed with polyuridylic acid. The ribosome-denuded, or stripped, rough microsomes (RM) can be recovered as intact, essentially unaltered membranous vesicles Judging from the incorporation of [3H]puromycin into hot acid-insoluble material and from the release of [3H]leucine-labeled nascent polypeptide chains from bound ribosomes, puromycin coupling occurs almost as well at low (25–100 mM) as at high (500–1000 mM) KCl concentrations. Since puromycin-dependent ribosome release only occurs at high ionic strength, it appears that ribosomes are bound to membranes via two types of interactions: a direct one between the membrane and the large ribosomal subunit (labile at high KCl concentration) and an indirect one in which the nascent chain anchors the ribosome to the membrane (puromycin labile). The nascent chains of ribosomes specifically released by puromycin remain tightly associated with the stripped membranes. Some membrane-bound ribosomes (up to 40%) can be nondestructively released in high ionic strength media without puromycin; these appear to consist of a mixture of inactive ribosomes and ribosomes containing relatively short nascent chains. A fraction (~15%) of the bound ribosomes can only be released from membranes by exposure of RM to ionic conditions which cause extensive unfolding of ribosomal subunits, the nature and significance of these ribosomes is not clear.  相似文献   

13.
The submicrosomal site for the conversion of prothrombin precursor to prothrombin in rat lever has been investigated by subcellular fractionation techniques.Prothrombin precursor activity could be detected in the luminal as well as the membrane fraction of the rough microsomes. The corresponding fractions from smooth microsomes did not exhibit any activity. After warfarin treatment of the rats, the concentration of prothrombin precursor in rough microsomes increased rapidly from approx. 2 to 6–8 h, when a plateau was reached. In smooth microsomes, prothrombin precursor activity appeared 1 h after injection of warfarin, and increased to a plateau reached after about 4 h. The total activity of prothrombin precursor at the plateau obtained after warfarin treatment was 4–5 times higher in the rough luminal fraction than in the corresponding smooth fraction.The vitamin K-dependent carboxylase activity was localized to the rough microsomes. The enzyme system was associated with the membrane, mainly at the luminal side, whereas the substrate appeared to be localized in both the luminal and membrane fraction.The results indicate that the conversion of prothrombin precursor to biologically active prothrombin occurs at a late stage in the rough endoplasmic reticulum or at a transition between rough and smooth endoplasmic reticulum.  相似文献   

14.
Rat liver microsomes were subfractionated by isopycnic centrifugation in sucrose gradient. The subfractions were assayed for translocation and proteolytic processing of nascent polypeptides in a rabbit reticulocyte lysate programmed with total RNA from human term placenta. The distribution of the translocation and processing of prelactogen through the gradient correlated with that of the microsomal RNA (ribosomes). Microsomes became inactive upon incubation with elastase, but the proteolyzed membranes recovered their activity by recombination with the soluble and active fragment of the docking protein (SRP-receptor) from dog pancreas. When this fragment was combined with the gradient subfractions, or with the subfractions inactivated by incubation with elastase, the density profile of the translocation activity remained similar to that of RNA. Thus, its distribution cannot be accounted for merely by that of the docking protein; another membrane constituent, still unidentified, is both necessary for translocation of polypeptides and restricted to the rough portions of the endosplamic reticulum. Signal peptidase was assayed in the absence of protein synthesis, by use of preformed prelactogen and detergent-disrupted microsomes. Its density distribution was also similar to that of RNA. Several components of the endosplamic reticulum now appear to be segregated within restricted areas on either side of the membrane, and to make up a biochemically distinct domain. We propose to call it the ribosomal domain in consideration of its contribution to protein biosynthesis by bound ribosomes. This domain probably accounts for a greater part of the membrane area at the cytoplasmic than at the luminal surface, as postulated earlier to explain how enzymes of the cytoplasmic surface are relatively less abundant in the rough microsomes than those of the luminal surface [Amar-Costesec A. & Beaufay H. (1981) J. Theor. Biol. 89, 217-230].  相似文献   

15.
An azidophenacyl derivative of a chemically synthesized consensus signal peptide has been prepared. The peptide, when photoactivated in the presence of rough or high-salt-stripped microsomes from pancreas, leads to inhibition of their activity in cotranslational processing of secretory pre-proteins translated from their mRNA in vitro. The peptide binds specifically with high affinity to components in the microsomal membranes from pancreas and liver, and photoreaction of a radioactive form of the azidophenacyl derivative leads to covalent linkage to yield two closely related radiolabelled proteins of Mr about 45,000. These proteins are integrated into the membrane, with large 30,000-Mr domains embedded into the phospholipid bilayer to which the signal peptide binds. A smaller, endopeptidase-sensitive, domain is exposed on the cytoplasmic surface of the microsomal vesicles. The specificity and selectivity of the binding of azidophenacyl-derivatized consensus signal peptide was demonstrated by concentration-dependent inhibition of photolabelling by the 'cold' synthetic consensus signal peptide and by a natural internal signal sequence cleaved and isolated from ovalbumin. The properties of the labelled 45,000-Mr protein-signal peptide complexes, i.e. mass, pI, ease of dissociation from the membrane by detergent or salts and immunological properties, distinguish them from other proteins, e.g. subunits of signal recognition particle, docking protein and signal peptidase, already known to be involved in targetting and processing of nascent secretory proteins at the rough endoplasmic reticulum membrane. Although the 45,000-Mr signal peptide binding protein displays properties similar to those of the signal peptidase, a component of the endoplasmic reticulum, the azido-derivatized consensus signal peptide does not interact with it. It is proposed that the endoplasmic reticulum proteins with which the azidophenacyl-derivatized consensus signal peptide interacts to yield the 45,000-Mr adducts may act as receptors for signals in nascent secretory pre-proteins in transduction of changes in the endoplasmic reticulum which bring about translocation of secretory protein across the membrane.  相似文献   

16.
Using a photocross-linking approach we have investigated the cytosolic and membrane components involved in the targeting and insertion of signal-anchor proteins into the membrane of the ER. The nascent chains of both type I and type II signal-anchor proteins can be cross-linked to the 54-kD subunit of the signal recognition particle. Upon addition of rough microsomes the type I and type II signal-anchor proteins interact with a number of components. Both types of protein interact with an integral membrane protein, the signal sequence receptor, previously identified by its proximity to preprolactin during its translocation (Wiedmann, M., T.V. Kurzchalia, E. Hartmann, and T.A. Rapoport. 1987. Nature [Lond.] 328:830-833). Three proteins, previously unidentified, were found to be cross-linked to the nascent chains of the signal-anchor proteins. Among them was a 37-kD protein that was found to be the main component interacting with the type I SA protein used. These proteins were not seen in the absence of membranes suggesting they are components of the ER. The ability of the nascent chains to be cross-linked to these identified proteins was shown to be abolished by prior treatment with agents known to disrupt translocation intermediates or ribosomes. We propose that the newly identified proteins function either in the membrane insertion of only a subset of proteins or only at a specific stage of insertion.  相似文献   

17.
Requirements for the membrane insertion of signal-anchor type proteins   总被引:16,自引:5,他引:11       下载免费PDF全文
Proteins which are inserted and anchored in the membrane of the ER by an uncleaved signal-anchor sequence can assume two final orientations. Type I signal-anchor proteins translocate the NH2 terminus across the membrane while type II signal-anchor proteins translocate the COOH terminus. We investigated the requirements for cytosolic protein components and nucleotides for the membrane targeting and insertion of single-spanning type I signal-anchor proteins. Besides the ribosome, signal recognition particle (SRP), GTP, and rough microsomes (RMs) no other components were found to be required. The GTP analogue GMPPNP could substitute for GTP in supporting the membrane insertion of IMC-CAT. By using a photocrosslinking assay we show that for secreted, type I and type II signal-anchor proteins the presence of both GTP and RMs is required for the release of the nascent chain from the 54-kD subunit of SRP. For two of the proteins studied the release of the nascent chain from SRP54 was accompanied by a new interaction with components of the ER. We conclude that the GTP-dependent release of the nascent chain from SRP54 occurs in an identical manner for each of the proteins studied.  相似文献   

18.
Fractionation of MOPC 41 DL-1 tumors revealed that the mRNA for the light chain of immunoglobulin is localized exclusively in membrane- bound ribosomes. It was shown that the translation product of isolated light chain mRNA in a heterologous protein-synthesizing system in vitro is larger than the authentic secreted light chain; this confirms similar results from several laboratories. The synthesis in vitro of a precursor protein of the light chain is not an artifact of translation in a heterologous system, because it was shown that detached polysomes, isolated from detergent-treated rough microsomes, not only contain nascent light chains which have already been proteolytically processed in vivo but also contain unprocessed nascent light chains. In vitro completion of these nascent light chains thus resulted in the synthesis of some chains having the same mol wt as the authentic secreted light chains, because of completion of in vivo proteolytically processed chains and of other chains which, due to the completion of unprocessed chains, have the same mol wt as the precursor of the light chain. In contrast, completion of the nascent light chains contained in rough microsomes resulted in the synthesis of only processed light chains. Taken together, these results indicate that the processing activity is present in isolated rough microsomes, that it is localized in the membrane moiety of rough microsomes, and, therefore, that it was most likely solubilized during detergent treatment used for the isolation of detached polysomes. Furthermore, these results established that processing in vivo takes place before completion of the nascent chain. The data also indicate that in vitro processing of nascent chains by rough microsomes is dependent on ribosome binding to the membrane. If the latter process is interfered with by aurintricarboxylic acid, rough microsomes also synthesize some unprocessed chains. The data presented in this paper have been interpreted in the light of a recently proposed hypothesis. This hypothesis, referred to as the signal hypothesis, is described in greater detail in the Discussion section.  相似文献   

19.
Summary Several problems regarding the protein acceptor of the oligosaccharide from GEA (glucosylated endogenous acceptor) were investigated in the present work using rat liver microsomal subfractions. It was found that the acceptor molecule is present in rough and smooth liver microsomes. Furthermore both fractions have closely similar specific activities. The problem of whether nascent peptides must be ribosome bound for glycosylation to occur was studied. The results suggests that binding of peptides to ribosomes is not a necessary condition for the transfer of GEA oligosaccharide to protein. The increase in specific activity found after partial release of the microsomal vesicular content suggests that the acceptor protein for GEA is membrane bound. Evidence obtained in attempting to elucidate whether nascent or completed chains are glycosylated favours the later possibility.Dedicated to ProfessorLuis F. Leloir on the occasion of his 70th birthday.  相似文献   

20.
A membrane protein fraction showing affinity for ribosomes was isolated from rat liver microsomes (microsomal fractions) in association with ribosomes by treatment of the microsomes with Emulgen 913 and then solubilized from the ribosomes with sodium deoxycholate. This protein fraction was separated into two fractions, glycoproteins, including ribophorins I and II, and non-glycoproteins, virtually free from ribophorins I and II, on concanavalin A-Sepharose columns. The two fractions were each reconstituted into liposomes to determine their ribosome-binding activities. The specific binding activity of the non-glycoprotein fraction was approx. 2.3-fold higher than that of the glycoprotein fraction. The recovery of ribosome-binding capacity of the two fractions was about 85% of the total binding capacity of the material applied to a concanavalin A-Sepharose column, and about 90% of it was found in the non-glycoprotein fraction. The affinity constants of the ribosomes for the reconstituted liposomes were somewhat higher than those for stripped rough microsomes. The mode of ribosome binding to the reconstituted liposomes was very similar to that to the stripped rough microsomes, in its sensitivity to proteolytic enzymes and its strong inhibition by increasing KCl concentration. These results support the idea that ribosome binding to rat liver microsomes is not directly mediated by ribophorins I and II, but that another unidentified membrane protein(s) plays a role in ribosome binding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号