首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Although the commonly used internal transcribed spacer region of rDNA (ITS) is well suited for taxonomic identification of fungi, the information on the relative abundance of taxa and diversity is negatively affected by the multicopy nature of rDNA and the existence of ITS paralogues. Moreover, due to high variability, ITS sequences cannot be used for phylogenetic analyses of unrelated taxa. The part of single‐copy gene encoding the second largest subunit of RNA polymerase II (rpb2) was thus compared with first spacer of ITS as an alternative marker for the analysis of fungal communities in spruce forest topsoil, and their applicability was tested on a comprehensive mock community. In soil, rpb2 exhibited broad taxonomic coverage of the entire fungal tree of life including basal fungal lineages. The gene exhibited sufficient variation for the use in phylogenetic analyses and taxonomic assignments, although it amplifies also paralogues. The fungal taxon spectra obtained with rbp2 region and ITS1 corresponded, but sequence abundance differed widely, especially in the basal lineages. The proportions of OTU counts and read counts of major fungal groups were close to the reality when rpb2 was used as a molecular marker while they were strongly biased towards the Basidiomycota when using the ITS primers ITS1/ITS4. Although the taxonomic placement of rbp2 sequences is currently more difficult than that of the ITS sequences, its discriminative power, quantitative representation of community composition and suitability for phylogenetic analyses represent significant advantages.  相似文献   

2.
The internal transcribed spacer 2 (ITS2) has been used as a phylogenetic marker for more than two decades. As ITS2 research mainly focused on the very variable ITS2 sequence, it confined this marker to low-level phylogenetics only. However, the combination of the ITS2 sequence and its highly conserved secondary structure improves the phylogenetic resolution1 and allows phylogenetic inference at multiple taxonomic ranks, including species delimitation2-8.The ITS2 Database9 presents an exhaustive dataset of internal transcribed spacer 2 sequences from NCBI GenBank11 accurately reannotated10. Following an annotation by profile Hidden Markov Models (HMMs), the secondary structure of each sequence is predicted. First, it is tested whether a minimum energy based fold12 (direct fold) results in a correct, four helix conformation. If this is not the case, the structure is predicted by homology modeling13. In homology modeling, an already known secondary structure is transferred to another ITS2 sequence, whose secondary structure was not able to fold correctly in a direct fold.The ITS2 Database is not only a database for storage and retrieval of ITS2 sequence-structures. It also provides several tools to process your own ITS2 sequences, including annotation, structural prediction, motif detection and BLAST14 search on the combined sequence-structure information. Moreover, it integrates trimmed versions of 4SALE15,16 and ProfDistS17 for multiple sequence-structure alignment calculation and Neighbor Joining18 tree reconstruction. Together they form a coherent analysis pipeline from an initial set of sequences to a phylogeny based on sequence and secondary structure.In a nutshell, this workbench simplifies first phylogenetic analyses to only a few mouse-clicks, while additionally providing tools and data for comprehensive large-scale analyses.  相似文献   

3.
Analyses of the mitochondrial cox1, the nuclear‐encoded large subunit (LSU), and the internal transcribed spacer 2 (ITS2) RNA coding region of Pseudo‐nitzschia revealed that the P. pseudodelicatissima complex can be phylogenetically grouped into three distinct clades (Groups I–III), while the P. delicatissima complex forms another distinct clade (Group IV) in both the LSU and ITS2 phylogenetic trees. It was elucidated that comprehensive taxon sampling (sampling of sequences), selection of appropriate target genes and outgroup, and alignment strategies influenced the phylogenetic accuracy. Based on the genetic divergence, ITS2 resulted in the most resolved trees, followed by cox1 and LSU. The morphological characters available for Pseudo‐nitzschia, although limited in number, were overall in agreement with the phylogenies when mapped onto the ITS2 tree. Information on the presence/absence of a central nodule, number of rows of poroids in each stria, and of sectors dividing the poroids mapped onto the ITS2 tree revealed the evolution of the recently diverged species. The morphologically based species complexes showed evolutionary relevance in agreement with molecular phylogeny inferred from ITS2 sequence–structure data. The data set of the hypervariable region of ITS2 improved the phylogenetic inference compared to the cox1 and LSU data sets. The taxonomic status of P. cuspidata and P. pseudodelicatissima requires further elucidation.  相似文献   

4.
5.
The reference annotations made for a genome sequence provide the framework for all subsequent analyses of the genome. Correct and complete annotation in addition to the underlying genomic sequence is particularly important when interpreting the results of RNA-seq experiments where short sequence reads are mapped against the genome and assigned to genes according to the annotation. Inconsistencies in annotations between the reference and the experimental system can lead to incorrect interpretation of the effect on RNA expression of an experimental treatment or mutation in the system under study. Until recently, the genome-wide annotation of 3′ untranslated regions received less attention than coding regions and the delineation of intron/exon boundaries. In this paper, data produced for samples in Human, Chicken and A. thaliana by the novel single-molecule, strand-specific, Direct RNA Sequencing technology from Helicos Biosciences which locates 3′ polyadenylation sites to within +/− 2 nt, were combined with archival EST and RNA-Seq data. Nine examples are illustrated where this combination of data allowed: (1) gene and 3′ UTR re-annotation (including extension of one 3′ UTR by 5.9 kb); (2) disentangling of gene expression in complex regions; (3) clearer interpretation of small RNA expression and (4) identification of novel genes. While the specific examples displayed here may become obsolete as genome sequences and their annotations are refined, the principles laid out in this paper will be of general use both to those annotating genomes and those seeking to interpret existing publically available annotations in the context of their own experimental data.  相似文献   

6.
The phylogenetic analysis of groundwater amphipods is challenging due to the lack of suitable morphological characters. However, molecular phylogenies based on the 18S and 28S nuclear genes of two Crangonyctoidea species endemic to Iceland, Crymostygius thingvallensis and Crangonyx islandicus, support the taxonomy of these species on the basis of morphological characters. Molecular analyses suggest that the genus Crangonyx is paraphyletic, with the species that is found in Eurasia being highly divergent genetically from the species present in North America and Iceland. Studies of the phylogenetic relationships within the genus Niphargus also warrant further work. The nuclear ITS2 region has recently been proposed as a barcoding marker for plants and animals. In addition, ITS2 has been used to build phylogenies at high taxonomic levels by including its secondary structure. In this study, we want to evaluate the applicability of the ITS region for this group of species and describe its characteristics. The taxonomy of C. thingvallensis, as well as the paraphyly of the genus Crangonyx, is supported herein by phylogenies based on the ITS2 variation. The secondary structure and the length of the ITS2 sequences of the Crangonyctoidea and the Niphargidae species studied are highly variable and are characterized by duplications. The ITS2 sequence of Niphargus plateaui is the longest metazoan sequence deposited in the ITS2 database so far. Although saturation was observed in the nucleotide variation of this marker, the addition of the secondary structure information for the reconstruction of the phylogeny did not add support to the phylogenetic trees. The ITS1 region, which is known to be more variable than ITS2 and bears a large duplication within C. islandicus, was found to be less useful for phylogenetic reconstruction.  相似文献   

7.
Two populations of Epistylis wuhanensis n. sp., a new freshwater peritrich ciliate, were isolated from different freshwater ponds located in Hubei, China. Their morphological characteristics were investigated using live observation, protargol impregnation, and scanning electron microscopy (SEM). Specimens from the two populations showed identical arrangement of the infraciliature and identical small subunit ribosomal RNA (SSU rRNA) gene and ITS1‐5.8S‐ITS2 sequences. The zooids present bell‐shaped and 90–175 × 27–54 μm in vivo. Macronucleus is variable in shape and located in the middle of cell. Pellicle is usually smooth with 139–154 and 97–105 striations above and below the trochal band, respectively. SSU rRNA gene and ITS1‐5.8S‐ITS2 sequences of E. wuhanensis n. sp. did not match any available sequences in GenBank. Phylogenetically, E. wuhanensis n. sp. clusters with the other Epistylis within the family Epistylididae, but is distinct from the major clades of Epistylis. Above all, the morphological characteristics and molecular analyses support that the present Epistylis is a new species. Expanded phylogenetic analyses of sessilids based on both SSU rRNA gene sequences and ITS1‐5.8S‐ITS2 sequences reveal that the genus Epistylis consists of Epistylis morphospecies and taxonomic revision of the genus is needed.  相似文献   

8.
Evolutionary relationships among cyst nematodes based on predicted ß-tubulin amino acid and DNA sequence data were compared with phylogenies inferred from ribosomal DNA (ITS1, 5.8S gene, ITS2). The ß-tubulin amino acid data were highly conserved and not useful for phylogenetic inference at the taxonomic level of genus and species. Phylogenetic trees based on ß-tubulin DNA sequence data were better resolved, but the relationships at lower taxonomic levels could not be inferred with confidence. Sequences from single species often appeared in more than one monophyletic clade, indicating the presence of ß-tubulin paralogs (confirmed by Southern blot analysis). For a subset of taxa, good congruence between the two data sets was revealed by the presence of the same putative ß-tubulin gene paralogs in monophyletic groups on the rDNA tree, corroborating the taxon relationships inferred from ribosomal DNA data.  相似文献   

9.
The first step of any molecular phylogenetic analysis is the selection of the species and sequences to be included, the taxon sampling. Already here different pitfalls exist. Sequences can contain errors, annotations in databases can be inaccurate and even the taxonomic classification of a species can be wrong. Usually, these artefacts become evident only after calculation of the phylogenetic tree. Following, the taxon sampling has to be corrected iteratively. This can become tedious and time consuming, as in most cases the taxon sampling is de-coupled from the further steps of the phylogenetic analysis. Here, we present the ITS2 Workbench (http://its2.bioapps.biozentrum.uni-wuerzburg.de/), which eliminates this problem by a tight integration of taxon sampling, secondary structure prediction, multiple alignment and phylogenetic tree calculation. The ITS2 Workbench has access to more than 280,000 ITS2 sequences and their structures provided by the ITS2 database enabling sequence-structure based alignment and tree reconstruction. This allows the interactive improvement of the taxon sampling throughout the whole phylogenetic tree reconstruction process. Thus, the ITS2 Workbench enables a fast, interactive and iterative taxon sampling leading to more accurate ITS2 based phylogenies.  相似文献   

10.
Puccinia graminis (Uredinales) is an economically important and common host-alternating rust species on Berberidaceae/Poaceae (subfamilies Pooideae and Panicoideae) that has been spread globally by human activities from an unknown center of origin. To evaluate the taxonomic implications, phylogenetic relationships, and distribution/spread of this complex species, we sequenced and cladistically analyzed the ITS1, 5.8S, and ITS2 regions from herbarium specimens on various host plants from Iran (17), Europe (1), and North America (4). The ITS region plus the 5.8S gene ranged from 686 to 701 bp, including the flanking partial sequences of the 18S and 28S rDNA. Our phylogenetic analysis included 54 bp of the 18S sequence, the entire ITS1 + 5.8S + ITS2, and 58 bp of the 28S sequence. A second analysis used only the last 42 bp of ITS1, and all the 5.8S and ITS2, to incorporate data from additional sequences downloaded from GenBank. In addition to variation in sequence length, there was variation in sequence content. The analysis does not support classical morphology-based taxonomic concepts of the P. graminis complex. Also, host range, host taxonomy, and geographic origin provide minor information on taxonomic relationships. Puccinia graminis is most probably monophyletic. Coevolutionary aspects can hardly be discussed because of lack of sequence data from alternate host specimens. The occurrence of unrelated fungal taxa on the same host species suggests that, besides coevolution with the host, host jumps and hybridization may have played an important role in the evolution of P. graminis. From rDNA data we conclude that the pathogen was introduced to North America at least twice independently. For a new taxonomic concept, we think the complex has to be split into at least two species. New morphological features and further features other than sequence data, however, must be checked for taxonomic value first and, if necessary, be considered.  相似文献   

11.
Cyanophora is an important glaucophyte genus of unicellular biflagellates that may have retained ancestral features of photosynthetic eukaryotes. The nuclear genome of Cyanophora was recently sequenced, but taxonomic studies of more than two strains are lacking for this genus. Furthermore, no study has used molecular methods to taxonomically delineate Cyanophora species. Here, we delimited the species of Cyanophora using light and electron microscopy, combined with molecular data from several globally distributed strains, including one newly established. Using a light microscope, we identified two distinct morphological groups: one with ovoid to ellipsoidal vegetative cells and another with dorsoventrally flattened or broad, bean‐shaped vegetative cells containing duplicated plastids. Our light and scanning electron microscopy clearly distinguished three species with ovoid to ellipsoidal cells (C. paradoxa Korshikov, C. cuspidata Tos.Takah. & Nozaki sp. nov., and C. kugrensii Tos.Takah. & Nozaki sp. nov.) and two species with broad, bean‐shaped cells (C. biloba Kugrens, B.L.Clay, C.J.Mey. & R.E.Lee and C. sudae Tos.Takah. & Nozaki sp. nov.) based on differences in cell shape and surface ornamentations of the vegetative cells under the field‐emission scanning electron microscope. Molecular phylogenetic analyses of P700 chl a apoprotein A2 (psaB) genes and internal transcribed spacer (ITS) regions of nuclear ribosomal DNA (rDNA), as well as a comparison of secondary structures of nuclear rDNA ITS‐2 and genetic distances of psaB genes, supported the delineation of five morphological species of Cyanophora.  相似文献   

12.

Background  

The automated annotation of biological sequences (protein, DNA) relies on the computation of hits (predicted features) on the sequences using various algorithms. Public databases of biological sequences provide a wealth of biological "knowledge", for example manually validated annotations (features) that are located on the sequences, but mining the sequence annotations and especially the predicted and curated features requires dedicated tools. Due to the heterogeneity and diversity of the biological information, it is difficult to handle redundancy, frequent updates, taxonomic information and "private" data together with computational algorithms in a common workflow.  相似文献   

13.
Urmas Kõljalg  R. Henrik Nilsson  Kessy Abarenkov  Leho Tedersoo  Andy F. S. Taylor  Mohammad Bahram  Scott T. Bates  Thomas D. Bruns  Johan Bengtsson‐Palme  Tony M. Callaghan  Brian Douglas  Tiia Drenkhan  Ursula Eberhardt  Margarita Dueñas  Tine Grebenc  Gareth W. Griffith  Martin Hartmann  Paul M. Kirk  Petr Kohout  Ellen Larsson  Björn D. Lindahl  Robert Lücking  María P. Martín  P. Brandon Matheny  Nhu H. Nguyen  Tuula Niskanen  Jane Oja  Kabir G. Peay  Ursula Peintner  Marko Peterson  Kadri Põldmaa  Lauri Saag  Irja Saar  Arthur Schüßler  James A. Scott  Carolina Senés  Matthew E. Smith  Ave Suija  D. Lee Taylor  M. Teresa Telleria  Michael Weiss  Karl‐Henrik Larsson 《Molecular ecology》2013,22(21):5271-5277
The nuclear ribosomal internal transcribed spacer (ITS) region is the formal fungal barcode and in most cases the marker of choice for the exploration of fungal diversity in environmental samples. Two problems are particularly acute in the pursuit of satisfactory taxonomic assignment of newly generated ITS sequences: (i) the lack of an inclusive, reliable public reference data set and (ii) the lack of means to refer to fungal species, for which no Latin name is available in a standardized stable way. Here, we report on progress in these regards through further development of the UNITE database ( http://unite.ut.ee ) for molecular identification of fungi. All fungal species represented by at least two ITS sequences in the international nucleotide sequence databases are now given a unique, stable name of the accession number type (e.g. Hymenoscyphus pseudoalbidus|GU586904|SH133781.05FU), and their taxonomic and ecological annotations were corrected as far as possible through a distributed, third‐party annotation effort. We introduce the term ‘species hypothesis’ (SH) for the taxa discovered in clustering on different similarity thresholds (97–99%). An automatically or manually designated sequence is chosen to represent each such SH. These reference sequences are released ( http://unite.ut.ee/repository.php ) for use by the scientific community in, for example, local sequence similarity searches and in the QIIME pipeline. The system and the data will be updated automatically as the number of public fungal ITS sequences grows. We invite everybody in the position to improve the annotation or metadata associated with their particular fungal lineages of expertise to do so through the new Web‐based sequence management system in UNITE.  相似文献   

14.

Background  

Computational protein annotation methods occasionally introduce errors. False-positive (FP) errors are annotations that are mistakenly associated with a protein. Such false annotations introduce errors that may spread into databases through similarity with other proteins. Generally, methods used to minimize the chance for FPs result in decreased sensitivity or low throughput. We present a novel protein-clustering method that enables automatic separation of FP from true hits. The method quantifies the biological similarity between pairs of proteins by examining each protein's annotations, and then proceeds by clustering sets of proteins that received similar annotation into biological groups.  相似文献   

15.
16.
17.
Invasive plants have aroused attention globally for causing ecological damage and having a negative impact on the economy and human health. However, it can be extremely challenging to rapidly and accurately identify invasive plants based on morphology because they are an assemblage of many different families and many plant materials lack sufficient diagnostic characteristics during border inspections. It is therefore urgent to evaluate candidate loci and build a reliable genetic library to prevent invasive plants from entering China. In this study, five common single markers (ITS, ITS2, matK, rbcL and trnH‐psbA) were evaluated using 634 species (including 469 invasive plant species in China, 10 new records to China, 16 potentially invasive plant species around the world but not introduced into China yet and 139 plant species native to China) based on three different methods. Our results indicated that ITS2 displayed largest intra‐ and interspecific divergence (1.72% and 91.46%). Based on NJ tree method, ITS2, ITS, matK, rbcL and trnH‐psbA provided 76.84%, 76.5%, 63.21%, 52.86% and 50.68% discrimination rates, respectively. The combination of ITS + matK performed best and provided 91.03% discriminatory power, followed by ITS2 + matK (85.78%). For identifying unknown individuals, ITS + matK had 100% correct identification rate based on our database, followed by ITS/ITS2 (both 93.33%) and ITS2 + matK (91.67%). Thus, we propose ITS/ITS2 + matK as the most suitable barcode for invasive plants in China. This study also demonstrated that DNA barcoding is an efficient tool for identifying invasive species.  相似文献   

18.
To elucidate potential ecological and evolutionary processes associated with the assembly of plant communities, there is now widespread use of estimates of phylogenetic diversity that are based on a variety of DNA barcode regions and phylogenetic construction methods. However, relatively few studies consider how estimates of phylogenetic diversity may be influenced by single DNA barcodes incorporated into a sequence matrix (conservative regions vs. hypervariable regions) and the use of a backbone family‐level phylogeny. Here, we use general linear mixed‐effects models to examine the influence of different combinations of core DNA barcodes (rbcL, matK, ITS, and ITS2) and phylogeny construction methods on a series of estimates of community phylogenetic diversity for two subtropical forest plots in Guangdong, southern China. We ask: (a) What are the relative influences of single DNA barcodes on estimates phylogenetic diversity metrics? and (b) What is the effect of using a backbone family‐level phylogeny to estimate topology‐based phylogenetic diversity metrics? The combination of more than one barcode (i.e., rbcL + matK + ITS) and the use of a backbone family‐level phylogeny provided the most parsimonious explanation of variation in estimates of phylogenetic diversity. The use of a backbone family‐level phylogeny showed a stronger effect on phylogenetic diversity metrics that are based on tree topology compared to those that are based on branch lengths. In addition, the variation in the estimates of phylogenetic diversity that was explained by the top‐rank models ranged from 0.1% to 31% and was dependent on the type of phylogenetic community structure metric. Our study underscores the importance of incorporating a multilocus DNA barcode and the use of a backbone family‐level phylogeny to infer phylogenetic diversity, where the type of DNA barcode employed and the phylogenetic construction method used can serve as a significant source of variation in estimates of phylogenetic community structure.  相似文献   

19.
The genera Elliptochloris and Pseudochlorella were erected for Chlorella‐like green algae producing two types of autospores and cell packages, respectively. Both genera are widely distributed in different soil habitats, either as free living or as photobionts of lichens. The species of these genera are often difficult to identify because of the high phenotypic plasticity and occasional lack of characteristic features. The taxonomic and nomenclatural status of these species, therefore, remains unclear. In this study, 34 strains were investigated using an integrative approach. Phylogenetic analyses demonstrated that the isolates belong to two independent lineages of the Trebouxiophyceae (Elliptochloris and Prasiola clades) and confirmed that the genera are not closely related. The comparison of morphology, molecular phylogeny, and analyses of secondary structures of SSU and ITS rDNA sequences revealed that all of the strains belong to three genera: Elliptochloris, Pseudochlorella, and Edaphochlorella. As a consequence of the taxonomic revisions, we propose two new combinations (Elliptochloris antarctica and Pseudochlorella signiensis) and validate Elliptochloris reniformis, which is invalidly described according to the International Code for Nomenclature (ICN), by designating a holotype. To reflect the high phenotypic plasticity of P. signiensis, two new varieties were described: P. signiensis var. magna and P. signiensis var. communis. Chlorella mirabilis was not closely related to any of these genera and was, therefore, transferred to the new genus Edaphochlorella. All of the taxonomic changes were highly supported by all phylogenetic analyses and were confirmed by the ITS‐2 Barcodes using the ITS‐2/CBC approach.  相似文献   

20.
Due to active tectonic evolution of the Aegean Area during Miocene and Pleistocene, the Balkans and Anatolia have repeatedly connected and disconnected causing isolation and secondary contact of populations along the present Dardanelles – Sea of Marmara – Bosphorus waterway. This has led to an outstandingly rich fauna and a reticulate biogeography in the area. A typical example is Orthoptera having here possibly highest diversity within the Western Palaearctic. With the present study, we concentrate on the bush‐cricket genus Isophya, which is characteristic with a large share of endemics in the Balkans and Anatolia. We aim to understand when and how the isolation of marine or other barriers in the region of the Turkish Straits System influenced the evolution of the morpho‐acoustic groups of species found on both sides of the strait. For this purpose, sequences of two mitochondrial (COI and ND2) and two nuclear (ITS1 and ITS2) markers were obtained and used for phylogenetic reconstructions, time estimations for lineage divergence and automatic species delineation (statistical parsimony, GMYC, ABGD) tests. The phylogenetic analyses did not support all the existing morphogroups and was in favour of a geographical subdivision for the young lineages. Automatic species delineation tests confirmed most of the present morpho‐acoustic species and suggested further cryptic species, at the same time unifying some phenetic species. Time estimation analyses suggested time to most recent common ancestor of the genus as 8.28 Ma corresponding to the Late Tortonian. As a result of the study, we reached to the following conclusions: (i) most of the studied phenetic species are monophyletic, but some earlier suggested morpho‐species groups are not, (ii) three main episodes dominate the evolutionary history of Isophya (7.32–5.84 Myr in the Messinian, 2.2–2.5 Myr in the beginning of the Pleistocene and at around 0.75 Ma corresponding to the end of the Mid‐Pleistocene transition), all of which well correlate with episodes of existing terrestrial connections between Anatolia and the Balkans, and (iii) there are several faunal exchanges in both directions between Anatolia and the Balkans.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号