首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Aim To develop a landscape‐level model that partitions variance in plant community composition among local environmental, regional environmental, and purely spatial predictive variables for pyrogenic grasslands (prairies, savannas and woodlands) throughout northern and central Florida. Location North and central Florida, USA. Methods We measured plant species composition and cover in 271 plots throughout the study region. A variation‐partitioning model was used to quantify components of variation in species composition associated with the main and interaction effects of soil and topographic variables, climate variables and spatial coordinates. Partial correlations of environmental variables with community variation were identified using direct gradient analysis (redundancy analysis and partial redundancy analysis) and Monte Carlo tests of significance. Results Community composition was most strongly related to edaphic variables at local scales in association with topographic gradients, although geographically structured edaphic, climatic and pure spatial effects were also evident. Edaphic variables explained the largest portion of total variation explained (TVE) as a main effect (48%) compared with the main effects of climate (9%) and pure spatial factors (9%). The remaining TVE was explained by the interaction effect of climate and spatial factors (13%) and the three‐way interaction (22%). Correlation analyses revealed that the primary compositional gradient was related to soil fertility and topographic position corresponding to soil moisture. A second gradient represented distinct geographical separation between the Florida panhandle and peninsular regions, concurrent with differences in soil characteristics. Gradients in composition corresponded to species richness, which was lower in the Florida peninsula. Main conclusions Environmental variables have the strongest influence on the species composition of Florida pyrogenic grasslands at both local and regional scales. However, the limited distributions of many plant taxa suggest historical constraints on species distributions from one physiographical region to the other (Florida panhandle and peninsula), although this pattern is partially confounded by regionally spatially structured environmental variables. Our model provides insight into the relative importance of local‐ and regional‐scale environmental effects as well as possible historical constraints on floristic variation in pine‐dominated pyrogenic grasslands of the south‐eastern USA.  相似文献   

2.
Aims Road effects from maintenance and traffic have the potential to alter plant communities, but the exact relationships between these effects and changes in plant community composition have not often been studied in diverse environments. To determine the direction and level of community composition changes in saline environment due to road effects, we conducted a study along roads of different ages and in nearby non-road (i.e. natural) areas in the Yellow River Delta, China. Additionally, to potentially elucidate the mechanisms underlying the changes in the richness and composition of plant communities along roads, we evaluated physiochemical changes in soil of roadside and non-road areas.Methods Floristic and environmental data were collected along roadside of different ages and nearby non-road areas. To evaluate plant communities at each site, six 2 m × 2 m quadrats were placed at 3-m intervals along roads and six quadrats were arranged randomly in non-road areas. To determine the difference in plant community composition between roadside and non-road areas, we measured species richness and the abundance of each species, examined species turnover and floristic dissimilarity between the two areas and positioned plant species and sites in an abstract multivariate space. Plant community (species richness, percentage of halophytes) and soil physicochemical properties (pH, salinity, moisture content, bulk density, nitrate and ammonium nitrogen concentration) were compared between roadside and non-road areas (young roadside vs. corresponding non-road areas, old roadside vs. corresponding non-road areas) by using t -tests. Classification and ordination techniques were used to examine the relationship between vegetation and related environmental variables in both roadside and non-road areas.Important findings For both the young and old roadside areas, species richness in roadside areas was significantly higher than in non-road areas and high floristic dissimilarity values indicated that roadside and non-road areas differed greatly in community composition. In both the young and old roadside areas, the plant communities in roadside areas had lower percentages of halophytes than non-road communities. Correspondence analysis and two-way indicator species analysis showed that halophytes dominated in the non-road areas, while a number of typical non-salt-tolerant species dominated in the roadside areas. Compared to non-road areas, activities associated with roads significantly decreased soil moisture, bulk density and salinity and increased soil pH and nitrate content. Forward selection for the environmental variables in canonical correspondence analysis showed that soil salinity was the most important factor related to the variation of species composition between roadside and non-road areas. Our study demonstrates that road effects have a significant impact on the associated vegetation and soil, and these changes are consistent across roads of different ages in our system.  相似文献   

3.
Abstract. We propose a mechanistic model to relate α- and γ-diversity to area per se, moisture status and environmental variation (local and total), and explored the effects these abiotic variables have on species richness per unit area (α-diversity) for plant communities in a network of wetland habitats located in a Mediterranean mountainous region of central Spain. In this study, environmental status is measured as actual evapotranspiration (as an expression of energy), slope and soil wetness, and environmental variation refers to slope variation and soil wetness variation. Species richness per unit area was related to soil wetness, soil wetness variation, ground slope and ground slope variation. There were also positive correlations among moisture status and environmental variation variables. There is a joint effect of slope and soil wetness variation in explaining species richness per unit area of these wetland habitats, but area effects and energy are relatively unimportant. We conclude that species richness per unit area of wetland vegetation can be explained by moisture status and local environmental variation, and that habitat area may not have an important effect. Area could affect γ-diversity directly through random sampling and/or indirectly through increasing β-diversity, and energy may be important in areas with larger energy ranges. Complete surveys of environmental status, local and total environmental variation, and their associated species assemblages are needed to explain the processes that give rise to the rule that larger areas have larger species richness.  相似文献   

4.
Contrary to our expectations, soil salinity and moisture explained little of the spatial variation in plant establishment in the upper intertidal marsh of three southern California wetlands, but did explain the timing of germination. Seedlings of 27 species were identified in 1996 and 1997. The seedlings were abundant (maximum densities of 2143/m2 in 1996 and 1819/m2 in 1997) and predominantly annual species. CCAs quantified the spatial variation in seedling density that could be explained by three groups of predictor variables: (1) perennial plant cover, elevation and soil texture (16% of variation), (2) wetland identity (14% of variation) and (3) surface soil salinity and moisture (2% of variation). Increasing the spatial scale of analysis changed the variables that best predicted patterns of species densities. Timing of germination depended on surface soil salinity and, to a lesser extent, soil moisture. Germination occurred after salinity had dropped below a threshold or, in some cases, after moisture had increased above a critical level. Between 32% and 92% of the seedlings were exotic and most of these occurred at lower soil salinity than native species. However, Parapholis incurva and Mesembryanthemum nodiflorum were found in the same environments as the native species. In 1997, the year of a strong El Niño/Southern Oscillation event with high rainfall and sea levels, the elevation distribution of species narrowed and densities of P. incurva and other exotic species decreased but densities of native and rare species did not change. The ‘regeneration niche’ of wetland plant communities includes the effects of multiple abiotic and biotic factors on both the spatial and temporal variations in plant establishment.  相似文献   

5.
Restored grasslands and shrublands are integral parts of the semi-natural landscape and are of major importance for biodiversity in the northern Loess Plateau. Determining the underlying factors that control the richness and composition of herbaceous species in restored grasslands and shrublands is urgently needed. Thus, the specific objective of this study was to evaluate the relative importance of soil, plant, and topographic explanatory variables affecting the richness and composition of herbaceous species in restored shrubland and grassland ecosystems in a typical watershed within the northern Loess Plateau. In this study, 27 restored grassland sites and 16 restored shrubland sites were sampled during September 2009. Using variation partitioning (partial canonical correspondence analysis), we determined the individual and shared effects of these three sets of explanatory variables on herbaceous biodiversity in the two restored habitats. Most of the explained variation in plant diversity was related to the pure effect of soil, plant, and topographic variables. Restored shrublands had significantly more species than grasslands, and abandoned dam farmlands had significantly more species than other grassland sites. Moreover, botanical diversity responded differently to the explanatory variables in different plant communities. The pure effects of soil properties, soil moisture in particular, accounted for the largest fractions of explained variation in species diversity in restored grasslands. Both plant and topographic variables had balancing pure effects on species diversity in restored shrublands, in particular the shrub density and slope angle. We conclude that the maintenance of a moderate density of shrubs (less than 3600 shrubs per ha), construction of check-dams, and grazing at a low stocking rate, taking conditions of soil and topographic site into account, may help to conserve biodiversity in the northern Loess Plateau.  相似文献   

6.
Arctic plant communities are altered by climate changes. The magnitude of these alterations depends on whether species distributions are determined by macroclimatic conditions, by factors related to local topography, or by biotic interactions. Our current understanding of the relative importance of these conditions is limited due to the scarcity of studies, especially in the High Arctic. We investigated variations in vascular plant community composition and species richness based on 288 plots distributed on three sites along a coast‐inland gradient in Northeast Greenland using a stratified random design. We used an information theoretic approach to determine whether variations in species richness were best explained by macroclimate, by factors related to local topography (including soil water) or by plant‐plant interactions. Latent variable models were used to explain patterns in plant community composition. Species richness was mainly determined by variations in soil water content, which explained 35% of the variation, and to a minor degree by other variables related to topography. Species richness was not directly related to macroclimate. Latent variable models showed that 23.0% of the variation in community composition was explained by variables related to topography, while distance to the inland ice explained an additional 6.4 %. This indicates that some species are associated with environmental conditions found in only some parts of the coast–inland gradient. Inclusion of macroclimatic variation increased the model's explanatory power by 4.2%. Our results suggest that the main impact of climate changes in the High Arctic will be mediated by their influence on local soil water conditions. Increasing temperatures are likely to cause higher evaporation rates and alter the distribution of late‐melting snow patches. This will have little impact on landscape‐scale diversity if plants are able to redistribute locally to remain in areas with sufficient soil water.  相似文献   

7.
We tested the relative importance of physical versus chemical factors in explaining aquatic plant species diversity and community composition within a temperate lowland river. A total of 38 macrophyte species were identified at 33 sites along the 104 km length of the Rideau River, a National Heritage River of Canada. Species richness ranged from 0 to 15 species per site, and Shannon diversity from 0 to 2.98. Macrophyte species richness and Shannon diversity were significantly related to the physical characteristics of sites. For Shannon diversity, 77% of the increase was explained by an increase in sediment organic content and a decrease in water velocity. For species richness, 70% of the increase was explained by the latter factors in addition to an increase in the littoral zone (0–2 m depth contour) width and planktonic chlorophyll concentrations. River water chemistry did not explain any observed variation in either Shannon diversity or species richness in this moderately enriched system. In contrast to species richness, the physical and chemical variables measured failed to explain variation in community composition. Cluster analysis did not reveal any grouping of species into distinct communities. Canonical correlation analysis showed that environmental variables had minimal effect on the distribution of most species, with only floating-leaved species responding to water velocity. We conclude that physical factors can predict species diversity at the within river scale but not the species composition at a given site, underlying the need to preserve the geomorphological diversity of rivers to maintain plant diversity.  相似文献   

8.
生物多样性的形成和维持机制是生态学研究的核心问题,其中环境和空间因子在群落构建中的相对重要性是生态学家面临的重要挑战。为探究黄河口湿地底栖动物群落的关键影响因子,及环境和空间因子对底栖动物群落结构的相对调控作用。于2017年10月与2018年5月对黄河口湿地32个样点(淡水恢复湿地19个和自然湿地13个)的底栖动物和水体理化指标进行采集分析。非度量多维标度排序(NMDS)结果显示,黄河口淡水恢复湿地和自然湿地的底栖动物群落结构显著不同。典范对应分析(CCA)表明,影响淡水恢复湿地底栖动物群落结构的环境因子主要为电导率、盐度和氧化还原电位;而自然湿地底栖动物群落结构主要受pH和无机碳的影响;盐度是两类湿地底栖动物群落组成差异的关键因子。变差分解(VPA)结果显示,环境过滤对淡水恢复湿地底栖动物群落起主导作用;在自然湿地中,空间因子对底栖动物群落具有主要的调控作用,同时环境和空间因子的相互作用也至关重要。本研究明确了黄河口的自然和恢复湿地中环境和空间因素对底栖动物群落特征的相对作用,对黄河三角洲河口湿地中生物多样性的保护和生态系统管理提供参考。  相似文献   

9.
Big sagebrush (Artemisia tridentata Nutt.) plant communities are widespread in western North America and, similar to all shrub steppe ecosystems worldwide, are composed of a shrub overstory layer and a forb and graminoid understory layer. Forbs account for the majority of plant species diversity in big sagebrush plant communities and are important for ecosystem function. Few studies have explored geographic patterns of forb species richness and composition and their relationships with environmental variables in these communities. Our objectives were to examine the fine and broad-scale spatial patterns in forb species richness and composition and the influence of environmental variables. We sampled forb species richness and composition along transects at 15 field sites in Colorado, Idaho, Montana, Nevada, Oregon, Utah, and Wyoming, built species-area relationships to quantify differences in forb species richness at sites, and used Principal Components Analysis, non-metric multidimensional scaling, and redundancy analysis to identify relationships among environmental variables and forb species richness and composition. We found that species richness was most strongly correlated with soil texture, while species composition was most related to climate. The combination of climate and soil texture influences water availability, which our results indicate has important consequences for forb species richness and composition, and suggests that climate change-induced modification of soil water availability may have important implications for plant species diversity in the future.  相似文献   

10.
生物多样性的大尺度空间分布格局及其形成机制一直是生态学和生物地理学的核心内容。黄河流域是我国重要的生态屏障, 明确该区域动植物多样性分布格局及其影响因素, 对我国黄河流域生态保护和高质量发展具有重要意义。本研究通过收集黄河流域被子植物和陆栖脊椎动物分布数据, 结合气候、环境异质性和人类活动等信息, 探讨了黄河流域被子植物和陆栖脊椎动物物种丰富度格局及其主要影响因素。结果表明, 黄河流域被子植物和陆栖脊椎动物物种丰富度在区域尺度具有相似的分布格局: 南部山地动植物物种丰富度最高, 而东部高寒区和北部干旱区物种丰富度最低。回归树模型表明, 冠层高度范围和净初级生产力范围分别是黄河流域被子植物和陆栖脊椎动物物种丰富度最重要的预测因子; 当移除空间自相关影响后, 环境异质性和气候因子依然对区域尺度的动植物物种丰富度具有较高且相似的解释度。表明环境异质性和气候共同决定了黄河流域被子植物和陆栖脊椎动物物种丰富度格局, 而人类使用土地面积并不是影响黄河流域动植物物种丰富度格局的主要因子。因此, 在未来的研究中若针对不同区域筛选出更精准的环境驱动因子或选用更多不同类别的环境异质性因子进行分析, 将有助于更深入理解物种多样性格局的成因。  相似文献   

11.
Several experimental studies have examined species responses to manipulations of habitat area and spatial arrangement, but plant composition and spatial variation in species distributions also affect animal responses to habitat alteration. We used an experimental approach to study the combined effects of habitat area, edge, and plant community composition on the spatial structure of insect species richness and composition. The abundance of three guilds (herbivores, predators and parasitoids) and individual species were also analyzed. Habitat patches were created that differed in area and edge by selectively mowing portions of 15 m×15 m plots in a 1.7-ha old field. Spatial and environmental variables were used to predict insect responses in separate multiple regression and ordination models. The variation in species responses due to spatial and environmental variables was then partitioned by combining these variables into an overall regression or ordination. Spatial and environmental variables contributed similar percentages to the total variance in insect species richness, abundance or composition. No significant effects of habitat area were observed in any response variable. Herbivore abundance showed positive responses to legume or grass cover, as well as spatial variation that was unrelated to environmental variables. Predators and parasitoids had greater effects of plant species richness and habitat edge, and less unexplained spatial variation. Individual species differed in their responses to plant variables, depending on host specialization or intraspecific aggregation. Our study highlights the importance of plant community composition and spatial variation apart from environmental variables. Spatial variation stems both from species responses to environmental features as well as species differences in habitat specialization and intraspecific aggregation.  相似文献   

12.
Abstract Patterns in species richness from a wide range of plant communities in Ku‐ring‐gai Chase National Park, New South Wales, Australia, were examined in relation to a number of environmental variables, including soil physical and chemical characteristics. Total species richness and richness of three growth‐form types (trees, shrubs and ground cover) were determined in duplicate 500‐m2 quadrats from 50 sites on two geological substrata: Hawkesbury Sandstone and Narrabeen shales and sandstones. Generalized linear models (GLM) were used to determine the amount of variation in species richness that could be significantly explained by the measured environmental variables. Seventy‐three per cent of the variation in total species richness was explained by a combination of soil physical and chemical variables and site attributes. The environmental variables explained 24% of the variation in tree species richness, 67% of the variation in shrub species richness and 62% of the variation in ground cover species richness. These results generally support the hypothesis of an environmental influence on patterns in total species richness and richness of shrubs and ground cover species. However, tree species richness was not adequately predicted by any of the measured environmental variables; the present environment exerts little influence on the richness of this growth‐form type. Historical factors, such as fire or climatic/environmental conditions at time of germination or seedling establishment, may be important in determining patterns in tree species richness at the local scale.  相似文献   

13.
The species richness and community composition of the diatom communities were studied in the Baltic Sea, Northern Europe, to enhance knowledge about the diversity of these organisms in a brackish water ecosystem. Many organisms in the Baltic Sea have been studied extensively, but studies investigating littoral diatoms are scarce. The goal of this study was to examine the importance of climatic, spatial and water physicochemical variables as drivers of epilithic diatoms in the Gulf of Finland and the Gulf of Bothnia. The variation in species richness was best explained by pH, total phosphorus and total nitrogen. Redundancy Analysis indicated that the most important factors correlating with species composition were air temperature, silicon, total phosphorus, water temperature, salinity and pH. Variation Partitioning showed that the species composition was mostly affected by climatic and spatial variables, whereas physicochemical variables had little impact. However, the strongest factor was the combined influence of climatic, spatial and physicochemical variables. The results suggest that diatom species richness in the northern Baltic Sea is primarily regulated by local factors, while climatic and spatial variables have little impact on richness. Species composition is mostly affected by climatic and spatial variables. We conclude that understanding the distribution patterns of Baltic Sea diatoms requires the inclusion of climatic, spatial and water chemistry variables.  相似文献   

14.
Synthesis The interplay between bottom‐up and top‐down effects is certainly a general manifestation of any changes in both species abundances and diversity. Summary variables, such as species numbers, diversity indices or lumped species abundances provide too limited information about highly complex ecosystems. In contrast, species by species analyses of ecological communities comprising hundreds of species are inevitably only snapshot‐like and lack generality in explaining processes within communities. Our synthesis, based on species matrices of functional groups of all trophic levels, simplifies community complexity to a manageable degree while retaining full species‐specific information. Taking into account plant species richness, plant biomass, soil properties and relevant spatial scales, we decompose variance of abundance in consumer functional groups to determine the direction and the magnitude of community controlling processes. After decades of intensive research, the relative importance of top–down and bottom–up control for structuring ecological communities is still a particularly disputed issue among ecologists. In our study, we determine the relative role of bottom–up and top–down forces in structuring the composition of 13 arthropod functional groups (FG) comprising different trophic consumer levels. Based on species‐specific plant biomass and arthropod abundance data from 50 plots of a grassland biodiversity experiment, we quantified the proportions of bottom–up and top–down forces on consumer FG composition while taking into account direct and indirect effects of plant diversity, functional diversity, community biomass, soil properties and spatial arrangement of these plots. Variance partitioning using partial redundancy analysis explained 21–44% of total variation in arthropod functional group composition. Plant‐mediated bottom–up forces accounted for the major part of the explainable variation within the composition of all FGs. Predator‐mediated top–down forces, however, were much weaker, yet influenced the majority of consumer FGs. Plant functional group composition, notably legume composition, had the most important impact on virtually all consumer FGs. Compared to plant species richness and plant functional group richness, plant community biomass explained a much higher proportion of variation in consumer community composition.  相似文献   

15.
Changes in climate variables have an important impact on the prediction and protection of elevational biodiversity. Gaps exist in our understanding of the elevational distribution patterns in seed plant species richness. Our study examines the importance of climate variables in shaping the elevational variation in species richness. The importance of boundary constraint was also taken into account. Model selection based on Akaike's information criterion was used to select the best explaining climate models. Variation partitioning was used to assess the independent and joint effects of water–energy, physiological tolerance, and environmental stability variables on species richness. Our results revealed that: (a) Both raw (boundary constraint unreduced) and estimated (boundary constraint reduced) species richness showed large elevational variation, with the peak species richness seen at midelevations. The environmental variables were better at explaining the distribution pattern of species richness along the elevation, when the effect of boundary constraint was reduced; (b) the physiological tolerance and environmental stability variables explained more variation in raw and estimated species richness compared with the water–energy variables. Estimated species richness was better explained (98.6%) by the environmental variables than raw species richness (94%); (c) the water‐related variables generally had the highest independent effect on raw and estimated species richness and were dominant in shaping the elevational variation in species richness. Our findings quantify the influence of boundary constraint on the distribution pattern of species along an altitudinal gradient and compare the relative contributions of environmental stability and water–energy in explaining the altitude gradient distribution pattern of plant seed species.  相似文献   

16.
气候变化背景下,降雨变化能够深刻影响河口湿地土壤水盐条件,而土壤水盐条件是影响植物群落特征的关键环境因子。本研究以黄河三角洲湿地植物群落为对象,依托野外降雨控制试验平台(减雨60%、减雨40%、自然对照、增雨40%、增雨60%),探讨了经过6年降雨处理后湿地植物群落特征对降雨量变化的响应及机制。结果表明: 随降雨量增加,土壤电导率显著降低,土壤湿度显著增大。降雨量变化影响了植物群落物种组成,增雨处理降低了碱蓬和盐地碱蓬的优势地位,提高了荻和白茅的优势地位。随降雨量增加,植物群落Shannon指数和Margalef丰富度指数显著提高。与对照相比,增减雨处理均降低了群落频度、多度和盖度,增雨60%处理群落频度显著降低54.9%,减雨60%、减雨40%、增雨40%、增雨60%处理群落多度分别显著降低38.9%、33.8%、35.8%和45.7%。随降雨量增加,植物群落地上生物量显著增加,但可能受淹水胁迫的影响,增雨60%处理地上生物量显著低于增雨40%。Margalef丰富度指数与地上生物量呈显著正相关;地上生物量、Shannon指数、Margalef丰富度指数、Simpson多样性指数均与土壤电导率呈显著负相关;地上生物量与土壤湿度呈显著正相关。降雨量变化通过改变黄河三角洲湿地土壤水盐条件显著影响了植物群落生长特征、物种组成和多样性。  相似文献   

17.
Mexico has higher mammalian diversity than expected for its size and geographic position. High environmental hetero geneity throughout Mexico is hypothesized to promote high turnover rates (β‐diversity), thus contributing more to observed species richness and composition than within‐habitat (α) diversity. This is true if species are strongly associated with their environments, such that changes in environmental attributes will result in changes in species composition. Also, greater heterogeneity in an area will result in greater species richness. This hypothesis has been deemed false for bats, as their ability to fly would reduce opportunities for habitat specialization. If so, we would expect no significant relationships between 1) species composition and environmental variables, 2) species richness and environmental heterogeneity, 3) β‐diversity and environmental heterogeneity. We tested these predictions using 31 bat assemblages distributed across Mexico. Using variance partitioning we evaluated the relative contribution of vegetation, climate, elevation, horizontal heterogeneity (a variate including vegetation, climate, and elevational heterogeneity), spatial variation (lat‐long), and vertical hetero geneity (of vegetation strata) to variation in bat species composition and richness. Variation in vegetation explained 92% of the variation in species composition and was correlated with all other variables examined, indicating that bats respond directly to habitat composition and structure. Beta‐diversity and vegetational heterogeneity were significantly correlated. Bat species richness was significantly correlated with vertical, but not horizontal, heterogeneity. Nonetheless, neither horizontal nor vertical heterogeneity were random; both were related to latitude and to elevation. Variation in bat community composition and richness in Mexico were primarily explained by local landscape heterogeneity and environmental factors. Significant relationships between β‐diversity and environmental variation reveal differences in habitat specialization by bats, and explain their high diversity in Mexico. Understanding mechanisms acting along environmental or geographic gradients is as important for understanding spatial variation in community composition as studying mechanisms that operate at local scales.  相似文献   

18.
Question: Which environmental variables affect floristic species composition of acid grasslands in the Atlantic biogeographic region of Europe along a gradient of atmospheric N deposition? Location: Transect across the Atlantic biogeographic region of Europe including Ireland, Great Britain, Isle of Man, France, Belgium, The Netherlands, Germany, Norway, Denmark and Sweden. Materials and Methods: In 153 acid grasslands we assessed plant and bryophyte species composition, soil chemistry (pH, base cations, metals, nitrate and ammonium concentrations, total C and N, and Olsen plant available phosphorus), climatic variables, N deposition and S deposition. Ordination and variation partitioning were used to determine the relative importance of different drivers on the species composition of the studied grasslands. Results: Climate, soil and deposition variables explained 24% of the total variation in species composition. Variance partitioning showed that soil variables explained the most variation in the data set and that climate and geographic variables accounted for slightly less variation. Deposition variables (N and S deposition) explained 9.8% of the variation in the ordination. Species positively associated with N deposition included Holcus mollis and Leontodon hispidus. Species negatively associated with N deposition included Agrostis curtisii, Leontodon autumnalis, Campanula rotundifolia and Hylocomium splendens. Conclusion: Although secondary to climate gradients and soil biogeochemistry, and not as strong as for species richness, the impact of N and S deposition on species composition can be detected in acid grasslands, influencing community composition both directly and indirectly, presumably through soil‐mediated effects.  相似文献   

19.
Abstract. In order to understand the influence of edaphic factors on the spatial structure of inland halophytic plant communities, a 2.6 km2 study site, located on the lower fringe of the alluvial fan of the Hutubi River, in an arid region of China, was sampled and mapped. 105 patches were found to be homogeneous in species composition. Plant species and their coverage were recorded in each patch. 45 patches were randomly selected for the measurement of edaphic variables. A map with quadrat locations and boundaries of patches was digitized into a GIS and related to the vegetation and edaphic data matrices. CCA was used to evaluate the relative importance of edaphic factors in explaining the variation of the species assemblages and to identify the ecological preferences of species. The spatial structure of the communities and the main edaphic factors were analyzed using correlograms, Mantel correlograms and clustering under constraint of spatial contiguity. Gradient analysis showed that there are two distinct vegetation gradients in the study area, one of which is determined mainly by soil moisture (determined by depth to the water table), and the other by soil salinity (determined by electrical conductivity and hydrolytic alkalinity of the first soil layer). However, spatial analyses showed that at the sampling scale the halophytic communities in the study area are structured along one main spatial gradient determined by the water table level. Similar spatial autocorrelation structures between the factors related to the first soil layer and the communities, given our sampling scale, could not be detected. Our results suggest that the relative importance of the effects of different edaphic factors on the spatial structure of halophytic communities is scale-dependent. The partitioning of species variation indicates that in addition to edaphic factors, other factors, such as biotic interactions, may play an important role in structuring these communities.  相似文献   

20.
The degree to which variation in plant community composition (beta-diversity) is predictable from environmental variation, relative to other spatial processes, is of considerable current interest. We addressed this question in Costa Rican rain forest pteridophytes (1,045 plots, 127 species). We also tested the effect of data quality on the results, which has largely been overlooked in earlier studies. To do so, we compared two alternative spatial models [polynomial vs. principal coordinates of neighbour matrices (PCNM)] and ten alternative environmental models (all available environmental variables vs. four subsets, and including their polynomials vs. not). Of the environmental data types, soil chemistry contributed most to explaining pteridophyte community variation, followed in decreasing order of contribution by topography, soil type and forest structure. Environmentally explained variation increased moderately when polynomials of the environmental variables were included. Spatially explained variation increased substantially when the multi-scale PCNM spatial model was used instead of the traditional, broad-scale polynomial spatial model. The best model combination (PCNM spatial model and full environmental model including polynomials) explained 32% of pteridophyte community variation, after correcting for the number of sampling sites and explanatory variables. Overall evidence for environmental control of beta-diversity was strong, and the main floristic gradients detected were correlated with environmental variation at all scales encompassed by the study (c. 100–2,000 m). Depending on model choice, however, total explained variation differed more than fourfold, and the apparent relative importance of space and environment could be reversed. Therefore, we advocate a broader recognition of the impacts that data quality has on analysis results. A general understanding of the relative contributions of spatial and environmental processes to species distributions and beta-diversity requires that methodological artefacts are separated from real ecological differences.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号