首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study aimed to identify Pythium and Phytopythium species from weeds collected in vegetable fields and test their pathogenicity. Weeds with symptoms of damping-off, root rot or wilt were sampled in the Brazilian states of Ceará, Goiás and Pernambuco, as well as in the Distrito Federal, for isolation and identification of the causal agents. Once isolated, colonies with typical Pythium and Phytopythium characteristics grew in selective V8 medium. Procedures for species identification included morphology and amplification of the ITS and Cox II regions, which were compared with other accessions available at GenBank. The phylogenetic relationships among the isolates and pathogenicity to their original hosts were evaluated. Six Pythium species were identified: P. aphanidermatum, P. oopapillum, P. orthogonon, P. ultimum var. ultimum, P. myriotylum and P. sylvaticum, and two species of Phytopythium, Phy. chamaehyphon and Phy. oedochilum. In the pathogenicity tests, the 10 weed hosts showed symptoms of damping-off or root rot after inoculation, with exception of Portulaca oleraceae in which none of the isolates was pathogenic. Therefore, common weeds in vegetable fields areas can host different Pythium and Phytopythium species and play an important role in the epidemiology of vegetable diseases, in particular on pathogen survival and population increase.  相似文献   

2.
Pythium indigoferae and Pythium irregulare, identified based on morphological and physiological characteristics, were isolated from necrotic roots, crown tissues and the rhizosphere of apple trees in Tunisia from 23 apple orchards in spring and autumn 2007–2009. The virulence assays on excised twigs, using different Pythium species isolated demonstrated that these oomycetes were pathogenic on the Anna, Lorka and Meski varieties and the MM106 rootstock. However, the biggest lesion area was noted on MM106 rootstock. Thus, it appeared that this rootstock is more susceptible to Pythium infections than Anna, Meski and Lorka apple varieties. Furthermore, it is important to note that in vitro tests showed that P. indigoferae seems to be more virulent than P. irregulare.  相似文献   

3.
Twelve isolates of Pythium species (P. aphanidermatum, P. deliense, P. ultimum var. ultimum and P. ultimum var. sporangiiferum) from different hosts were compared from morphological, pathological and molecular viewpoints. Minimum, optimum and maximum temperatures of P. aphanidermatum and P. deliense were similar while those of P. ultimum var. ultimum and P. ultimum var. sporangiiferum were also similar. All tested isolates were highly virulent against cucumber seedlings with 100% damping-off. RAPD data using three different primers revealed that strains of P. ultimum var. ultimum and P. ultimum var. sporangiiferum are distinct from each other. This data can be used to separate those species from P. aphanidermatum and P. deliense. In contrast, RAPD data cannot be used to separate P. aphanidermatum and P. deliense. Sequence analysis of the ribosomal DNA internal transcribed spacers (ITS) was used to establish phylogenetic relationships among the tested isolates.  相似文献   

4.
The pathogenicity and growth rate in vivo were assessed on 27 isolates of Pythium spp. recovered from cavity spot lesions on carrots grown in various parts of northwest France. Polyacrylamide gel electrophoresis of isoesterases was used to identify the Pythium spp. involved. Slow-growing isolates were more aggressive than fast-growing ones when inoculated on carrot tap roots. Isoesterase patterns identified the slow-growing isolates as P. violae and P. sulcatum; P. ultimum and P. intermedium were identified among the less aggressive fast-growing isolate group, in which some isolates were also classed as P. sylvaticum or P. irregulare, which have similar electrophoretic profiles. The incidence of Pythium spp. associated with the disease in France is discussed in regard to cavity spot in other countries.  相似文献   

5.
Samples of tomato, lettuce and cucumber submitted for diagnosis to the Plant Protection Centre at the Norwegian Crop Research Institute and samples of soil, water and cucumber collected from greenhouses employing hydroponic cultures were examined for the occurrence of Pythium spp. and Phytophthora spp. Two species of Phytophthora and 16 species of Pythium were identified. Phytophthora cryptogea was found on tomato and lettuce. Phytophthora nicotianae was found on tomato fruit. Phytophthora was not found on cucumbers. Pythium irregulare and Pythium group F were the two most commonly found Pythium species in hydroponically cultivated cucumbers. A pathogenicity test with 56 isolates was performed on cucumber seedlings. The most aggressive species were Pythium aphanidermatum, P. irregulare, Pythium paroecandrum and Pythium ultimum.  相似文献   

6.
Mycoparasitic Pythium species with spiny oogonia were surveyed in 50 Palestinian agricultural fields subject to different cropping practices using the Sclerotia Bait Technique (SBT) and the Surface-Soil-Dilution-Plate method (SSDP) with the selective VP3 medium. The mycoparasitic Pythium species were obtained from 21 (42%) soils using the SSDP method and from 37 (74%) soils using SBT. Pythium acanthicum and P. oligandrum were isolated by both methods, whereas P. periplocum was isolated only by the SBT. Using a newly modified dual plate culture method (MDPCM), the three mycoparasites showed varying antagonistic performance against several Pythium host species under a range of in vitro conditions. However, P. periplocum and P. oligandrum were found to be active biocontrol agents against P. ultimum, the damping-off organism of cucumber. This pathogen was antagonized, on thin films of water agar, by the three mycoparasites, and was moderately susceptible to P. periplocum while slightly susceptible to P. acanthicum and P. oligandrum. In direct application method in which antagonistic mycoparasites were incorporated into peat/sand mixture artificially infested with P. ultimum under growthroom conditions, Pythium oligandrum and P. periplocum (at 500 CFUg−1) significantly improved seedling emergence and protected seedlings from damping-off. In the seed coating method, biocontrol by two types of seed dressing (homogenate- or oospore coated seeds), was comparable to that achieved by direct application. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

7.
Investigations on the occurrence of Pythium spp. in soil: I. The isolation of Pythium spp., their distinction to macroscopically characteristics and their determination The aim of the present paper consisted in detection of Pythium spp. directly in the soil. This was possible by using a selective medium and by crumbling smallest particles of agar-covered soil on its surface. On the basis of simple morphologically criteria (growth patterns) this method allows to decide concerning the presence of high and less pathogen or apathogen Pythium spp. in a soil sample within 48 hours. About 700 isolates have been cultivated from hyphal tips, determinated and about 230 tested for pathogenicity to sugar beet seedlings in vitro. Most of the Pythia pathogen to sugar beet belong to P. ultimum Trow followed by P. paroecandrum Drechsler and P. debaryanum sensu Drechsler non Hesse. The taxonomically characteristics are demonstrated by figures of the three species.  相似文献   

8.
A total of 237 microorganisms were isolated from five different greenhouse tomato growing media. Of those, 40 microorganisms reduced the in vitro mycelial growth of both Pythium aphanidermatum and Pythium ultimum. The ability of these microorganisms to control damping-off was then tested in rockwool. As a result, Pseudomonas corrugata strains 1 and 3, Pseudomonas fluorescens subgroup F and G strains 1, 2, 3, 4 and 5, Pseudomonas marginalis, Pseudomonas putida subgroup B strain 1, Pseudomonas syringae strain 1 and Pseudomonas viridiflava significantly reduced damping-off caused by P. ultimum or P. aphanidermatum. Pseudomonas marginalis was the only microorganism that significantly reduced damping-off caused by both pathogens.  相似文献   

9.
The influence exerted by Pseudomonas fluorescens, strain 63-28R, in stimulating plant defense reactions was investigated using an in-vitro system in which Ri T-DNA-transformed pea (Pisum sativum L.) roots were subsequently infected with Pythium ultimum. Cytological investigations of samples from P. fluorescens-inoculated roots revealed that the bacteria multiplied abundantly at the root surface and colonized a small number of epidermal and cortical cells. Penetration of the epidermis occurred through the openings made by the disruption of the fibrillar network at the junction of adjacent epidermal cell walls. Direct cell wall penetration was never observed and bacterial ingress into the root tissues proceeded via an intercellular route. Striking differences in the extent of fungal colonization were observed between bacterized and non-bacterized pea roots following inoculation with P. ultimum. In non-bacterized roots, the pathogen multiplied abundantly through most of the tissues while in bacterized roots, pathogen growth was restricted to the epidermis and the outer cortex. At the root surface, the bacteria interacted with the pathogen, in a way similar to that observed in dual culture tests. Most Pythium cells were severely damaged but fungal penetration by the bacteria was never observed. Droplets of the amorphous material formed upon interaction between the bacteria and the host root were frequently found at the fungal cell surface. Incubation of sections with a -1,4-exoglucanase-gold complex revealed that the cell wall of markedly altered Pythium hyphae was structurally preserved. Successful penetration of the root epidermis was achieved by the few hyphae of P. ultimum that could escape the first defensive line in the rhizosphere. Most hyphae of the pathogen that penetrated the epidermis exhibited considerable changes. The unusual occurrence of polymorphic wall appositions along the host epidermal cells was an indication that the host plant was signalled to defend itself through the elaboration of physical barriers.Abbreviations AGL Aplysia gonad lectin - PGPR plant growth-promoting rhizobacteria The authors wish to thank Sylvain Noël for excellent technical assistance. This study was supported by grants from the Fonds Québécois pour la formation de chercheurs et l'Aide à la Recherche (FCAR), the Natural Sciences and Engineering Council of Canada (NSERC) and the Ministère de l'Industrie, du Commerce, de la Science et de la Technologie (SYNERGIE).  相似文献   

10.
Comparisons were made between two morphological groups ofPythium ultimum var.ultimum strains isolated in a vegetable field in Japan. The groups were distinguished as having smaller or larger sexual organs by the sizes of their antheridia and oogonia. Morphological study indicated that the two groups comprised a single taxon,P. ultimum var.ultimum, by the current taxonomical keys. The smaller group grew faster in the lower temperature range of 4–15°C, whereas the larger group grew faster in the higher temperature range of 25–37°C. Random amplified polymorphic DNA (RAPD) and isozyme analyses revealed genetic dissimilarity between the two groups. Cluster analysis of the isozyme banding patterns with four otherPythium spp. demonstrated that the genetic dissimilarity between the two groups was equivalent to species level. In the field survey, the smaller group was frequently detected in February, May and September but not in July, while the larger group was detected mainly in July and September. The two groups were not distinguishable by their pathogenicity to spinach seedlings.  相似文献   

11.
The kingdom Stramenopile includes diatoms, brown algae, and oomycetes. Plant pathogenic oomycetes, including Phytophthora, Pythium and downy mildew species, cause devastating diseases on a wide range of host species and have a significant impact on agriculture. Here, we report comparative analyses on the genomes of thirteen straminipilous species, including eleven plant pathogenic oomycetes, to explore common features linked to their pathogenic lifestyle. We report the sequencing, assembly, and annotation of six Pythium genomes and comparison with other stramenopiles including photosynthetic diatoms, and other plant pathogenic oomycetes such as Phytophthora species, Hyaloperonospora arabidopsidis, and Pythium ultimum var. ultimum. Novel features of the oomycete genomes include an expansion of genes encoding secreted effectors and plant cell wall degrading enzymes in Phytophthora species and an over-representation of genes involved in proteolytic degradation and signal transduction in Pythium species. A complete lack of classical RxLR effectors was observed in the seven surveyed Pythium genomes along with an overall reduction of pathogenesis-related gene families in H. arabidopsidis. Comparative analyses revealed fewer genes encoding enzymes involved in carbohydrate metabolism in Pythium species and H. arabidopsidis as compared to Phytophthora species, suggesting variation in virulence mechanisms within plant pathogenic oomycete species. Shared features between the oomycetes and diatoms revealed common mechanisms of intracellular signaling and transportation. Our analyses demonstrate the value of comparative genome analyses for exploring the evolution of pathogenesis and survival mechanisms in the oomycetes. The comparative analyses of seven Pythium species with the closely related oomycetes, Phytophthora species and H. arabidopsidis, and distantly related diatoms provide insight into genes that underlie virulence.  相似文献   

12.
Twenty-five Pythium isolates comprising five species viz., Pythium aphanidermatum, P. deliense, P. graminicola, P. heterothallicum and P. ultimum from different geographical locations of Tamil Nadu (Coimbatore, 4; Cuddalore, 6; Dindigul, 1; Dharmapuri, 1; Erode, 1; Madurai, 1; Namakkal, 7; Thanjavur, 1; Theni, 1; Thirunelveli, 1 and Vellore, 1) isolated from chilli crop were analysed with randomly amplified polymorphic DNA (RAPD) markers. Morphological and molecular characteristics of these different species were correlated with the RAPD. Polymerase chain reaction amplification of total genomic DNA with six random primers generated unique banding patterns depending on the primer and the isolate. The isolate I17 produced identical banding patterns, while other isolates produced dissimilar bands within the particular species, indicating the genetic diversity among the isolates within a species. Morphological characters were also different from each other even in isolate I17 which shared identical bands. Cluster analysis showed minimum and maximum per cent similarities among the tested Pythium species which ranged from 49 to 89%, respectively. RAPD markers were better suited for differentiating isolates within a species rather than species.  相似文献   

13.
During a survey of Pythium species in soils of Japan, Pythium isolates growing at high temperatures were obtained from an uncultivated field soil in Wakayama Prefecture. All six isolates showed similar morphology to each other and had complexly branched secondary hyphae, globose nonproliferating sporangia, and smooth-surfaced oogonia that have one or two oospores per oogonium. The combination of these characteristics differentiated these isolates from other Pythium species reported. Phylogenetic analyses based on sequences of the ribosomal DNA ITS and D1/D2 region of the large subunit showed that all Pythium isolates were clustered in a single clade that was distantly related to other known clades of the genus. We described these isolates as a new Pythium species, Pythium apinafurcum, based on morphology and molecular phylogeny. The P. apinafurcum isolates nonsymptomatically infected the roots of seedlings of bermudagrass, cabbage, and cucumber in a pot inoculation test.  相似文献   

14.
Test-tube plants and suspension cell cultures of two cultivars of the potato (Solanum tuberosum L.) differing in their resistance to ring rot caused by Clavibacter michiganensis subsp. sepedonicus and six strains of this bacterium were used to test the relationship between the virulence, the leaf ability to adsorb bacteria, and the symptoms of the disease. In addition to chlorosis and drying, heavy inoculation with virulent strains caused unusual symptoms, such as leaf necrotic lesions. In the resistant cultivar, the necrotic lesions were predominantly local, whereas in the susceptible cultivar, they expanded. Unlike the susceptible cultivar, suspension cells of the resistant cultivar weakly adhered bacteria of the tested strains. Bacteria entered the plants through the leaf stomata. The sorption and penetration were much more pronounced in the susceptible cultivar. It was concluded that strain virulence varies depending on the conditions of inoculation, and uncharacteristic symptoms (necrotic lesions) arise. The local necrotic lesions are considered a hypersensitive response, and exopolysaccharides of the pathogen as the factors of virulence.  相似文献   

15.
16.
Summary Exudates from germinating seed ofP. resinosa stimulated the germination of sporangia and increased thePythium populations in soil. Sporangia ofP. irregulare did not germinate in natural soil and needed exogenous nutrition for their germination. Different components of the exudate, particularly glucose and asparagine, effectively stimulated sporangial germination. This is in agreement with an earlier finding withPythium ultimum 3.  相似文献   

17.
The elicitor activity of compounds extracted from the mycelia of six species of phytopathogenic fungi was assessed from the sizes of necrotic lesions on the external surface of the living trunk phloem of five coniferous species inhabiting Siberia: Siberian larch (Larix sibirica L.), Scotch pine (Pinus sylvestris L.), Siberian spruce (Picea obovata Ledeb.), Siberian fir (Abies sibirica L.), and cedar pine (Pinus sibirica (Rupr.) Mayr.). The compounds for inoculation were extracted from the mycelium of ascomycetes imperfect, and basidium fungi; the living mycelia of these fungi were also used. The fungal extract or mycelium was placed into the hollows 7 mm in diameter in the trunk bark. Infection triggered the formation of hypersensitivity necrotic lesions in the inner bark exceeding in size those appeared after control wounding of four tree species (larch, pine, spruce, and cedar); fir was an exclusion. In experiments with tree trunks and conifer calluses, a dependence of immune response parameters (the sizes of necrotic lesions and the content of lignin and bound proanthocyanidins) on the quantity of the fungal preparation was elucidated. The largest necrotic lesions appeared after injection of 500μg of the fungal preparation into the hollow in the trunk, and its higher quantities did not increase the indices measured. The size of the necrotic lesion on the trunk bark is supposed to be used as a promising index characterizing the level of tree immunity and tolerance under various ecological conditions.  相似文献   

18.
Mild to extensive feeder root rot was present in all 23 orchards, with trees showing symptoms of citrus decline from nine areas in the Transvaal Province of South Africa. Phytophthora nicotianae and Pythium spp. were isolated from diseased roots and rhizosphere soils in all areas sampled. Isolations from diseased feeder roots showed P. nicotianae present in 26% of orchards during Spring and 61% of orchards during Autumn, while Pythium spp. were present in 56% of orchards during Spring and 65% of orchards during Autumn. In isolations from baited rhizosphere soils, P. nicotianae was present in 56% of orchards during Spring and 52% of orchards during Autumn, while Pythium spp. were present in 69% of orchards during Spring and 82% of orchards during Autumn. In rhizosphere soils, the mean population density of Pythium spp. was higher than that of P. nicotianae throughout the season. Only P. nicotianae was consistently isolated during thesurvey. Different Pythium spp. were isolated of which two were tentatively identified as P. paroecandrum and Pythium‘Gp.G’.  相似文献   

19.
Summary The growth of several Pythium species is increased between 65 and 100% if cholesterol is added to the growth medium. The optimum concentration is 15 mcg per ml. Mycelium of Pythium ultimum, in which cholesterol is present, incorporates glucose-U-14C and releases 14CO2 at a faster rate than the corresponding sterol free mycelium. In sterol containing cells, more 14CO2 is produced from a given amount of absorbed glucose-U-14C than in sterol free cells, there is thus in sterol containing hyphae a higher level of energy production. This condition can account for the increase in growth due to cholesterol. Only if sterols are present in the cellular membranes of Pythium species is the optimum synthetic capacity reached.  相似文献   

20.
The genus Pythium, with slightly over 280 described species, has been classified traditionally with other filamentous, coenocytic, sporangia-producing fungi as “Phycomyetes”. However, with recent advances in chemical, ultrastructural and molecular studies, Pythium spp. are now considered as “fungus-like organisms” or “pseudo-fungi” and are placed in the Kingdom Chromista or Kingdom Straminopila, distinct from the true fungi of the Kingdom Fungi or Kingdom Mycota. They are widely distributed throughout the world as soil saprophytes or plant pathogens. Because of the warm moist maritime climate, Taiwan, China, is especially rich in Pythium species. To date, 48 species of Pythium have been reported from Taiwan, China, with the dominant species being Py. vexans, Py. spinosum, Py. splendens, Py. aphanidermatum, Py. dissotocum and Py. acanthicum. There is no definite geographical distribution of Pythium spp. in Taiwan, China. Twenty nine species of Pythium have proven to be plant pathogens attacking a wide variety of woody and herbaceous plants primarily causing pre- and post-emergence seedling damping-off, root rot, stem rot and rotting of fruits, tubers and ginger rhizomes, resulting in serious economic losses. The most important plant pathogenic species include Py. aphanidermatum and Py. Myriotylum, which are most active during the hot and wet summer months; whereas Py. splendens, Py. spinosum, Py. ultimum and Py. irregulare cause the greatest damage in the cool winter. Most Pythium spp. are non-specific pathogens, infecting mainly juvenile or succulent tissues. This review attempts to assess the taxonomic position of the genus Pythium and provide details of the historical development of the study of Pythium as pathogens in Taiwan, China, causing diseases of sugarcane, trees, vegetables, fruits, specialty crops and flowering plants, as well as measures to control these diseases. Of special note is the introduction of the S-H mixture which, when used as soil amendment, effectively controls many soil-borne Pythium diseases during the early stages of plant growth. The diversity of Pythium species in Taiwan, China, is discussed in comparison with the situation in the mainland of China and suggestions are made to fully utilize Pythium spp. as agents for biological control, in industry and medicine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号