首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
Previous studies have shown that the room temperature photocycle of the photoactive yellow protein (PYP) from Ectothiorhodospira halophila involves at least two intermediate species: I1, which forms in <10 ns and decays with a 200-micros lifetime to I2, which itself subsequently returns to the ground state with a 140-ms time constant at pH 7 (Genick et al. 1997. Biochemistry. 36:8-14). Picosecond transient absorption spectroscopy has been used here to reveal a photophysical relaxation process (stimulated emission) and photochemical intermediates in the PYP photocycle that have not been reported previously. The first new intermediate (I0) exhibits maximum absorption at approximately 510 nm and appears in </=3 ps after 452 nm excitation (5 ps pulse width) of PYP. Kinetic analysis shows that I0 decays with a 220 +/- 20 ps lifetime, forming another intermediate (Idouble dagger0) that has a similar difference wavelength maximum, but with lower absorptivity. Idouble dagger0 decays with a 3 +/- 0.15 ns time constant to form I1. Stimulated emission from an excited electronic state of PYP is observed both within the 4-6-ps cross-correlation times used in this work, and with a 16-ps delay for all probe wavelengths throughout the 426-525-nm region studied. These transient absorption and emission data provide a more detailed understanding of the mechanistic dynamics occurring during the PYP photocycle.  相似文献   

2.
Femtosecond time-resolved absorbance measurements were used to probe the subpicosecond primary events of the photoactive yellow protein (PYP), a 14-kD soluble photoreceptor from Ectothiorhodospira halophila. Previous picosecond absorption studies from our laboratory have revealed the presence of two new early photochemical intermediates in the PYP photocycle, I(0), which appears in 相似文献   

3.
The photocycle of the photoactive yellow protein (PYP) from Ectothiorhodospira halophila was examined by time-resolved difference absorption spectroscopy in the wavelength range of 300-600 nm. Both time-gated spectra and single wavelength traces were measured. Global analysis of the data established that in the time domain between 5 ns and 2 s only two intermediates are involved in the room temperature photocycle of PYP, as has been proposed before (Meyer T.E., E. Yakali, M. A. Cusanovich, and G. Tollin. 1987. Biochemistry. 26:418-423; Meyer, T. E., G. Tollin, T. P. Causgrove, P. Cheng, and R. E. Blankenship. 1991. Biophys. J. 59:988-991). The first, red-shifted intermediate decays biexponentially (60% with tau = 0.25 ms and 40% with tau = 1.2 ms) to a blue-shifted intermediate. The last step of the photocycle is the biexponential (93% with tau = 0.15 s and 7% with tau = 2.0 s) recovery to the ground state of the protein. Reconstruction of the absolute spectra of these photointermediates yielded absorbance maxima of about 465 and 355 nm for the red- and blue-shifted intermediate with an epsilon max at about 50% and 40% relative to the epsilon max of the ground state. The quantitative analysis of the photocycle in PYP described here paves the way to a detailed biophysical analysis of the processes occurring in this photoreceptor molecule.  相似文献   

4.
Y Imamoto  K Mihara  F Tokunaga  M Kataoka 《Biochemistry》2001,40(48):14336-14343
The absorption spectra of photocycle intermediates of photoactive yellow protein mutants were compared with those of the corresponding intermediates of wild type to probe which amino acid residues interact with the chromophore in the intermediate states. B and H intermediates were produced by irradiation and trapped at 80 K, and L intermediates at 193 K. The absorption spectra of these intermediates produced from R52Q were identical to those from wild type, whereas those from E46Q and T50V were 7-15 nm red-shifted as those in the dark states. The absorption spectra of M intermediates were measured by flash photolysis at room temperature. Those of Y42F, T50V, and R52Q were identical to that of wild type, whereas that of E46Q was 11 nm red-shifted. Assuming that the intermediates of mutants have a structure comparable to that of wild type, these findings suggest the following: Glu46 interacts with the chromophore throughout the photocycle, interaction between the chromophore and Thr50 as well as Tyr42 is lost upon the formation of M intermediate, and Arg52 never interacts with the chromophore directly. The hydrogen-bonding network around the phenolic oxygen of the chromophore would be thus maintained until L intermediate decays, and the global conformational change would take place by the loss of the hydrogen bond between the chromophore and Tyr42. This model conflicts with some of the results of previous crystallographic studies, suggesting that the reaction mechanism in the crystal may be different from that in solution.  相似文献   

5.
Light-dependent pH changes were measured in unbuffered solutions of wild type photoactive yellow protein (PYP) and its H108F and E46Q variants, using two independent techniques: transient absorption changes of added pH indicator dyes and direct readings with a combination pH electrode. Depending on the absolute pH of the sample, a reversible protonation as well as a deprotonation can be observed upon formation of the transient, blue-shifted photocycle intermediate (pB) of this photoreceptor protein. The latter is observed at very alkaline pH, the former at acidic pH values. At neutral pH, however, the formation of the pB state is not paralleled by significant protonation/deprotonation of PYP, as expected for concomitant protonation of the chromophore and deprotonation of Glu-46 during pB formation. We interpret these results as further evidence that a proton is transferred from Glu-46 to the coumaric acid chromophore of PYP, during pB formation. One cannot exclude the possibility, however, that this transfer proceeds through the bulk aqueous phase. Simultaneously, an amino acid side chain(s) (e.g. His-108) changes from a buried to an exposed position. These results, therefore, further support the idea that PYP significantly unfolds in the pB state and resolve the controversy regarding proton transfer during the PYP photocycle.  相似文献   

6.
The blue light receptor photoactive yellow protein (PYP) displays rhodopsin-like photochemistry based on the trans to cis photoisomerization of its p-coumaric acid chromophore. Here, we report that protein refolding from the acid-denatured state of PYP mimics the last photocycle transition in PYP. This implies a direct link between transient protein unfolding and photosensory signal transduction. We utilize this link to study general issues in protein folding. Chromophore trans to cis photoisomerization in the acid-denatured state strongly decelerates refolding, and converts the pH dependence of the barrier for refolding from linear to nonlinear. We propose transition state movement to explain this phenomenon. The cis chromophore significantly stabilizes the acid-denatured state, but acidification of PYP results in the accumulation of the acid-denatured state containing a trans chromophore. This provides a clear example of kinetic control in a protein unfolding reaction. These results demonstrate the power of PYP as a light-triggered model system to study protein folding.  相似文献   

7.
The photocycle of the photoactive yellow protein (PYP) isolated from Ectothiorhodospira halophila was analyzed by flash photolysis with absorption detection at low excitation photon densities and by temperature-dependent laser-induced optoacoustic spectroscopy (LIOAS). The quantum yield for the bleaching recovery of PYP, assumed to be identical to that for the phototransformation of PYP (pG), to the red-shifted intermediate, pR, was phi R = 0.35 +/- 0.05, much lower than the value of 0.64 reported in the literature. With this value and the LIOAS data, an energy content for pR of 120 kJ/mol was obtained, approximately 50% lower than for excited pG. Concomitant with the photochemical process, a volume contraction of 14 ml/photoconverted mol was observed, comparable with the contraction (11 ml/mol) determined for the bacteriorhodopsin monomer. The contraction in both cases is interpreted to arise from a protein reorganization around a phototransformed chromophore with a dipole moment different from that of the initial state. The deviations from linearity of the LIOAS data at photon densities > 0.3 photons per molecule are explained by absorption by pG and pR during the laser pulse duration (i.e., a four-level system, pG, pR, and their respective excited states). The data can be fitted either by a simple saturation process or by a photochromic equilibrium between pG and pR, similar to that established between the parent chromoprotein and the first intermediate(s) in other biological photoreceptors. This nonlinearity has important consequences for the interpretation of the data obtained from in vitro studies with powerful lasers.  相似文献   

8.
The photoactive yellow protein (PYP) from the phototrophic bacterium Ectothiorhodospira halophila is a small, soluble protein that undergoes reversible photobleaching upon blue light irradiation and may function to mediate the negative phototactic response. Based on previous studies of the effects of solvent viscosity and of aliphatic alcohols on PYP photokinetics, we proposed that photobleaching is concomitant with a protein conformational change that exposes a hydrophobic region on the protein surface. In the present investigation, we have used surface plasmon resonance (SPR) spectroscopy to characterize the binding of PYP to lipid bilayers deposited on a thin silver film. SPR spectra demonstrate that the net negatively charged PYP molecule can bind in a saturable manner to electrically neutral, net positively, and net negatively charged bilayers. Illumination with either blue or white light of a PYP solution, which is in contact with the bilayer, at concentrations below saturation results in an increase in the extent of binding, consistent with exposure of a high affinity hydrophobic surface in the photobleached state, a property that may contribute to its biological function. A value for the thickness of the bound PYP layer (23 A), obtained from theoretical fits to the SPR spectra, is consistent with the structure of the protein determined by x-ray crystallography and indicates that the molecule binds with its long axis parallel to the membrane surface.  相似文献   

9.
The light-induced isomerization of a double bond is the key event that allows the conversion of light energy into a structural change in photoactive proteins for many light-mediated biological processes, such as vision, photosynthesis, photomorphogenesis, and photo movement. Cofactors such as retinals, linear tetrapyrroles, and 4-hydroxy-cinnamic acid have been selected by nature that provide the essential double bond to transduce the light signal into a conformational change and eventually, a physiological response. Here we report the first events after light excitation of the latter chromophore, containing a single ethylene double bond, in a low temperature crystallographic study of the photoactive yellow protein. We measured experimental phases to overcome possible model bias, corrected for minimized radiation damage, and measured absorption spectra of crystals to analyze the photoproducts formed. The data show a mechanism for the light activation of photoactive yellow protein, where the energy to drive the remainder of the conformational changes is stored in a slightly strained but fully cis-chromophore configuration. In addition, our data indicate a role for backbone rearrangements during the very early structural events.  相似文献   

10.
The photoactive yellow protein (PYP) has been previously shown to be partially bleached and red shifted (in less than 10 ns) by a pulse of laser excitation at the wavelength maximum (445 nm), to further bleach (k = 7.5 × 103 s-1), and then to slowly recover in the dark (k = 2.6 s-1) (Meyer, T. E., G. Tollin, J. H. Hazzard, and M. A. Cusanovich. 1989. Biophys. J. 56:559-564). The quantum yield for the formation of the fully bleached form was found to be 0.64. We have now shown that the yellow protein is weakly fluorescent with an emission maximum at 495 nm (which mirrors excitation at 445 nm) and a fluorescence quantum yield of 1.4 × 10-3. Measurement of the picosecond kinetics of the fluorescence decay shows that ~90% of the emission occurs with a lifetime of 12 ps. This is in good agreement with the quantum yield determination, which suggests that a single quenching process (presumably the photochemical event) is primarily responsible for the excited state decay. The lifetime of the excited state of PYP is remarkably similar to that for the rise of the first photochemical intermediate of bacteriorhodopsin, and underscores the fundamental similarity in their photocycles despite a lack of structural relationship.  相似文献   

11.
The motile, alkalophilic, and extremely halophilic purple sulfur bacterium Ectothiorhodospira halophila is positively photophobotactic. This response results in the accumulation of bacteria in light spots (E. Hustede, M. Liebergesell, and H. G. Schlegel, Photochem. Photobiol. 50:809-815, 1989; D. E. McRee, J. A. Tainer, T. E. Meyer, J. Van Beeumen, M. A. Cusanovich, and E. D. Getzoff, Proc. Natl. Acad. Sci. USA 86:6533-6537, 1989; also, this work). In this study, we demonstrated that E. halophila is also negatively phototactic. Video analysis of free-swimming bacteria and the formation of cell distribution patterns as a result of light-color boundaries in an anaerobic suspension of cells revealed the existence of a repellent response toward intense (but nondamaging) blue light. In the presence of saturating background photosynthetic light, an increase in the intensity of blue light induced directional switches, whereas a decrease in intense blue light gave rise to suppression of these reversals. To our knowledge, this is the first report of a true repellent response to light in a free-swimming eubacterium, since the blue light response in Escherichia coli and Salmonella typhimurium (B. L. Taylor and D. E. Koshland, Jr., J. Bacteriol. 123:557-569, 1975), which requires an extremely high light intensity, is unlikely to be a sensory process. The wavelength dependence of this negative photoresponse was determined with narrow band pass interference filters. It showed similarity to the absorption spectrum of the photoactive yellow protein from E. halophila.  相似文献   

12.
The complete amino acid sequence of the 125-residue photoactive yellow protein (PYP) from Ectothiorhodospira halophila has been determined to be MEHVAFGSEDIENTLAKMDDGQLDGLAFGAIQLDGDGNILQYNAAEGDITGRDPKEVIGKNFFKDVAP+ ++ CTDSPEFYGKFKEGVASGNLNTMFEYTFDYQMTPTKVKVHMKKALSGDSYWVFVKRV. This is the first sequence to be reported for this class of proteins. There is no obvious sequence homology to any other protein, although the crystal structure, known at 2.4 A resolution (McRee, D.E., et al., 1989, Proc. Natl. Acad. Sci. USA 86, 6533-6537), indicates a relationship to the similarly sized fatty acid binding protein (FABP), a representative of a family of eukaryotic proteins that bind hydrophobic molecules. The amino acid sequence exhibits no greater similarity between PYP and FABP than for proteins chosen at random (8%). The photoactive yellow protein contains an unidentified chromophore that is bleached by light but recovers within a second. Here we demonstrate that the chromophore is bound covalently to Cys 69 instead of Lys 111 as deduced from the crystal structure analysis. The partially exposed side chains of Tyr 76, 94, and 118, plus Trp 119 appear to be arranged in a cluster and probably become more exposed due to a conformational change of the protein resulting from light-induced chromophore bleaching. The charged residues are not uniformly distributed on the protein surface but are arranged in positive and negative clusters on opposite sides of the protein. The exact chemical nature of the chromophore remains undetermined, but we here propose a possible structure based on precise mass analysis of a chromophore-binding peptide by electrospray ionization mass spectrometry and on the fact that the chromophore can be cleaved off the apoprotein upon reduction with a thiol reagent. The molecular mass of the chromophore, including an SH group, is 147.6 Da (+/- 0.5 Da); the cysteine residue to which it is bound is at sequence position 69.  相似文献   

13.
The photocycle of the blue-light photoreceptor protein Photoactive Yellow Protein (PYP) was studied at reduced relative humidity (RH). Photocycle kinetics and spectra were measured in thin films of PYP in which the relative humidity was set at values between 29 and 98% RH with saturated solutions of various salts. We show that in this range, approximately 200 water molecules per PYP molecule are released from the film. As humidity decreased, photocycle transition rates changed, until at low humidity (RH < 50%) an authentic photocycle was no longer observed and the absorption spectrum of the dark, equilibrium state of PYP started to shift to 355 nm, that is, to a form resembling that of pB(dark). At moderately reduced humidity (i.e., >50% RH), an authentic photocycle is still observed, although its characteristics differ from those in solution. As humidity decreases, the rate of ground state recovery increases, while the rate of depletion of the first red-shifted intermediate pR dramatically decreases. The latter observation contrasts all so-far known modulations of the rate of the transition of the red-shifted- to the blue-shifted intermediates of PYP, which is consistently accelerated by all other modulations of the mesoscopic context of the protein. Under these same conditions, the long-lived, blue-shifted intermediate was formed not only with slower kinetics than in solution but also to a smaller extent. Global analysis of these data indicates that in this low humidity environment the photocycle can take a different route than in solution, that is, part of pG recovers directly from pR. These experiments on wild-type PYP, in combination with observations on a variant of PYP obtained by site-directed mutagenesis (the E46Q mutant protein), further document the context dependence of the photocycle transitions of PYP and are relevant for the interpretation of results obtained in both spectroscopic and diffraction studies with crystalline PYP.  相似文献   

14.
Transient absorption spectroscopy in the time range from -1 ps to 4 ns, and over the wavelength range from 420 to 550 nm, was applied to the Glu46Gln mutant of the photoactive yellow protein (PYP) from Ectothiorhodospira halophila. This has allowed us to elucidate the kinetic constants of excited state formation and decay and photochemical product formation, and the spectral characteristics of stimulated emission and the early photocycle intermediates. Both the quantum efficiency ( approximately 0.5) and the rate constants for excited state decay and the formation of the initial photochemical intermediate (I(0)) were found to be quite similar to those obtained for wild-type PYP. In contrast, the rate constants for the formation of the subsequent photocycle intermediates (I(0)(double dagger) and I(1)), as well as for I(2) and for ground state regeneration as determined in earlier studies, were found to be from 3- to 30-fold larger. The structural implications of these results are discussed.  相似文献   

15.
Photoactive yellow protein (PYP) undergoes a light-driven cycle of color and protonation states that is part of a mechanism of bacterial phototaxis. This article concerns functionally important protonation states of PYP and the interactions that stabilize them, and changes in the protonation state during the photocycle. In particular, the chromophore pK(a) is known to be shifted down so that the chromophore is negatively charged in the ground state (dark state) even though it is buried in the protein, while nearby Glu46 has an unusually high pK(a). The photocycle involves changes of one or both of these protonation states. Calculations of pK(a) values and protonation states using a semi-macroscopic electrostatic model are presented for the wild-type and three mutants, in both the ground state and the bleached (I(2)) intermediate state. Calculations allowing multiple H-bonding arrangements around the chromophore also have been carried out. In addition, ground-state pK(a) values of the chromophore have been measured by UV-visible spectroscopy for the wild-type and the same three mutants. Because of the unusual protonation states and strong electrostatic interactions, PYP represents a severe test of the ability of theoretical models to yield correct calculations of electrostatic interactions in proteins. Good agreement between experiment and theory can be obtained for the ground state provided the protein interior is assumed to have a relatively low dielectric constant, but only partial agreement between theory and experiment is obtained for the bleached state. We also present a reinterpretation of previously published data on the pH-dependence of the recovery of the ground state from the bleached state. The new analysis implies a pK(a) value of 6.37 for Glu46 in the bleached state, which is consistent with other available experimental data, including data that only became available after this analysis. The new analysis suggests that signal transduction is modulated by the titration properties of the bleached state, which are in turn determined by electrostatic interactions. Overall, the results of this study provide a quantitative picture of the interactions responsible for the unusual protonation states of the chromophore and Glu46, and of protonation changes upon bleaching.  相似文献   

16.
Two complementary aspects of the thermodynamics of the photoactive yellow protein (PYP), a new type of photoreceptor that has been isolated from Ectothiorhodospira halophila, have been investigated. First, the thermal denaturation of PYP at pH 3.4 has been examined by global analysis of the temperature-induced changes in the UV-VIS absorbance spectrum of this chromophoric protein. Subsequently, a thermodynamic model for protein (un)folding processes, incorporating heat capacity changes, has been applied to these data. The second aspect of PYP that has been studied is the temperature dependence of its photocycle kinetics, which have been reported to display an unexplained deviation from normal Arrhenius behavior. We have extended these measurements in two solvents with different hydrophobicities and have analyzed the number of rate constants needed to describe these data. Here we show that the resulting temperature dependence of the rate constants can be quantitatively explained by the application of a thermodynamic model which assumes that heat capacity changes are associated with the two transitions in the photocycle of PYP. This result is the first example of an enzyme catalytic cycle being described by a thermodynamic model including heat capacity changes. It is proposed that a strong link exists between the processes occurring during the photocycle of PYP and protein (un)folding processes. This permits a thermodynamic analysis of the light-induced, physiologically relevant, conformational changes occurring in this photoreceptor protein.  相似文献   

17.
The spectroscopic properties of photoactive yellow protein (PYP) partially digested by chymotrypsin were studied. Chymotrypsin yielded three major products that were yellow but distinguishable by SDS-PAGE. They were readily separated by DEAE-Sepharose column chromatography. Protein sequencing and mass spectrometry demonstrated that chymotrypsin cleaved the N-terminal 6, 15, or 23 amino acids (T6, T15, and T23). The blue-shifts of the absorption maxima and the increases in the apparent pK(a) of the chromophores relative to those of intact PYP were less than 4 nm and 0.2, respectively. The absorption spectra of the near-UV intermediates produced from T6, T15, and T23 were identical to that of intact PYP, but with lifetimes that were 140, 2,300, and 4,500 times longer, respectively. These observations suggest that the recovery of the dark state of PYP from the near-UV intermediate is accelerated by the N-terminal region, and that this region acts as a regulatory factor for the photocycle of PYP.  相似文献   

18.
Visualizing the three-dimensional structures of a protein during its biological activity is key to understanding its mechanism. In general, protein structure and function are pH-dependent. Changing the pH provides new insights into the mechanisms that are involved in protein activity. Photoactive yellow protein (PYP) is a signaling protein that serves as an ideal model for time-dependent studies on light-activated proteins. Its photocycle is studied extensively under different pH conditions. However, the structures of the intermediates remain unknown until time-resolved crystallography is employed. With the newest beamline developments, a comprehensive time series of Laue data can now be collected from a single protein crystal. This allows us to vary the pH. Here we present the first structure, to our knowledge, of a short-lived protein-inhibitor complex formed in the pB state of the PYP photocycle at pH 4. A water molecule that is transiently stabilized in the chromophore active site prevents the relaxation of the chromophore back to the trans configuration. As a result, the dark-state recovery is slowed down dramatically. At pH 9, PYP stops cycling through the pB state altogether. The electrostatic environment in the chromophore-binding site is the likely reason for this altered kinetics at different pH values.  相似文献   

19.
Photoactive yellow protein is the protein responsible for initiating the "blue-light vision" of Halorhodospira halophila. The dynamical processes responsible for triggering the photoactive yellow protein photocycle have been disentangled with the use of a novel application of dispersed ultrafast pump-dump-probe spectroscopy, where the photocycle can be started and interrupted with appropriately tuned and timed laser pulses. This "incoherent" manipulation of the photocycle allows for the detailed spectroscopic investigation of the underlying photocycle dynamics and the construction of a fully self-consistent dynamical model. This model requires three kinetically distinct excited-state intermediates, two (ground-state) photocycle intermediates, I(0) and pR, and a ground-state intermediate through which the protein, after unsuccessful attempts at initiating the photocycle, returns to the equilibrium ground state. Also observed is a previously unknown two-photon ionization channel that generates a radical and an ejected electron into the protein environment. This second excitation pathway evolves simultaneously with the pathway containing the one-photon photocycle intermediates.  相似文献   

20.
Crystallographic and spectroscopic analyses of three hinge-bending mutants of the photoactive yellow protein are described. Previous studies have identified Gly(47) and Gly(51) as possible hinge points in the structure of the protein, allowing backbone segments around the chromophore to undergo large concerted motions. We have designed, crystallized, and solved the structures of three mutants: G47S, G51S, and G47S/G51S. The protein dynamics of these mutants are significantly affected. Transitions in the photocycle, measured with laser induced transient absorption spectroscopy, show rates up to 6-fold different from the wild type protein and show an additive effect in the double mutant. Compared with the native structure, no significant conformational differences were observed in the structures of the mutant proteins. We conclude that the structural and dynamic integrity of the region around these mutations is of crucial importance to the photocycle and suggest that the hinge-bending properties of Gly(51) may also play a role in PAS domain proteins where it is one of the few conserved residues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号