首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
P. Lindblad  B. Bergman 《Planta》1986,169(1):1-7
Nitrogen-fixing cyanobacteria inhabit the zone between the inner and outer cortex of cycad coralloid roots. In the growing tip of such roots the cyanobacterial heterocyst frequency, nitrogenase activity (C2H2-reduction) and glutamine synthetase activity (both transferase and biosynthetic) were comparable to those found in freeliving cyanobacteria. The relative level of glutamine synthetase protein and its pattern of cellular/subcellular localization in heterocysts and vegetative cells were also similar to those of free-living cyanobacteria. However, there was a progressive decline in nitrogenase activity along the coralloid root with maximum reduction occurring in the regions farthest from the growing tip. A similar but less pronounced pattern was observed for glutamine synthetase activity. Distribution of glutamine synthetase protein in cyanobacteria in the first 2–3 mm of the root tip indicated a slight decrease in the heterocysts and vegetative cells. However, the overall level of cyanobacterial glutamine synthetase protein did not change because of a drastic increase in the numbers of heterocysts, which contain a proportionally higher level of glutamine synthetase than the vegetative cells.Abbreviation GS glutamine synthetase  相似文献   

2.
Distribution pattern and levels of nitrogenase (EC 1.7.99.2) and glutamine synthetase (GS, EC 6.3.1.2) were studied in N2-, NO3? and NH4+ grown Anabaena cylindrica (CCAP 1403/2a) using immunogold electron microscopy. In N2- and NO3? grown cultures, heterocysts were formed and nitrogenase activity was present. The nitrogenase antigen appeared within the heterocysts only and showed an even distribution. The level of nitrogenase protein in the heterocysts was identical with both nitrogen sources. In NO3? grown cells the 30% reduction in the nitrogenase activity was due to a corresponding decrease in the heterocyst frequency and not to a repressed nitrogenase synthesis. In NH4? grown cells, the nitrogenase activity was almost zero and new heterocysts were formed to a very low extent. The heterocysts found showed practically no nitrogenase protein throughout the cytoplasm, although some label occurred at the periphery of the heterocyst. This demonstrates that heterocyst differentiation and nitrogenase expression are not necessarily correlated and that while NH4+ caused repression of both heterocyst and nitrogenase synthesis, NO3? caused inhibition of heterocyst differentiation only. The glutamine synthetase protein label was found throughout the vegetative cells and the heterocysts of all three cultures. The relative level of the GS antigen varied in the heterocysts depending on the nitrogen source, whereas the GS level was similar in all vegetative cells. In N2- and NO3+ grown cells, where nitrogenase was expressed, the GS level was ca 100% higher in the heterocysts compared to vegetative cells. In NH4+ grown cells, where nitrogenase was repressed, the GS level was similar in the two cell types. The enhanced level of GS expressed in heterocysts of N2 and NO3? grown cultures apparently is related to nitrogenase expression and has a role in assimilation of N2derived ammonia.  相似文献   

3.
The qualitative distribution and quantitative estimates of nitrogenase (EC 1.7.99.2), glutamine synthetase (EC 6.3.1.2), phycoerythrin and ribulose 1,5-bisphosphate carboxylase/oxygenase (EC 4.1.1.39) were studied in the cyanobacterium Nostoc residing in internal cephalodia of the tripartite lichen Nephroma arcticum L. Polyclonal antisera, raised in rabbit against the proteins, and goat anti-rabbit IgG conjugated to 10 nm gold were used as probes to detect the antigens by transmission electron microscopy. Western blot analyses demonstrated the monospecificity of the antisera. Nitrogenase was localized in heterocysts, with vegetative cells showing a label intensity comparable to the background. Distribution of the antigen within the heterocysts was uniform. Glutamine synthetase labelling was very low, but appeared to be distributed in both cell types. An intense phycoerythrin labelling was associated with the thylakoid region of the vegetative cells, whereas a much lower labelling was observed in the heterocyst. No significant differences were found between cyanobionts in younger and older cephalodia except for the nitrogenase labelling, which was higher in heterocysts of the cyanobiont in younger cephalodia. Most of the ribulose 1,5-bisphosphate carboxylase/oxygenase (Rubisco) label was present in vegetative cells. The Rubisco label was pronounced in the carboxysomes, whereas the label in the cytoplasm, on a unit area basis, was much lower. Heterocysts showed a label intensity similar to that of the vegetative cell cytoplasm. In Nostoc of the bipartite lichen Peltigera canina L., the Rubisco protein showed a comparable distribution pattern, but the average number of carboxysomes per vegetative cell was about 4 times higher.  相似文献   

4.
A. Peat  N. Powell  M. Potts 《Protoplasma》1988,146(2-3):72-80
Summary Vegetative cells and heterocysts of the filamentous desiccation-tolerant cyanobacteriumNostoc commune HUN retain their ultrastructural organisation and the integrity of their intra- and extracellular membranes after two years of desiccation and subsequent rehydration. Immunogold-labelling of thin sections demonstrated the presence of NifH (Fe protein of nitrogenase) in vegetative cells and heterocysts within five minutes of the rehydration of dried colonies. Immunogold label accumulated in discrete areas vegetative cells within 5 minutes of the rewetting of cells, and after 30 minutes a conspicuous association of NifH protein with heterocyst ribosomes was detected. After longer periods of rehydration, the deposition of gold particles became more random within both cell types but occurred with a greater frequency in heterocysts. Up to 24 hours after the rewetting of cells, two morphologically-distinct forms of heterocyst could be discerned. NifH protein was detected through Western blotting (subunit Mr=33,800) in protein extracts from samples ofNostoc commune, collected in different parts of the world and including some which had been desiccated for periods of up to 10 years. The results are discussed in relation to the sequential recovery of metabolic functions, particularly nitrogen fixation, which occurs upon the rehydration of cells after their prolonged storage in the air-dry state.  相似文献   

5.
6.
A method is described for the isolation of metabolically active heterocysts from Anabaena cylindrica. These isolated heterocysts accounted for up to 34% of the acetylene-reducing activity of whole filaments and had a specific activity of up to 1,560 nmol of C2H4 formed per mg of heterocyst chlorphyll per min. Activity of glutamine synthetase was coupled to activity of nitrogenase in isolated heterocysts as shown by acetylene-inhibitable formation of [13N]NH3 and of amidelabeled [13N]glutamine form [13N]N2. A method is also described for the production of 6-mCi amounts of [13N]NH3. Isolated heterocysts formed [13N]glutamine from [13N]NH3 and glutamate, and [14C]glutamine from NH3 and [14C]glutamate, in the presence of magnesium adenosine 5'-triphosphate. Methionine sulfoximine strongly inhibited these syntheses. Glutamate synthase is, after nitrogenase and glutamine synthetase, the third sequential enzyme involved in the assimilation of N2 by intact filaments. However, the kinetics of solubilization of the activity of glutamate synthase during cavitation of suspensions of A. cylindrica indicated that very little, if any, of the activity of that enzyme was located in heterocysts. Concordantly, isolated heterocysts failed to form substantial amounts of radioactive glutamate from either [13N]glutamine or alph-[14C]ketoglutarate in the presence of other substrates and cofactors of the glutamate synthase reaction. However, they formed [14C]glutamate rapidly from alpha-[14C]ketoglutarate by aminotransferase reactions, with various amino acids as the nitrogen donor. The implication of these findings with regard to the identities of the substances moving between heterocysts and vegetative cells are discussed.  相似文献   

7.
P. Lindblad 《Protoplasma》1989,152(2-3):87-95
Summary Free-living nitrogen-fixingNostoc PCC 73102 cells, a filamentous heterocystous cyanobacterium originally isolated from the cycadMacrozamia, were grown without or with the addition of either citrulline or ornithine and examined for the presence of carbamyl phosphate synthetase (CPS) by SDS-PAGE and Western immunoblots. Transmission electron microscopy and immunocytochemical labelling were used to study the cellular and subcellular distribution of CPS in theNostoc cells.Western immunoblots revealed that a polypeptide with a molecular weight of approximately 130 kDa was immunologically related to CPS purified fromE. coli. Nitrogen-fixingNostoc 73102 cultures grown without or with the addition of either citrulline or ornithine showed no differences in their CPS-polypeptide levels, indicating no regulatory effect on the CPS-protein level by these two amino acids. Immunolocalization demonstrated that the CPS protein was located both in vegetative cells and heterocysts, subcellularly evenly distributed over the two cell-types. Using the particle analysis of an image processor and cells grown both without or with addition of either citrulline or ornithine, about 2.5 times more CPS-gold labelling per cell area were observed in the photosynthetic vegetative cells compared to the nitrogen-fixing heterocysts.Abbreviations CPS carbamyl phosphate synthetase - IgG immunoglobulin G - OCT omithine carbamyl transferase  相似文献   

8.
The occurrence and distribution of a multifunctional chaperonin-60 (cpn60), the GroEL protein, was demonstrated in the cyanobacterium Anabaena PCC 7120 by using a rabbit anti-GroEL (Escherichia coli) antibody. Western-blot analysis showed a distinct cross-reaction with a protein of approx. 65 kilodaltons, analogous to the Mr of the E. coli homologue. Immunocyto-chemical studies of vegetative cells showed that a chaperonin was localized in both vegetative cells and heterocysts. In vegetative cells cpn60 was primarily detected both in the carboxysomes, and in the cytoplasm, though mainly in the thylakoid region of the latter. In heterocysts, specialized cells for nitrogen fixation, the cpn60 label was prominent and was evenly distributed throughout the cell. These results support recent findings that chaperonins are multifunctional proteins, and extend those findings by demonstrating the occurrence of cpn60 in a prokaryotic cyanobacterium and by raising the possibility of the involvement of this chaperonin in the assembly of heterocystous proteins.Abbreviations cpn60 chaperonin-60 - Mr relative molecular mass - Rubisco ribulose-1,5-bisphosphate carboxylase/oxygenase  相似文献   

9.
To investigate the transport of primary metabolites in Anabaena cylindrica from vegetative cells into heterocysts, intact filaments were labeled with the heterocysts were separated from the vegetative cells after different time intervals, and the labeling patterns were determined. After a 20-s fixation time, a high percentage of labeling of alanine, glutamate and glutamine, and, to a lesser extent, glucose 6-phosphate was found in heterocysts as compared with whole filaments. The results can be explained if transport of alanine, glutamate, and sugars from vegetative cells into heterocysts is assumed. Alanine can serve as a precursor for reducing equivalents if it is oxidized to glutamine which flows back to the vegetative cells. This idea is supported by an experiment in which exogenous alanine is readily converted by isolated heterocysts to glutamate and glutamine under a N2-H2 atmosphere. The incorporation of [14C]carbonate in isolated heterocysts demonstrated the absence of the reductive pentose phosphate pathway; however, it revealed marked activity of an acid fixation reaction.  相似文献   

10.
Developmental patterns related to nitrogen fixation in the heterocystous cyanobacteriumNostoc harboured in distinct colonies along the stem ofGunnera magellanica Lam. plantlets were examined using successive plant sections. Pronounced morphological, physiological and biochemical alterations in the cyanobacterium were demonstrated. Close to the growing apex the cyanobacterial biomass, contained in smallGunnera cells, was low and consisted mostly of vegetative cells showing a high density of different storage structures except for cyanophycin granules. In contrast, both the total and specific nitrogenase activity and the relative nitrogenase protein level were at maximum within this part; while the frequency of heterocysts increased from zero to 30% within the same area. The nitrogenase protein was localized only in the heterocysts throughout the plant. Further down theGunnera stem there was a progressive increase in both the cyanobacterial biomass and the heterocyst frequency, which finally constituted about 60% of the cyanobacterial cell population. Throughout this part of the stem, cyanophycin granules were frequent in the vegetativeNostoc cells. At the base of the stem, degeneratedNostoc cells dominated and the nitrogenase activity was close to zero, although the nitrogenase protein remained. Degeneration of theNostoc cells and leaf shedding coincided. Both intact plants (approx. 20 mm in height) and plant stem sections (2 mm in length) showed substantial nitrogenase activity, although sectioning caused a 30% reduction in total nitrogenase activity.  相似文献   

11.
Addition of the arginine analogue, canavanine, to cultures of nitrogen-fixing Anabaena cylindrica at the onset of akinete formation, resulted in the development of akinetes randomly distributed within the filament, in addition to those adjacent to heterocysts. The total frequency of akinetes increased up to five-fold. A feature of akinetes is their increased content of cyanophycin granules (an arginine-aspartic acid polymer) and addition of canavanine to cultures at an earlier stage resulted in entire filaments becoming agranular and containing agranular akinetes. The effects on akinete pattern appeared to be specific for canavanine since other amino acid analogues, although increasing the frequency of akinetes (approximately two-fold), had no effect on their position relative to heterocysts. In ammonia-grown, stationary phase cultures of A. cylindrica, akinetes were observed adjacent to proheterocysts and in positions more than 20 cells from any heterocyst. These observations indicate that nitrogen fixation and heterocysts are not essential for akinete formation in A. cylindrica, although the availability of a source of fixed nitrogen does appear to be a requirement.These results suggest that during exponential growth some aspect of the physiology of vegetative cells suppresses their development into akinetes and that the role of the heterocyst may not be one of direct stimulation of adjacent vegetative cells to form akinetes, but the removal or negation of the inhibition within them. A model for akinete formation and the involvement of canavanine is given.  相似文献   

12.
Transmission electron microscopy and immunocytological labeling were used to study the distribution and ontological occurrence of dinitrogenase reductase (Fe-protein) of nitrogenase in cyanobacterial symbionts within young leaves of the water-ferns Azolla filiculoides Lamarck, A. caroliniana Willdenow, and A. pinnata R. Brown. Rabbit anti-dinitrogenase reductase antisera and goat anti-rabbit-immunoglobulin G antibody conjugated to colloidal gold were used as probes. Western blot analyses showed that a polypeptide of approx. 36 kDa (kdalton) was recognized in the symbionts of all three Azolla species and that the polyclonal sera used were monospecific. In all symbionts, nitrogenase was immunologically recognizable within heterocysts. It was absent from vegetative cells, and also from the akinetes of the A. caroliniana and A. pinnata symbionts. The differentiation of vegetative cells into heterocysts in all three symbionts was initiated by formation of additional external cell-wall layers and narrowing of the neck followed by loss of glycogen, mild vesiculation of thylakoid membranes, and the appearance of polar nodules. No nitrogenase was detected at these early stages, but it appeared in the intermediate proheterocyst stage concomitantly with the formation of contorted membranes, and reached the strongest labeling in mature heterocysts, containing extensive tightly packed membranes. Nitrogenase was evenly distributed throughout heterocysts except at the polar regions, which contained honey-comb configurations and large polar nodules. With increased age of the A. caroliniana and A. pinnata symbionts, heterocysts became highly vesiculated, with a concomitant decrease in the amount of nitrogenase detected.Abbreviations IgG Immunoglobulin G - PAGE polyacrylamide gel electrophoresis - SDS sodium dodecyl sulfate - TEM transmission electron micrograph  相似文献   

13.
Radioactive carbon assimilated by vegetative cells of Anabaena cylindrica in the light passed via an intrafilamentous route into heterocysts in the dark. After several hours, label per heterocyst approximated label per vegetative cell. Much of the label entering heterocysts was not available for diffusional exchange back into vegetative cells.  相似文献   

14.
The occurrence activity and localization of calmodulin in three heterocystous cyanobacteria of the genus Anabaena were studied. Boiled crude extracts caused a Ca2+-dependent stimulation of NAD kinase. Such a stimulation was blocked by EGTA and chlorpromazine, SDS-PAGE and Western blot analysis using antiserum against eukaryotic spinach calmodulin, revealed a polypeptide of about 17 kDa. Immunogold localization of calmodulin gave a dense gold label in both vegetative cells and heterocysts. The label was mainly confined to the centroplasm in vegetative cells, while it was evenly distributed in the cytoplasm of mature heterocysts.  相似文献   

15.
Intracellular localization of glutamine synthetase has been studied by immunochemical techniques with cryosections and London Resin sections of Rhodobacter capsulatus E1F1 and Rhodopseudomonas acidophila. For immunostaining, sections were sequentially incubated with monospecific anti-glutamine synthetase antibodies (R. capsulatus) and gold labelled goat anti-rabbit antibodies. Gold label was present in the cytoplasm but not in the cell walls. The antigen is not associated with the cell membrane or with photosynthetic vesicle whether these are round and randomly distributed (R. capsulatus) or flattened and organized in well defined stacks (R. acidophila). Our results also indicate that glutamine synthetase is absent from the central, nucleoid part of the cell. The enzyme is present in dense cytoplasmic patches, which appear to be RNA-ribosome-containing areas.Abbreviations GS glutamine synthetase - LR London Resin White  相似文献   

16.
Summary Immunogold labeling and transmission electron microscopy were used to localize iron-superoxide dismutase (Fe-SOD) in the different cells of nitrogen-fixing cyanobacterial symbiont present within different leaf cavity groups ofAzolla filiculoides Lam. As evidenced by Western blotting and immunoprecipitation, Fe-SOD antibody fromAnabaena cylindrica recognized Fe-SOD in extracts of the cyanobiont and showed the same electrophoretic mobility and pattern as purifiedA. cylindrica Fe-SOD. In vegetative cells of the cyanobiont, Fe-SOD was mainly localized in the thylakoidal membranes and in the outer membrane. The labeling pattern was similar in vegetative cells of the various groups of leaf cavities examined except at the apex where a lower gold particle density was seen. In heterocysts of the leaf cavity groups containing high nitrogenase activity, Fe-SOD labeling was most pronounced and more intense than in vegetative cells. The Fe-SOD label was preferentially located throughout the heterocyst cytoplasm and in the honeycomb regions. In accordance with the decline in nitrogenase activity, the Fe-SOD gold particle density decreased significantly in heterocysts of basal leaf cavity group. The presence of Fe-SOD in regions of high nitrogenase protein levels, and the fact that the pattern of Fe-SOD label parallels that of nitrogenase activity support a role of Fe-SOD in the protection of nitrogenase against superoxide radicals.  相似文献   

17.
J. D. Ownby 《Planta》1977,136(3):277-279
Heterocyst development in ammonia-grown cultures of Anabaena variabilis and Anabaena 7120 was fully induced by the amino-acid analog methionine sulfoximine (MSO) at concentrations of 0.5–1.0 M. Glutamine, glutamate, aspartate, and alanine at 0.5 mM blocked the induction of heterocysts by MSO in A. variabilis. With Anabaena 7120, glutamine and glutamate were fully effective and alanine partially effective in preventing MSO-induced heterocyst formation. In MSO-treated algae, glutamine synthetase activity was reduced to less than 15% of control values within 4–6 h. Inactivation of the enzyme was prevented by all four amino acids tested.  相似文献   

18.
As a first step toward developing the methodology for screening large numbers of heterocyst-forming freshwater cyanobacteria strains for the presence of various types of nitrogenases and hydrogenases, we surveyed the distribution of these genes and their activities in 14 strains from culture collections. The nitrogenase genes include nif1 encoding a Mo-type nitrogenase expressed in heterocysts, nif2 expressed in vegetative cells and heterocysts under anaerobic conditions, and vnf encoding a V-type nitrogenase expressed in heterocysts. Two methods proved to be valuable in surveying the distribution of nitrogenase types. The first method was Southern blot hybridization of DNA digested with two different endonucleases and hybridized with nifD1, nifD2, and vnfD probes. The second method was ethane formation from acetylene to detect the presence of active V-nitrogenase. We found that all 14 strains have nifD1 genes, and eight strains also have nifD2 genes. Four of the strains have vnfD genes, in addition to nifD2 genes. It is curious that three of these four strains had similar hybridization patterns with all of the nifD1, nifD2, and vnfD probes, suggesting that there could be some bias in strains used in the present study or in strains held in culture collections. This point will need to be assessed in the future. For surveying the distribution of hydrogenases, Southern blot hybridization was an effective method. All strains surveyed had hup genes, with the majority of them also having hox genes.  相似文献   

19.
Abstract The present communication defines the conditions under which thioredoxin activates glutamine synthetase from Anabaena cylindrica . Effects are obtained at pH values around neutrality, and the activation is affected by Mg2+ in the assays. The thioredoxin systems from A. cylindrica and spinach are functionally interchangeable in the activation of glutamine synthetase. The enzyme is efficiently activated by thioredoxinm and also by thioredoxinf, but at much higher concentrations. Thioredoxinm has previously been shown to activate NADPH-dependent malate dehydrogenase and isocitrate dehydrogenase from cyanobacteria. It is speculated that thioredoxinm plays a role in the differentiation of vegetative cells to heterocysts.  相似文献   

20.
Karni  Leah  Moss  Stephen J.  Tel-Or  Elisha 《Archives of microbiology》1984,140(2-3):215-217
Glutathione reductase activity was detected and characterized in heterocysts and vegetative cells of the cyanobacterium Nostoc muscorum. The activity of the enzyme varied between 50 and 150 nmol reduced glutathione· min-1·mg protein-1, and the apparent Km for NADPH was 0.125 and 0.200 mM for heterocysts and vegetative cells, respectively. The enzyme was found to be sensitive to Zn+2 ions, however, preincubation with oxidized glutathione rendered its resistance to Zn+2 inhibition. Nostoc muscorum filaments were found to contain 0.6–0.7mM glutathione, and it is suggested that glutathione reductase can regenerate reduced glutathione in both cell types. The combined activity of glutathione reductase and isocitrate dehydrogenase in heterocysts was as high as 18 nmol reduced glutathione·min-1·mg protein-1. A relatively high superoxide dismutase activity was found in the two cell types; 34.2 and 64.3 enzyme units·min-1·mg protein-1 in heterocysts and vegetative cells, respectively.We suggest that glutathione reductase plays a role in the protection mechanism which removes oxygen radicals in the N2-fixing cyanobacterium Nostoc muscorum.Abbreviations DTNB 5-5-dithiobis-(2-nitrobenzoic acid) - EDTA ethylenediaminetetra-acetic acid - GR glutathione reductase (EC1.6.4.2) - GSH reduced glutathione - GSSG oxidized glutathione - OPT O-phtaldialdehyde - SOD superoxide dismutase (EC 1.15.1.1)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号