共查询到20条相似文献,搜索用时 15 毫秒
1.
Sara M. Lewis 《Oecologia》1985,65(3):370-375
Summary The susceptibility of several tropical algal species to fish grazing was studied on the Belizean barrier reef off the Caribbean coast of Central America. Short-term transplant experiments indicate that plant species vary markedly in their rates of biomass loss to grazing by a shallow-water guild of herbivorous fishes. Algal species transplanted from habitats with low grazing pressure are highly susceptible to grazing, while species occurring in habitats with high herbivore densities are highly resistant to grazing. Algal species show differential susceptibility to grazing by two major components of the tropical herbivore guild, Acanthurus (surgeonfishes) and Sparisoma (parrotfishes).Variability in plant susceptibility to grazing by herbivorous fishes was not clearly correlated with morphological or chemical characteristics that have been previously suggested as plant defenses against herbivory. Plants found to be highly resistant to fish grazing, such as Halimeda, exhibit both morphological characteristics and secondary chemical compounds which do appear to reduce herbivory. In contrast, species of Caulerpa, Sargassum, Turbinaria, and Padina, which also possess alleged morphological and/or chemical defenses, are nevertheless highly susceptible to fish grazing. 相似文献
2.
Palacio-Castro Ana M. Dennison Caroline E. Rosales Stephanie M. Baker Andrew C. 《Coral reefs (Online)》2021,40(5):1601-1613
Coral Reefs - Coral cover is declining worldwide due to multiple interacting threats. We compared the effects of elevated nutrients and temperature on three Caribbean corals: Acropora cervicornis,... 相似文献
3.
Clive R. Wilkinson 《Hydrobiologia》1980,75(3):241-250
The symbiosis between the freshwater sponge Ephydatia fluviatilis and a chlorella-like green alga is not obligate and only occurs when the sponge grows in the light. The algae accumulate intracellular pools of sucrose and glucose and translocate between 9 and 17% of the total photosynthate to the host. The principal product translocated is glucose which is fed directly into the sponge metabolic pool. White sponges transplanted back into the river in the shade grew logarithmically with a mean doubling time of 12 days. Sponges transplanted into illuminated habitats did not grow. It is unknown how the sponge acquires its algal symbiont. 相似文献
4.
Increased susceptibility of decay-accelerating factor deficient mice to anti-glomerular basement membrane glomerulonephritis 总被引:8,自引:0,他引:8
Sogabe H Nangaku M Ishibashi Y Wada T Fujita T Sun X Miwa T Madaio MP Song WC 《Journal of immunology (Baltimore, Md. : 1950)》2001,167(5):2791-2797
To prevent complement-mediated autologous tissue damage, host cells express a number of membrane-bound complement inhibitors. Decay-accelerating factor (DAF, CD55) is a GPI-linked membrane complement regulator that is widely expressed in mammalian tissues including the kidney. DAF inhibits the C3 convertase of both the classical and alternative pathways. Although DAF deficiency contributes to the human hematological syndrome paroxysmal nocturnal hemoglobinuria, the relevance of DAF in autoimmune tissue damage such as immune glomerulonephritis remains to be determined. In this study, we have investigated the susceptibility of knockout mice that are deficient in GPI-anchored DAF to nephrotoxic serum nephritis. Injection of a subnephritogenic dose of rabbit anti-mouse glomerular basement membrane serum induced glomerular disease in DAF knockout mice but not in wild-type controls. When examined at 8 days after anti-glomerular basement membrane treatment, DAF knockout mice had a much higher percentage of diseased glomeruli than wild-type mice (68.8 +/- 25.0 vs 10.0 +/- 3.5%; p < 0.01). Morphologically, DAF knockout mice displayed increased glomerular volume (516 +/- 68 vs 325 +/- 18 x 10(3) microm(3) per glomerulus; p < 0.0001) and cellularity (47.1 +/- 8.9 vs 32.0 +/- 3.1 cells per glomerulus; p < 0.01). Although the blood urea nitrogen level showed no difference between the two groups, proteinuria was observed in the knockout mice but not in the wild-type mice (1.4 +/- 0.7 vs 0.02 +/- 0.01 mg/24 h albumin excretion). The morphological and functional abnormalities in the knockout mouse kidney were associated with evidence of increased complement activation in the glomeruli. These results support the conclusion that membrane C3 convertase inhibitors like DAF play a protective role in complement-mediated immune glomerular damage in vivo. 相似文献
5.
Sho W. Suzuki 《Autophagy》2018,14(9):1654-1655
Membrane protein recycling is a fundamental process from yeast to humans. The lysosome (or vacuole in yeast) receives membrane proteins from the secretory, endocytic, and macroautophagy/autophagy pathways. Although some of these membrane proteins appear to be recycled, the molecular mechanisms underlying this retrograde trafficking are poorly understood. Our recent study revealed that the transmembrane autophagy protein Atg27 is recycled from the vacuole membrane using a 2-step recycling process. First, the Snx4 complex recycles Atg27 from the vacuole to the endosome. Then, the retromer complex mediates endosome-to-Golgi retrograde transport. Thus, 2 distinct protein complexes facilitate the sequential retrograde trafficking for Atg27. As far as we know, Atg27 is the first physiological substrate for the vacuole-to-endosome retrograde trafficking pathway. 相似文献
6.
Zhu JJ 《Molecular interventions》2003,3(1):15-18
Brief periods of repetitive neural firing onto adjacent neurons can lead to changes in synaptic plasticity, that is, changes in the make-up of macromolecular complexes located at synapses. This process includes the regulated trafficking of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs) to synaptic membranes. Little is known, however, about how the AMPARs are regulated before they are shuttled to the membrane. Greger et al. have found that the length of the cytoplasmic tails of constituent subunits of a given AMPAR is determined by editing [at a glutamine (Q) or an arginine (R) codon] near their C termini. Tail length, in turn, dictates whether AMPARs will be retained or quickly released from the endoplasmic reticulum. 相似文献
7.
8.
9.
10.
Binding of fluorescein isothiocyanate (FITC)-conjugated cholera toxin B subunit to ganglioside GM1 on RBL-2H3 cells at 37 °C results in labeling of the plasma membrane as well as a pool of perinuclear intracellular membranes identified as the endosomal recycling compartment. Antigen-mediated activation of IgE receptor signaling causes rapid, sustained outward trafficking of these labeled endosomes, that is monitored as an increase in FITC fluorescence due to relief of quenching in the acidic endosomes upon delivery to the plasma membrane. Stimulation of this process depends on the integrity of cholesterol-dependent lipid rafts and occurs in response to Ca2+ -mobilizing thapsigargin as well as antigen. Inhibitors of some early signaling enzymes stimulated by FcεRI, including Syk tyrosine kinase and phosphoinositide 3-kinase, have little or no effect on this trafficking response. Other signaling pathways, including activation of phospholipase C and Ca2+ influx, do not appear to be necessary for the initiation of the outward trafficking response, but they contribute to maintaining the sustained phase of this process. Consistent with this, antigen-stimulated ruffles are labeled with FITC-cholera toxin B in a Ca2+ -dependent manner. Thus, this trafficking response provides a mechanism by which an internal membrane pool can contribute to plasma membrane remodeling during stimulated membrane ruffling, cell motility, and phagocytosis. 相似文献
11.
Mammals have three members of the intracellular phospholipase A1 protein family (phosphatidic acid preferring-phospholipase A1, p125, and KIAA0725p). In this study, we showed that KIAA0725p is localized in the Golgi, and is rapidly cycled between the Golgi and cytosol. Catalytic activity is important for targeting of KIAA0725p to Golgi membranes. RNA interference experiments suggested that KIAA0725p contributes to efficient membrane trafficking from the Golgi apparatus to the plasma membrane, but is not involved in brefeldin A-induced Golgi-to-endoplasmic reticulum retrograde transport.
Structured summary
MINT-8019765: KIAA0725 (uniprotkb:O94830) and Beta-COP (uniprotkb:P53618) colocalize (MI:0403) by fluorescence microscopy (MI:0416)MINT-8019775: KIAA0725 (uniprotkb:O94830) and GM130 (uniprotkb:Q5PXD5) colocalize (MI:0403) by fluorescence microscopy (MI:0416) 相似文献12.
The intertidal sea anemone Anthopleura elegantissima in the Pacific Northwest may host a single type of algal symbiont or two different algal symbionts simultaneously: zooxanthellae (Symbiodinium muscatinei) and zoochlorellae (green algae; Trebouxiophyceae, Chlorophyta). A seasonal comparison of zooxanthellate and zoochlorellate anemones showed stable symbiont population densities in summer and winter, with densities of zoochlorellae about 4 times those of zooxanthellae. Photosynthesis-irradiance curves of freshly isolated symbionts show that the productivity (P(max) cell) of freshly isolated zooxanthellae was about 2.5 times that of zoochlorellae during July; comparable rates were obtained in other months. Models of algal carbon flux show that zoochlorellae may supply the host with more photosynthetic carbon per unit anemone biomass than zooxanthellae supply. Zooxanthellate anemone tissue was 2 per thousand ((13)C) and 5 per thousand ((15)N) enriched and zoochlorellate anemone tissue was 6 per thousand ((13)C) and 8 per thousand ((15)N) enriched over their respective symbionts, suggesting that zoochlorellate anemones receive less nutrition from their symbionts than do zooxanthellate individuals. The disparity between predicted contributions from the algal carbon budgets and the stable isotopic composition suggests that short-term measures of algal contributions may not reflect actual nutritional inputs to the host. Isotopic data support the hypothesis of substantial reliance on external food sources. This additional nutrition may allow both algae to persist in this temperate intertidal anemone in spite of differences in seasonal photosynthetic carbon contributions. 相似文献
13.
Iglesias-Prieto R Beltrán VH LaJeunesse TC Reyes-Bonilla H Thomé PE 《Proceedings. Biological sciences / The Royal Society》2004,271(1549):1757-1763
Symbiotic reef corals occupy the entire photic zone; however, most species have distinct zonation patterns within the light intensity gradient. It is hypothesized that the presence of specific symbionts adapted to different light regimes may determine the vertical distribution of particular hosts. We have tested this hypothesis by genetic and in situ physiological analyses of the algal populations occupying two dominant eastern Pacific corals, over their vertical distribution in the Gulf of California. Our findings indicate that each coral species hosts a distinct algal taxon adapted to a particular light regime. The differential use of light by specific symbiotic dinoflagellates constitutes an important axis for niche diversification and is sufficient to explain the vertical distribution patterns of these two coral species. 相似文献
14.
Exposure to solar radiation increases damage to both host tissues and algal symbionts of corals during thermal stress 总被引:1,自引:0,他引:1
Elevated seawater temperatures have long been accepted as the principal stressor causing the loss of symbiotic algae in corals and other invertebrates with algal symbionts (i.e., bleaching). A secondary factor associated with coral bleaching is solar irradiance, both its visible (PAR: 400–700 nm) and ultraviolet (UVR: 290–400 nm) portions of the spectrum. Here we examined the synergistic role of solar radiation on thermally induced stress and subsequent bleaching in a common Caribbean coral,
Montastraea faveolata. Active fluorescent measurements show that steady-state quantum yields of photosystem II (PSII) fluorescence in the zooxanthellae are markedly depressed when exposed to high solar radiation and elevated temperatures, and the concentration of D1 protein is significantly lower in high light when compared to low light treatments under the same thermal stress. Both photosynthetic pigments and mycosporine-like amino acids (MAAs) are also depressed after experimental exposure to high solar radiation and thermal stress. Host DNA damage is exacerbated under high light conditions and is correlated with the expression of the cell cycle gene p 53, a cellular gatekeeper that modulates the fate of damaged cells between DNA repair processes and apoptotic pathways. These markers of cellular stress in the host and zooxanthellae have in common their response to the enhanced production of reactive oxygen species during exposure to high irradiances of solar radiation and elevated temperatures. Taking these results and previously published data into consideration, we conclude that thermal stress during exposure to high irradiances of solar radiation, or irradiances higher than the current photoacclimatization state, causes damage to both photochemistry and carbon fixation at the same time in zooxanthellae, while DNA damage, apoptosis, or necrosis are occurring in the host tissues of symbiotic cnidarians.Abbreviations PSII
Functional absorption cross-section for PSII
- Fo, Fm
Minimum and maximum yields of chlorophyll a fluorescence measured after dark acclimation (relative units)
- Fv
Variable fluorescence after dark acclimation (=Fm–Fo), dimensionless
- Fv/Fm
Maximum quantum yield of photochemistry in PSII measured after dark acclimation, dimensionless
- F, Fm
Steady-state and maximum yields of chlorophyll a fluorescence measured under ambient light (relative units)
- F/Fm
Quantum yield of photochemistry in PSII measured at steady state under ambient light
Communicated by R.C. Carpenter 相似文献
15.
Dr. Richard B. Clark Daniel H. Hu J. Michael Janda Marcia K. Hostetter 《Current microbiology》1986,13(3):159-162
A total of 40 clinical strains ofPseudomonas aeruginosa were tested for in vitro resistance to the bactericidal action of pooled normal human sera (PHS). Getamicin-resistantP. aeruginosa (GRPA) were found to be significantly more susceptible to the killing action of 6% PHS than their gentamincin-sensitiveP. aeruginosa (GSPA) counterparts. In vitro mutants of GRPA were also more susceptible to PHS than their progenitor GSPA strain. The increased susceptibility of GRPA to PHS may help explain their lack of dissemination to internal body sites. 相似文献
16.
Cholera toxin (CT), and members of the AB(5) family of toxins enter host cells and hijack the cell's endogenous pathways to induce toxicity. CT binds to a lipid receptor on the plasma membrane (PM), ganglioside GM1, which has the ability to associate with lipid rafts. The toxin can then enter the cell by various modes of receptor-mediated endocytosis and traffic in a retrograde manner from the PM to the Golgi and the endoplasmic reticulum (ER). Once in the ER, a portion of the toxin is unfolded and retro-translocated to the cytosol so as to induce disease. GM1 is the vehicle that carries CT from PM to ER. Thus, the toxin pathway from PM to ER is a lipid-based sorting pathway, which is potentially meditated by the determinants of the GM1 ganglioside structure itself. 相似文献
17.
Copper is essential for a variety of important biological processes as a cofactor and regulator of many enzymes. Incorporation of copper into the secreted and plasma membrane-targeted cuproenzymes takes place in Golgi, a compartment central for normal copper homeostasis. The Golgi complex harbors copper-transporting ATPases, ATP7A and ATP7B that transfer copper from the cytosol into Golgi lumen for incorporation into copper-dependent enzymes. The Golgi complex also sends these ATPases to appropriate post-Golgi destinations to ensure correct Cu fluxes in the body and to avoid potentially toxic copper accumulation. Mutations in ATP7A or ATP7B or in the proteins that regulate their trafficking affect their exit from Golgi or subsequent retrieval to this organelle. This, in turn, disrupts the homeostatic Cu balance, resulting in copper deficiency (Menkes disease) or copper overload (Wilson disease). Research over the last decade has yielded significant insights into the enzymatic properties and cell biology of the copper ATPases. However, the mechanisms through which the Golgi regulates trafficking of ATP7A/7B and, therefore, maintains Cu homeostasis remain unclear. This review summarizes current data on the role of the Golgi in Cu metabolism and outlines questions and challenges that should be addressed to understand ATP7A and ATP7B trafficking mechanisms in health and disease. 相似文献
18.
CFTR is a cAMP-activated chloride channel responsible for agonist stimulated chloride and fluid transport across epithelial surfaces.1 Mutations in the CFTR gene lead to cystic fibrosis (CF) which affects the function of secretory organs like the intestine, the pancreas, the airways and the sweat glands. Most of the morbidity and mortality in CF has been linked to a decrease in airway function.2 The ΔF508 mutation is the most common CF-related mutation in the Caucasian population and represents 90% of CF alleles. Homozygote carriers of this mutation present with a severe CF phenotype.3 The ΔF508 mutation causes misfolding of the nascent CFTR polypeptide, which leads to inefficient export from the endoplasmic reticulum (ER) and rapid degradation by the proteasome.4Key words: cystic fibrosis, endoplasmic reticulum, oligomer, processing mutation, curcuminGiven the frequency of the ΔF508 processing mutation and the severity of its corresponding phenotype, much research has focused on identifying compounds that restore the trafficking and function of this mutant at the plasma membrane. Several synthetic ‘correctors’ of ΔF508 mis-processing and ‘potentiators’ of mutant channel activity have been identified.5,6 Natural compounds such as curcumin also have generated interest. Curcumin is an organic phenolic compound abundant in turmeric, an Indian spice extracted from the rhizome of Curcuma longa.7 Earlier studies performed using ΔF508/ΔF508 mouse models and human airway epithelial cell lines suggested that curcumin may act as a ΔF508-CFTR trafficking corrector.8 Also, we and others showed that curcumin stimulates CFTR channel activity in excised membrane patches.9,10 This stimulation occurs in the absence of ATP binding, which is normally required for channel opening.10 Binding sites of correctors and potentiators within the CFTR polypeptide as well as the molecular mechanisms underlying the rescue of CFTR trafficking and function remain to be elucidated. In our attempt to understand how curcumin could circumvent the normally critical step of ATP binding to promote CFTR channel activity we investigated the effect of curcumin on CFTR conformation by using biochemical assays. We showed that curcumin caused dimerization of several CFTR channel constructs (including ΔF508-CFTR) in a dose- and time-dependent manner both in microsomes and within intact cells. This effect of curcumin on CFTR oligomerization is attributable to its reactive β-diketone groups, which may undergo an oxidation reaction with CFTR nucleophilic amino acid residues.11 Importantly, CFTR channel activation by curcumin is unrelated to its cross-linking effect. We identified cyclic derivatives of curcumin that lack this cross-linking activity but still promote CFTR channel function.11Here we examined the possibility that the cross-linking of ΔF508-CFTR channels by curcumin promotes the delivery of this ER processing mutant to the cell surface. We were motivated to test this possibility for three reasons: (i) our previous evidence that curcumin-induced dimers of wild-type CFTR polypeptides were detected at the cell surface where they remained over an hour after the removal of curcumin;11 (ii) the very efficient cross-linking of the immature (ER) forms of wild-type CFTR and the ΔF508-CFTR mutant that we observed earlier11 and (iii) prior evidence from our group that the ER export and cell surface delivery of ΔF508-CFTR polypeptides could be promoted by the co-expression of this mutant with certain CFTR fragments (trans-complementation).12 The latter result might be due to the existence of ER retention ‘signals’ that are exposed on the ΔF508-CFTR polypeptide but become buried by interacting (complementing) fragments.Figure 1 provides evidence that ΔF508-CFTR oligomers that form in response to curcumin treatment do indeed appear at the surfaces of cultured airway epithelial cells (CF bronchial epithelial (CFBE) cells stably transfected with this CFTR mutant). Surface biotinylation assays were performed to detect the appearance of ΔF508-CFTR polypeptides at the cell surface. MESNA, a cell impermeant reducing agent that cleaves the biotin label, was used to verify the surface accessibility of the labeled ΔF508-CFTR polypeptides. ΔF508-CFTR polypeptides were precipititated with streptavidinagarose (surface pool) or with a CFTR monoclonal antibody (total pool). In the absence of curcumin treatment the great majority of the ΔF508-CFTR protein existed as the ER form (monomeric band B), as previously observed by many investigators (Fig. 1, lane 5). No band B was detected in the surface pool before or after curcumin treatment (Fig. 1, lanes 1, 2). As we reported earlier, treatment of the cells with 50 µM curcumin for 15 mins at 37°C cross-linked nearly all of the ΔF508-CFTR polypeptides into higher order complexes (e.g., dimers, termed band D here; lanes 6–8 in Fig. 1). Interestingly, these higher order forms of ΔF508-CFTR were readily apparent in the surface pool (Fig. 1, lane 2).Open in a separate windowFigure 1ΔF508-CFTR oligomers detected at the surfaces of airway epithelial cells after curcumin treatment. ΔF508-CFTR expressing CFBE cells were treated with curcumin (50 µM) for 15 min at 37°C. Cell surface proteins were then biotinylated (Sulfo-NHS-SS-Biotin, 1 mg/ml) for 30 min at 4°C followed by cell lysis with 1% Triton X-100. Surface proteins were isolated by streptavidin pulldown and ΔF508-CFTR was isolated from the total cell protein pool by immunoprecipitation with an anti-CFTR C-terminus antibody (clone 24-1, R&D systems). After SDS-PAGE the ΔF508-CFTR signal was detected by immunoblotting using the 24-1 antibody described above. (SP: streptavidin pulldown; IP: immunoprecipitation). As an additional control curcumin-treated cells were treated with the cell impermeant MESNA after biotinylation to strip the biotin off the cell surface proteins with which it had reacted.CFTR oligomers also can be generated by standard chemical cross-linkers such as DSS, as previously reported by others and confirmed by us.13 Figure 2 shows that oligomers of ΔF508-CFTR that are induced by DSS treatment also appear in the surface pool. These experiments were performed using transiently transfected HEK-293T cells with 30 µM curcumin as a positive control. Quantitative densitometry results are shown in Figure 3. By titrating the DSS concentration we observed a dose-dependent disappearance of the monomeric band B form, a corresponding increase in the band D (dimer) pool and the appearance of higher order oligomers (band E) which prevailed at higher DSS concentrations (see total cell pool data in right-hand). A small amount of the band D form was detected in the absence of DSS or curcumin treatment, which might represent some spontaneous cross-linking of ΔF508-CFTR polypeptides under these conditions. The DSS and curcumin-induced ΔF508-CFTR oligomers were readily detected in the surface pool. The densitometry analysis revealed that 20 ± 5% and 33 ± 19% of the total oligomer pool (combined bands D and E) was found in the surface pool after treatment with 0.1 mM DSS (n = 3) or 30 µM curcumin (n = 3), respectively, which corresponded to a 17 ± 7 and 26 ± 20 fold increase compared to the control condition (i.e., no DSS or no curcumin).Open in a separate windowFigure 2ΔF508-CFTR oligomers detected at the surfaces of HEK cells after DSS or curcumin treatment. ΔF508-CFTR expressing HEK cells were treated with the indicated concentrations of DSS or with 30 µM curcumin (*) for 15 min at 37°C. Cell surface proteins were then biotinylated and isolated by streptavidin pulldown as described above. ΔF508-CFTR was immunoprecipitated from the total cell protein pool with the 24-1 antibody and detected by immunoblotting as before (SP: streptavidin pulldown; IP: immunoprecipitation). Band B corresponds to ΔF508 monomer (ER form). Band D corresponds to ΔF508 dimer. Band E corresponds to a higher degree of ΔF508 oligomerization. Each panel corresponds to a different exposure of the same blot.Open in a separate windowFigure 3Dose-dependent expression of ΔF508-CFTR oligomers at the surfaces of HEK cells after DSS treatment. CFTR signals detected by the 24-1 antibody from three different experiments as the one described in Figure 2 were analyzed using the ImageJ software (from the National Institute of Health). (A) band B signal intensity is plotted as a function of the DSS concentrations. Signals analyzed correspond to ΔF508-CFTR band B immunoprecipitated by the 24-1 antibody. (B) band D plus band E signal intensities are plotted as a function of the DSS concentration. Signals analyzed correspond to the sum of ΔF508-CFTR band D and band E immunoprecipitated by the 24-1 antibody. (C) band D plus band E signal intensities at the cell surface are plotted as a function of the DSS concentration. Signals analyzed correspond to the sum of ΔF508-CFTR band D and band E isolated from the surfaces of ΔF508-CFTR expressing HEK cells by biotinylation and streptavidin pulldown. (D) the ratio between the amount of band E and D at the surfaces of ΔF508-CFTR expressing HEK cells is plotted as a function of the DSS concentration. Error bars are SEMs.Altogether these data indicate that the cross-linking of ΔF508-CFTR band B into oligomers by curcumin or DSS allows ΔF508-CFTR to traffic to the cell surface. This effect might be caused by the burial of ER retention motifs within the oligomer, which also could explain our previous trans-complementation results in which we observed that certain CFTR fragments promote the cell surface delivery of this processing mutant.12 Although non-specific protein cross-linkers like DSS would not be therapeutically beneficial, more specific CFTR cross-linkers (perhaps curcumin?) may be worth considering for treating CF disease linked to ER processing mutations in CFTR. In this regard, we note that cross-linked CFTR polypeptides appear to retain chloride channel activity. Namely, in our prior excised patch clamp studies we observed stable CFTR channel activity when these patches were exposed to curcumin at doses and times that promote robust cross-linking of CFTR polypeptides.10,11 相似文献
19.
Increased susceptibility of malaria-infected variant erythrocytes to the mononuclear phagocyte system 总被引:3,自引:0,他引:3
The interactions of the mononuclear phagocyte system with Plasmodium falciparum-infected genetically variant erythrocytes may result in a significant protection for the host. Infected hemoglobin (Hb) EE and Hb EA erythrocytes are more susceptible to phagocytosis by monocytes than are infected Hb AA erythrocytes. The increased susceptibility to phagocytosis of infected erythrocytes was also found for a number of genetic variants involving the alpha-globin chain, namely, alpha-thal 1 trait (--/alpha alpha), alpha-thal 2 trait (-alpha/alpha alpha), Hb H (--/-alpha), Hb H/Hb Constant Spring (CS) (--/alpha CS alpha), Hb CS trait, and homozygous Hb CS erythrocytes. In addition, oxidative damage from hydrogen peroxide, produced in simulation of macrophages, led to much more effective killing of parasites in glucose-6-phosphate dehydrogenase (G6PD)-deficient erythrocytes than in normal ones. Parasites infecting Hb H/Hb CS also showed an enhanced sensitivity to hydrogen peroxide. 相似文献
20.