首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Our previous research characterized two phosphoenolpyruvate (PEP) carboxylase (PEPC) isoforms (PEPC1 and PEPC2) from developing castor oil seeds (COS). The association of a shared 107-kD subunit (p107) with an immunologically unrelated bacterial PEPC-type 64-kD polypeptide (p64) leads to marked physical and kinetic differences between the PEPC1 p107 homotetramer and PEPC2 p107/p64 heterooctamer. Here, we describe the production of antiphosphorylation site-specific antibodies to the conserved p107 N-terminal serine-6 phosphorylation site. Immunoblotting established that the serine-6 of p107 is phosphorylated in COS PEPC1 and PEPC2. This phosphorylation was reversed in vitro following incubation of clarified COS extracts or purified PEPC1 or PEPC2 with mammalian protein phosphatase type 2A and is not involved in a potential PEPC1 and PEPC2 interconversion. Similar to other plant PEPCs examined to date, p107 phosphorylation increased PEPC1 activity at pH 7.3 by decreasing its K(m)(PEP) and sensitivity to L-malate inhibition, while enhancing glucose-6-P activation. By contrast, p107 phosphorylation increased PEPC2's K(m)(PEP) and sensitivity to malate, glutamic acid, and aspartic acid inhibition. Phosphorylation of p107 was promoted during COS development (coincident with a >5-fold increase in the I(50) [malate] value for total PEPC activity in desalted extracts) but disappeared during COS desiccation. The p107 of stage VII COS became fully dephosphorylated in planta 48 h following excision of COS pods or following 72 h of dark treatment of intact plants. The in vivo phosphorylation status of p107 appears to be modulated by photosynthate recently translocated from source leaves into developing COS.  相似文献   

2.
Regulation of the light activation of C4 phosphoenolpyruvate-carboxylase (PEPC) protein kinase (PEPC-PK) and the ensuing phosphorylation of its cytosolic target protein were studied in intact mesophyll cells (MC) and protoplasts (MP) isolated from dark-adapted leaves of Digitaria sanguinalis [L.] Scop, (hairy crabgrass). The apparent in-situ phosphorylation state of PEPC (EC 4.1.1.31) was assessed by the sensitivity of its activity in desalted MC- and MP-extracts to l-malate under suboptimal assay conditions, while the activity-state of PEPC-PK was determined by in-vitro 32P-labeling of purified maize or recombinant sorghum PEPC by these extracts. In-situ pretreatment of intact MC at pH 8.0 by illumination and calcium addition led to significant decreases in PEPC malate sensitivity and increases in PEPC-kinase activity that were negated by the addition of EGTA to the external cell medium. Similarly, in-situ pretreatment of MP with light plus NH4Cl at pH 7.6 led to significant decreases in malate sensitivity which did not occur when a Ca2+ ionophore and EGTA were included in the suspension medium. In contrast, neither EGTA nor exogenous Ca2+ had a major direct effect on the in-vitro activity of PEPC-PK extracted from Digitaria MC and MP. Preincubation of intact MC with 5 mM 3-phosphoglycerate or pyruvate at pH 8.0 in the dark led to significant decreases in PEPC malate sensitivity and increases in PEPC-PK activity which were not observed with various other exogenous metabolites. These collective in-situ experiments with isolated C4 MC and MP (i) support our earlier hypothesis that alkalization of cytosolic pH is involved in the PEPC-PK signal-transduction cascade (see J.-N. Pierre et al., Eur J Biochem, 1992,210: 531–537), (ii) suggest that intracellular calcium is involved in the PEPC-kinase signal-transduction chain, but at a step upstream of PEPC-PK per se, and (iii) provide direct evidence that the bundle-sheath-derived, C4-pathway intermediates 3-PGA and/or pyruvate also play a role in this signal-transduction cascade which ultimately effects the up-regulation of PEPC in the C4 mesophyll cytosol.Abbreviations BS bundle-sheath - CAM Crassulacean acid metabolism - DHAP dihydroxyacetone phosphate - FPLC fast-protein liquid chromatography - Glc6P glucose 6-phosphate - I0.5 50% inhibition constant - MC mesophyll cell(s) - MP me-sophyll protoplast(s) - PEP phosphoenolpyruvate - PEPC PEP carboxylase - PEPC-PK PEPC protein-Ser/Thr kinase - 2-PGA 2-phosphoglycerate - 3-PGA 3-phosphoglycerate - PPFD photosynthetic photon flux density - Pyr pyruvate - Ser serine The authors thank Ms. Jill Myatt for her help with some of the MC preparations. This work was supported in part by grants INT-9115566 and MCB-9315928 from the U.S. National Science Foundation (to R.C.). S.M.G.D. was a recipient of an NSERC of Canada Post-Doctoral Fellowship. This paper is Journal Series No. 11 395 of the University of Nebraska Agricultural Research Division.  相似文献   

3.
4.
5.
Isolated mesophyll cells from darkened leaves of the C(4) plant Digitaria sanguinalis keep functional plasmodesmata that allow the free exchange of low molecular mass compounds with the surrounding medium. This cell suspension system has been used to measure C(4) PEPC activity in situ using a spectrophotometric assay. Compared to the extracted enzyme assayed in vitro, the essentially non-phosphorylated 'in-cell' C(4) PEPC showed altered functional and regulatory properties. While the S (0.5) for PEP at pH 7.3 was only modestly changed (0.4-0.6 mM), the response to pH was shifted towards the acidic range, being close to the maximal value at pH 7.3. Using expected physiological concentrations of the metabolites, at pH 7.3, the IC(50) for malate showed a five-fold increase, from 1.5 to 8 mM, and was increased further to 22 mM in the presence of the allosteric activator glucose-6-phosphate (4 mM). Thiol compounds like DTT, mercaptoethanol and reduced glutathione weakened the in-situ sensitivity of C(4) PEPC to malate. However, none of them had any effect on this process in vitro. This was not due to thioredoxin-mediated or phoshorylation-dependent processes. Since glutathione is a physiological compound that is present mostly in the reduced state in the cell cytosol, a possible contribution of this thiol to the protection of the enzyme against malate in situ is proposed.  相似文献   

6.
Phosphoenolpyruvate carboxylase (PEPC) is believed to play an important role in producing malate as a substrate for fatty acid synthesis by leucoplasts of the developing castor oilseed (COS) endosperm. Two kinetically distinct isoforms of COS PEPC were resolved by gel filtration chromatography and purified. PEPC1 is a typical 410-kDa homotetramer composed of 107-kDa subunits (p107). In contrast, PEPC2 exists as an unusual 681-kDa hetero-octamer composed of the same p107 found in PEPC1 and an associated 64-kDa polypeptide (p64) that is structurally and immunologically unrelated to p107. Relative to PEPC1, PEPC2 demonstrated significantly enhanced thermal stability and a much lower sensitivity to allosteric activators (Glc-6-P, Glc-1-P, Fru-6-P, glycerol-3-P) and inhibitors (Asp, Glu, malate) and pH changes within the physiological range. Nondenaturing PAGE of clarified extracts followed by in-gel PEPC activity staining indicated that the ratio of PEPC1:PEPC2 increases during COS development such that only PEPC1 is detected in mature COS. Dissimilar developmental profiles and kinetic properties support the hypotheses that (i) PEPC1 functions to replenish dicarboxylic acids consumed through transamination reactions required for storage protein synthesis, whereas (ii) PEPC2 facilitates PEP flux to malate in support of fatty acid synthesis. Interestingly, the respective physical and kinetic properties of COS PEPC1 and PEPC2 are remarkably comparable with those of the homotetrameric low M(r) Class 1 and heteromeric high M(r) Class 2 PEPC isoforms of unicellular green algae.  相似文献   

7.
In order to elucidate the discrete steps in phospho enolpyruvate carboxylase (PEPC) evolution concerning K(m)-PEP and malate tolerance a comparison was made between C3, C3-C4 and C4 species of the dicot genus Flaveria. The PEPCs of this genus are encoded by a gene family comprising three classes: ppcA, ppcB and ppcC [J. Hermans and P. Westhoff (1990) Mol Gen Genet 224:459-468, (1992) Mol Gen Genet 234:275-284]. The ppcA of F trinervia (C4) codes for the C4 PEPC isoform but other plants of the genus contain ppcA orthologues too. The C3 plant F. pringlei showed the lowest levels of ppcA PEPC mRNA followed by F. pubescens (C3-C4) while the C4-like plant F. brownii displayed RNA amounts close to the C4 species F. trinervia. In contrast to the similar expression profiles of F. brownii (C4-like) and F. trinervia (C4) the PEPC amino acid sequence of F. brownii was more similar to the C3 and C3-C4 ppcA PEPCs than to the C4 PEPC. Similarly, the C3, C3-C4 and C4-like ppcA PEPCs showed almost identical PEP saturation kinetics when activated by glucose-6-phosphate ( K(m)-PEP: 17-20 microM) while the K(m)-PEP for the C4 PEPC was determined to be 53 microM. However, without activation the ppcA PEPCs of F. pubescens and F. brownii displayed C3-C4 intermediate values. A similar picture was obtained when the malate sensitivities were compared. In the non-activated state the F. trinervia (C4) enzyme was 10 times more tolerant to malate than the F. pringlei counterpart. The ppcA enzymes of F. pubescens (C3-C4) and F. brownii (C4-like) displayed intermediate values. In contrast, the inclusion of 5 mM glucose-6-phosphate in the reaction mixture changed the order totally. Interestingly, the activation rendered the C4 enzyme about 50% less tolerant to malate than the C3 PEPC. The activation had a positive effect on malate tolerance of the F. pubescens (C3-C4) PEPC while the ppcA PEPC of F. brownii (C4-like) was almost unaffected.  相似文献   

8.
The phosphoenolpyruvate carboxylase (PEPC) interactome of developing castor oil seed (COS; Ricinus communis) endosperm was assessed using coimmunopurification (co-IP) followed by proteomic analysis. Earlier studies suggested that immunologically unrelated 107-kD plant-type PEPCs (p107/PTPC) and 118-kD bacterial-type PEPCs (p118/BTPC) are subunits of an unusual 910-kD hetero-octameric class 2 PEPC complex of developing COS. The current results confirm that a tight physical interaction occurs between p118 and p107 because p118 quantitatively coimmunopurified with p107 following elution of COS extracts through an anti-p107-IgG immunoaffinity column. No PEPC activity or immunoreactive PEPC polypeptides were detected in the corresponding flow-through fractions. Although BTPCs lack the N-terminal phosphorylation motif characteristic of PTPCs, Pro-Q Diamond phosphoprotein staining, immunoblotting with phospho-serine (Ser)/threonine Akt substrate IgG, and phosphate-affinity PAGE established that coimmunopurified p118 was multiphosphorylated at unique Ser and/or threonine residues. Tandem mass spectrometric analysis of an endoproteinase Lys-C p118 peptide digest demonstrated that Ser-425 is subject to in vivo proline-directed phosphorylation. The co-IP of p118 with p107 did not appear to be influenced by their phosphorylation status. Because p118 phosphorylation was unchanged 48 h following elimination of photosynthate supply due to COS depodding, the signaling mechanisms responsible for photosynthate-dependent p107 phosphorylation differ from those controlling p118's in vivo phosphorylation. A 110-kD PTPC coimmunopurified with p118 and p107 when depodded COS was used. The plastidial pyruvate dehydrogenase complex (PDC(pl)) was identified as a novel PEPC interactor. Thus, a putative metabolon involving PEPC and PDC(pl) could function to channel carbon from phosphoenolpyruvate to acetyl-coenzyme A and/or to recycle CO(2) from PDC(pl) to PEPC.  相似文献   

9.
Leaves regulate gas exchange through control of stomata in the epidermis. Stomatal aperture increases when the flanking guard cells accumulate K+ or other osmolytes. K+ accumulation is stoichiometric with H+ extrusion, which is compensated for by phosphoenolpyruvate carboxylase (PEPC, EC 4.1.1.31)-mediated malate synthesis. Plant PEPCs are regulated allosterically and by phosphorylation. Aspects of the signal-transduction network that control the PEPC phosphorylation state in guard cells are reported here. Guard cells were preloaded with [32P]orthophosphate (32Pi); then stomata were incubated with fusicoccin (FC), which activates the guard-cell plasma membrane H+-ATPase. [32P]PEPC was assessed by immunoprecipitation, electrophoresis, immunoblotting, and autoradiography. In -FC controls, stomatal size, guard-cell malate, and [32P]PEPC were low; maximum values for these parameters were observed in the presence of FC after a 90-min incubation and persisted for an additional 90 min. This high steady-state phosphorylation status resulted from continuous phosphorylation and dephosphorylation, even after the malate-accumulation phase. PEPC phosphorylation was diminished by approximately 80% when K+ uptake was associated with Cl- uptake and was essentially abolished when stomatal opening was sucrose--rather than K+--dependent. Finally, alkalinization by NH4+ in the presence of K+ did not cause PEPC phosphorylation (as it does in C4 plants). As discussed, a role for cytoplasmic protons cannot be completely excluded by this result. In summary, activation of the plasma membrane H+-ATPase was essential, but not sufficient, to cause phosphorylation of guard-cell PEPC. Network components downstream of the H+-ATPase influence the phosphorylation state of this PEPC isoform.  相似文献   

10.
PEPC [PEP (phosphoenolpyruvate) carboxylase] is a tightly controlled anaplerotic enzyme situated at a pivotal branch point of plant carbohydrate metabolism. Two distinct oligomeric PEPC classes were discovered in developing COS (castor oil seeds). Class-1 PEPC is a typical homotetramer of 107?kDa PTPC (plant-type PEPC) subunits, whereas the novel 910-kDa Class-2 PEPC hetero-octamer arises from a tight interaction between Class-1 PEPC and 118?kDa BTPC (bacterial-type PEPC) subunits. Mass spectrometric analysis of immunopurified COS BTPC indicated that it is subject to in vivo proline-directed phosphorylation at Ser425. We show that immunoblots probed with phosphorylation site-specific antibodies demonstrated that Ser425 phosphorylation is promoted during COS development, becoming maximal at stage IX (maturation phase) or in response to depodding. Kinetic analyses of a recombinant, chimaeric Class-2 PEPC containing phosphomimetic BTPC mutant subunits (S425D) indicated that Ser425 phosphorylation results in significant BTPC inhibition by: (i) increasing its Km(PEP) 3-fold, (ii) reducing its I50 (L-malate and L-aspartate) values by 4.5- and 2.5-fold respectively, while (iii) decreasing its activity within the physiological pH range. The developmental pattern and kinetic influence of Ser425 BTPC phosphorylation is very distinct from the in vivo phosphorylation/activation of COS Class-1 PEPC's PTPC subunits at Ser11. Collectively, the results establish that BTPC's phospho-Ser425 content depends upon COS developmental and physiological status and that Ser425 phosphorylation attenuates the catalytic activity of BTPC subunits within a Class-2 PEPC complex. To the best of our knowledge, this study provides the first evidence for protein phosphorylation as a mechanism for the in vivo control of vascular plant BTPC activity.  相似文献   

11.
Root tips of Fe-deficient and Fe-sufficient sugar beet plants grown in hydroponics have been used to study the changes in the amount and activity of the cytosolic enzyme phosphoenolpyruvate carboxylase (PEPC, EC 4.1.1.31). Phosphoenolpyruvate carboxylase activity in extracts of the yellow Fe-deficient root tips was, at pH 7.3, 30-fold higher (when expressed on a FW basis) and 7.1-fold higher (when expressed on a protein basis) than that found in the extracts of Fe-sufficient root tips. The amount of phosphoenolpyruvate carboxylase protein determined by immuno-blotting was, on a protein basis, 35-fold larger in the yellow zone of Fe-deficient root tips than in the Fe-sufficient root tips. The inhibition of the phosphoenolpyruvate carboxylase activity by 500 m malate was 41 and 58% in the extracts Fe-deficient and Fe-sufficient roots. The possibility that post-translational regulation of phosphoenolpyruvate carboxylase may occur mediated through phosphorylation, was studied by immunological detection of phosphoserine residues in root tip extracts.  相似文献   

12.
13.
Developmental regulation of photosynthate distribution in leaves of rice   总被引:1,自引:0,他引:1  
mRNA expression patterns of genes for metabolic key enzymes sucrose phosphate synthase (SPS), phosphoenolpyruvate carboxylase (PEPC), pyruvate kinase, ribulose 1,5-bisphosphate carboxylase/oxygenase, glutamine synthetase 1, and glutamine synthetase 2 were investigated in leaves of rice plants grown at two nitrogen (N) supplies (N0.5, N3.0). The relative gene expression patterns were similar in all leaves except for 9th leaf, in which mRNA levels were generally depressed. Though increased N supply prolonged the expression period of each mRNA, it did not affect the relative expression intensity of any mRNA in a given leaf. SPS Vmax, SPS limiting and PEPC activities, and carbon flow were examined. The ratio between PEPC activity and SPS Vmax was higher in leaves developed at the vegetative growth stage (vegetative leaves: 5th and 7th leaves) than in leaves developed after the ear primordia formation stage (reproductive leaves: 9th and flag leaves). PEPC activity and SPS Vmax decreased with declining leaf N content. After using 14CO2 the 14C photosynthate distribution in the amino acid fraction was higher in vegetative than in reproductive leaves when compared for the same leaf N status. Thus, at high PEPC/SPS activities ratio, more 14C photosynthate was distributed to the amino acid pool, whereas at higher SPS activity more 14C was channelled into the saccharide fraction. Thus, leaf ontogeny was an important factor controlling photosynthate distribution to the N- or C-pool, respectively, regardless of the leaf N status.  相似文献   

14.
Dalziel KJ  O'Leary B  Brikis C  Rao SK  She YM  Cyr T  Plaxton WC 《FEBS letters》2012,586(7):1049-1054
Phosphoenolpyruvate carboxylase (PEPC) is a tightly controlled anaplerotic enzyme situated at a pivotal branch point of plant carbohydrate-metabolism. In developing castor oil seeds (COS) a novel allosterically-densensitized 910-kDa Class-2 PEPC hetero-octameric complex arises from a tight interaction between 107-kDa plant-type PEPC and 118-kDa bacterial-type PEPC (BTPC) subunits. Mass spectrometry and immunoblotting with anti-phosphoSer451 specific antibodies established that COS BTPC is in vivo phosphorylated at Ser451, a highly conserved target residue that occurs within an intrinsically disordered region. This phosphorylation was enhanced during COS development or in response to depodding. Kinetic characterization of a phosphomimetic (S451D) mutant indicated that Ser451 phosphorylation inhibits the catalytic activity of BTPC subunits within the Class-2 PEPC complex.  相似文献   

15.
16.
Phosphoenolpyruvate carboxylase (PEPC) from developing castor oil seeds (COS) exists as two distinct oligomeric isoforms. The typical class-1 PEPC homotetramer consists of 107-kDa plant-type PEPC (PTPC) subunits, whereas the allosterically desensitized 910-kDa class-2 PEPC hetero-octamer arises from the association of class-1 PEPC with 118-kDa bacterial-type PEPC (BTPC) subunits. The in vivo interaction and subcellular location of COS BTPC and PTPC were assessed by imaging fluorescent protein (FP)-tagged PEPCs in tobacco suspension-cultured cells. The BTPC-FP mainly localized to cytoplasmic punctate/globular structures, identified as mitochondria by co-immunostaining of endogenous cytochrome oxidase. Inhibition of respiration with KCN resulted in proportional decreases and increases in mitochondrial versus cytosolic BTPC-FP, respectively. The FP-PTPC and NLS-FP-PTPC (containing an appended nuclear localization signal, NLS) localized to the cytosol and nucleus, respectively, but both co-localized with mitochondrial-associated BTPC when co-expressed with BTPC-FP. Transmission electron microscopy of immunogold-labeled developing COS revealed that BTPC and PTPC are localized at the mitochondrial (outer) envelope, as well as the cytosol. Moreover, thermolysin-sensitive BTPC and PTPC polypeptides were detected on immunoblots of purified COS mitochondria. Overall, our results demonstrate that: (i) COS BTPC and PTPC interact in vivo as a class-2 PEPC complex that associates with the surface of mitochondria, (ii) BTPC's unique and divergent intrinsically disordered region mediates its interaction with PTPC, whereas (iii) the PTPC-containing class-1 PEPC is entirely cytosolic. We hypothesize that mitochondrial-associated class-2 PEPC facilitates rapid refixation of respiratory CO(2) while sustaining a large anaplerotic flux to replenish tricarboxylic acid cycle C-skeletons withdrawn for biosynthesis.  相似文献   

17.
The net CO2 assimilation by leaves of maize (Zea mays L. cv. Adonis) plants subjected to slow or rapid dehydration decreased without changes in the total extractable activities of phosphoenolpyruvate carboxylase (PEPC), malate dehydrogenase (MDH) and malic enzyme (ME). The phosphorylation state of PEPC extracted from leaves after 2–3 h of exposure to light was not affected by water deficit, either. Moreover, when plants which had been slowly dehydrated to a leaf relative water content of about 60% were rehydrated, the net CO2 assimilation by leaves increased very rapidly without any changes in the activities of MDH, ME and PEPC or phosphorylation state of PEPC. The net CO2-dependent O2 evolution of a non-wilted leaf measured with an oxygen electrode decreased as CO2 concentration increased and was totally inhibited when the CO2 concentration was about 10%. Nevertheless, high CO2 concentrations (5–10%) counteracted most of the inhibitory effect of water deficit that developed during a slow dehydration but only counteracted a little of the inhibitory effect that developed during a rapid dehydration. In contrast to what could be observed during a rapidly developing water deficit, inhibition of leaf photosynthesis by cis-abscisic acid could be alleviated by high CO2 concentrations. These results indicate that the inhibition of leaf net CO2 uptake brought about by water deficit is mainly due to stomatal closure when a maize plant is dehydrated slowly while it is mainly due to inhibition of non-stomatal processes when a plant is rapidly dehydrated. The photosynthetic apparatus of maize leaves appears to be as resistant to drought as that of C3 plants. The non-stomatal inhibition observed in rapidly dehydrated leaves might be the result of either a down-regulation of the photosynthetic enzymes by changes in metabolite pool sizes or restricted plasmodesmatal transport between mesophyll and bundle-sheath cells.  相似文献   

18.
Chen LM  Li KZ  Miwa T  Izui K 《Planta》2004,219(3):440-449
Phosphoenolpyruvate carboxylase (EC 4.1.1.31) from Synechococcus vulcanus (SvPEPC) is a unique enzyme, being almost insensitive to feedback inhibition at neutral pH. In order to assess its usefulness in metabolic engineering of plants, SvPEPC was expressed in Arabidopsis thaliana (L.) Heynh. under the control of the cauliflower mosaic virus 35S promoter. About one-third of the transformants of the T1 generation showed severe visible phenotypes such as leaf bleaching and were infertile when grown on soil. However, no such phenotype was observed with Arabidopsis transformed with Zea mays L. PEPC (ZmPEPC) for C4 photosynthesis, which is normally sensitive to a feedback inhibitor, l-malate. For the SvPEPC transformants of the T2 generation, which had been derived from fertile T1 transformants, three kinds of phenotype were observed when plants were grown on an agar medium containing sucrose: Type-I plants showed poor growth and a block in true leaf development; Type-II plants produced a few true leaves, which were partially bleached; Type-III plants were apparently normal. In Type-I plants, total PEPC activity was increased about 2-fold over the control plant but there was no such increase in Type-III plants. The phenotypes of Type-I plants were rescued when the sucrose-containing agar medium was supplemented with aromatic amino acids. Measurement of the free amino acid content in whole seedlings of Type-I transformants revealed that the levels of the aromatic amino acids Phe and Tyr were lowered significantly as compared with the control plants. In contrast, the levels of several amino acids of the aspartic and glutamic families, such as Asn, Gln and Arg, were markedly enhanced (4- to 8-fold per plant fresh weight). However, when the medium was supplemented with aromatic amino acids, the levels of Asn, Gln, and Arg decreased to levels slightly higher than those of control plants, accompanied by growth recovery. Taken together, it can be envisaged that SvPEPC is capable of efficiently exerting its activity in the plant cell environment so as to cause imbalance between aromatic and non-aromatic amino acid syntheses. The growth inhibition of Type-I plants was presumed to be primarily due to a decreased availability of phosphoenolpyruvate, one of the precursors for the shikimate pathway for the synthesis of aromatic amino acids and phenylpropanoids. The possible usefulness of SvPEPC as one of the key components for installing the C4-like pathway is proposed.Abbreviations CaMV Cauliflower mosaic virus - GUS -Glucuronidase - Kan Kanamycin - 2-ME 2-Mercaptoethanol - MS/G medium 1/2 Murashige–Skoog and 1/2 Gamborg mixed medium - PEP Phosphoenolpyruvate - PEPC Phosphoenolpyruvate carboxylase - Sv Synechococcus vulcanus - ZmPEPC Maize PEPC involved in C4 photosynthesis  相似文献   

19.
Turner WL  Knowles VL  Plaxton WC 《Planta》2005,222(6):1051-1062
Antibodies against Brassica napus cytosolic pyruvate kinase (PKc) (EC 2.7.1.40) were employed to examine PKc subunit composition and developmental profiles in castor and soybean seeds. A 56-kDa immunoreactive polypeptide was uniformly detected on immunoblots of clarified extracts from developing castor endosperm or soybean embryos. Maximal PKc activities occurred early in castor oil seed (COS) and soybean development (7.1 and 5.5 (μmol of pyruvate produced/min) g−1 FW, respectively) and were up to 25-fold greater than those of fully mature seeds. Time-course studies revealed a close correlation between extractable PKc activity and the relative amount of the immunoreactive 56-kDa PKc polypeptide. PKc from developing COS was purified 1,874-fold to homogeneity and a final specific activity of 73.1 (μmol of pyruvate produced/min) mg−1 protein. Gel filtration and SDS-PAGE indicated that this PKc exists as a 230-kDa homotetramer composed of 56-kDa subunits. The mass fingerprint of tryptic peptides of the 56-kDa COS PKc subunit best matched three putative PKcs from Arabidopsis thaliana. The purified enzyme was relatively heat-stable and displayed a broad pH optimum of 6.4. However, more efficient substrate utilization (in terms of V max /K m for phosphoenolpyruvate or ADP) was observed at pH 7.4. Glutamate was the most effective inhibitor, whereas aspartate functioned as an activator by partially relieving glutamate inhibition. Together with our previous studies, the results: (1) allow a model to be formulated regarding the coordinate allosteric control of PKc and phosphoenolpyruvate carboxylase by aspartate and glutamate in developing COS, and (2) provide further biochemical evidence that castor plant PKc exists as tissue-specific isozymes that exhibit substantial differences in their respective physical and regulatory properties.  相似文献   

20.
White lupin (Lupinus albus L.) acclimates to phosphorus deficiency (–P) by the development of short, densely clustered lateral roots called proteoid (or cluster) roots. These specialized plant organs display increased exudation of citric and malic acid. The enhanced exudation of organic acids from P stressed white lupin roots is accompanied by increased in vitro phosphoenolpyruvate carboxylase (PEPC) and malate dehydrogenase (MDH) activity. Here we report the cloning of full-length white lupin PEPC and MDH cDNAs. RNA blot analysis indicates enhanced expression of these genes in –P proteoid roots, placing higher gene expression at the site of organic acid exudation. Correspondingly, macroarray analysis of about 1250 ESTs (expressed sequence tags) revealed induced expression of genes involved in organic acid metabolism in –P proteoid roots. In situ hybridization revealed that PEPC and MDH were both expressed in the cortex of emerging and mature proteoid rootlets. A C3 PEPC protein was partially purified from proteoid roots of P deficient white lupin. Native and subunit Mr were determined to be 440 kD and 110 kD, respectively. Citrate and malate were effective inhibitors of in vitro PEPC activity at pH 7. Addition of ATP partially relieved inhibition of PEPC by malate but had little effect on citrate inhibition. Taken together, the results presented here suggest that acclimation of white lupin to low P involves modified expression of plant genes involved in carbon metabolism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号