首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Insulin activates the Raf-1 protein kinase   总被引:9,自引:0,他引:9  
Several growth factors and mitogens have been shown to activate the proto-oncogene product Raf-1 protein kinase in murine fibroblasts, apparently through a direct agonist-stimulated tyrosine phosphorylation of the Raf-1 protein. We investigated the possibility that insulin could also activate the Raf-1 kinase, since its receptor also contains an intrinsic insulin-activated protein tyrosine kinase activity. In several cell lines expressing relatively large numbers of insulin receptors, insulin rapidly stimulated the phosphorylation of immunoreactive Raf-1 protein. In H35 cells, a line of well differentiated rat hepatoma cells, the effect of insulin was maximal by 6 min and at 7 nM insulin and occurred normally in cells virtually completely depleted of protein kinase C activity. The insulin-stimulated increase in Raf-1 protein phosphorylation occurred concurrently with a 3-fold increase in Raf-1 protein kinase activity. However, phosphoamino acid analysis showed that only phosphoserine and a trace of phosphothreonine were present in the Raf-1 protein after insulin stimulation of the cells. This was true even when investigated at shorter times (4 min) after insulin stimulation and despite the use of phosphotyrosine phosphatase inhibitors. We conclude that insulin can rapidly activate the Raf-1 kinase in some insulin-sensitive cell types but that this activation probably occurs through a mechanism distinct from direct phosphorylation of the Raf-1 protein by the insulin receptor protein tyrosine kinase.  相似文献   

2.
Insulin stimulates the phosphorylation of the 40 S ribosomal subunit protein, S6, in intact 32P-labeled H4IIE-C3 cells, a rat hepatoma line. Cell-free cytosolic extracts from H4 cells exhibit a 5- to 10-fold increase in S6 protein kinase activity (measured by transfer of 32P to exogenous 40 S rat liver ribosomal subunits) when prepared from cells exposed to insulin prior to homogenization. Stimulation of S6 phosphorylation in intact cells and activation of S6 protein kinase in cell-free extracts are both detectable within 2 min after insulin, and are maximally stimulated by 10 min. Half-maximal stimulation is observed at 10(-11) M insulin. The stimulated S6 kinase activity requires ethylene glycol bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid to be present during the kinase assay for full expression. Despite the presence of a 5- to 10-fold increase in S6 protein kinase activity, the extracts from insulin-treated cells exhibit no stimulated kinase activity toward casein, histone, or ATP-citrate lyase assayed under the conditions employed for S6. Thus, insulin mediates the rapid activation of protein kinase specific for ribosomal protein S6 by an as yet unidentified mechanism.  相似文献   

3.
The activation of Xenopus oocyte ribosomal protein S6 kinase during oocyte maturation was investigated. Insulin treatment caused a rapid three-fold activation of S6 kinase that returned to near basal levels by 2 h postinsulin. This was followed by a later fivefold increase from 2 to 5 h with insulin, culminating with germinal vesicle breakdown. Pretreatment of oocytes with multiple protein synthesis inhibitors increased the level of basal activity, but did not greatly alter the time course of early activation of S6 kinase by insulin. In contrast, the later increase in S6 kinase activity was completely inhibited by pretreatment with cycloheximide. However, near maximal increases in S6 kinase activity occurred following injection of maturation-promoting factor, even in the presence of multiple protein synthesis inhibitors. Brief exposure to cycloheximide after 30 min or more of insulin stimulation increased the magnitude of insulin-stimulated activity without changing the overall pattern of activity increase. These results suggest that a rapidly turning-over inhibitor of S6 kinase exists, and the activation of S6 kinase by insulin occurs by protein synthesis-dependent and -independent mechanisms.  相似文献   

4.
The activity of adenosine kinase (AK) was significantly impaired in splenocytes isolated from diabetic rats. Administration of insulin to diabetic animals restored AK activity, protein, and mRNA levels in diabetic splenocytes. Experiments performed on cultured rat lymphocytes demonstrated that insulin did not change the stability of AK mRNA. Insulin induced AK gene expression in a dose- and time-dependent manner. Maximal increases in AK mRNA (3.9-fold) and activity level (3.7-fold) were observed at the fourth and fifth hours of cell incubation with 10 nM insulin, respectively. The insulin effect on AK expression was not influenced by dibutyryl cAMP (dcAMP). On the other hand dcAMP weakly increased (1.7-fold) basal expression of AK. Exposure of rat lymphocytes to wortmannin, an inhibitor of phosphatidylinositol 3-kinase (PI3K), or rapamycin, an inhibitor of mTOR, did not affect the ability of insulin to stimulate expression of AK. Prior treatment of the cells with 10 microM PD98059, an inhibitor of mitogen-activated protein kinase (MAPK) kinase (MEK) completely blocked insulin-stimulated expression of AK gene. Insulin produced a significant transient increase in the tyrosine phosphorylation of ERK1/2, and PD98059 inhibited this phosphorylation. Furthermore exposure of cells to insulin has resulted in transient phosphorylation of Elk-1 on Ser-383 and sustained elevation of c-Jun and c-Fos protein. The maximal phosphorylation of Elk-1 was observed at 15 min, and was blocked by PD98059. We concluded that insulin stimulates AK gene expression through a series of events occurring sequentially. This includes activation of the MAPK cascade and subsequent phosphorylation of Elk-1 followed by increased expression of c-fos and c-jun genes.  相似文献   

5.
The activity of acetyl-CoA carboxylase (ACC), a rate-limiting enzyme of fatty acid biosynthesis and malonyl-CoA production, can be regulated by several mechanisms, including multisite covalent phosphorylation, both in vitro and in intact cells. Evidence has been presented by others to indicate that a 5'-AMP-activated protein kinase (AMPK) is likely the major regulatory kinase active on ACC. While insulin is known to activate ACC in several cell types, accompanied by changes in ACC phosphorylation, the mechanism underlying this activation has been obscure. In the present study, we have examined, in Fao hepatoma cells, the effects of insulin on ACC and AMPK activity, the latter measured with a synthetic peptide corresponding to one of the phosphorylation sites on ACC for AMPK. Our results show that insulin leads to inhibition of kinase activity prior to the onset of ACC activation; the peak of maximal kinase inhibition (approximately 35% at 10 min) is seen to precede the onset of ACC activation (20 min). The inhibition of kinase activity due to insulin is observed both in the absence and presence of varying stimulating concentrations of added 5'-AMP. Both kinase inhibition and ACC activation display similar insulin sensitivity (A50 0.3 nM). Preservation of this insulin-induced kinase inhibition requires the presence of protein phosphatase inhibitors in the cell lysis buffer, suggesting that AMPK itself might be regulated by insulin-stimulated changes in kinase phosphorylation. Taken together, these data are consistent with the hypothesis that the 5'-AMP-activated protein kinase is a regulated component of the insulin signal transduction pathway and may be the major target for insulin regulation of ACC.  相似文献   

6.
The effect of insulin on the state of phosphorylation of hormone-sensitive lipase, cellular cAMP-dependent protein kinase activity and lipolysis was investigated in isolated adipocytes. Increased phosphorylation of hormone-sensitive lipase in response to isoproterenol stimulation was closely paralleled by increased lipolysis. Maximal phosphorylation and lipolysis was obtained when the cAMP-dependent protein kinase activity ratio was greater than or equal to 0.1, and this corresponded to a 50% increase in the state of phosphorylation of hormone-sensitive lipase. Insulin (1 nM) reduced cAMP-dependent protein kinase activity and also reduced lipolysis with both cAMP-dependent and cAMP-independent antilipolytic effects up to an activity ratio of approximately 0.4, above which the antilipolytic effect was lost. Insulin caused a decrease in the state of phosphorylation of hormone-sensitive lipase at all levels of cAMP-dependent protein kinase activity. Under basal conditions, with cAMP-dependent protein kinase activity at a minimum, this reflected a dephosphorylation of the basal phosphorylation site of hormone-sensitive lipase in a manner not mediated by cAMP. When the cAMP-dependent protein kinase was stimulated to phosphorylate the regulatory phosphorylation site of hormone-sensitive lipase, the insulin-induced dephosphorylation occurred both at the basal and regulatory sites. At low levels of cAMP-dependent protein kinase activity ratios (0.05-0.1), dephosphorylation of the regulatory site correlated with reduced cAMP-dependent protein kinase activity, but not at higher activity ratios (greater than 0.1). Stimulation of cells with isoproterenol produced a transient (1-5 min) peak of cAMP-dependent protein kinase activity and of phosphorylation of hormone-sensitive lipase. The state of phosphorylation also showed a transient peak when the protein kinase was maximally and constantly activated. In the presence of raised levels of cellular cAMP, insulin (1 nM) caused a rapid (t1/2 approximately 1 min) dephosphorylation of hormone-sensitive lipase. In unstimulated cells the reduction in phosphorylation caused by insulin was distinctly slower (t1/2 approximately 5 min). These findings are interpreted to suggest that insulin affects the state of phosphorylation of hormone-sensitive lipase and lipolysis through a cAMP-dependent pathway, involving reduction of cAMP, and through a cAMP-independent pathway, involving activation of a protein phosphatase activity that dephosphorylates both the regulatory and basal phosphorylation sites of hormone-sensitive lipase.  相似文献   

7.
Soluble extracts prepared from quiescent Swiss mouse 3T3 cells that had been briefly exposed to various mitogens exhibited a 2- to 3-fold elevation in phosphorylating activities toward ribosomal protein S6 and a synthetic peptide, Arg-Arg-Leu-Ser-Ser-Leu-Arg-Ala (RRLSSLRA), patterned after a phosphorylation site sequence from S6. Optimal activation of the phosphorylating activity occurred within 15-20 min of exposure of the cells to platelet-derived growth factor (10 ng/ml), epidermal growth factor (100 nM), and insulin (100 nM), and 2-5 min after 12-O-tetradecanoylphorbol-13-acetate (TPA) (100 nM) treatment. Fractionation of the cytosolic extracts from mitogen- or TPA-treated cells on Sephacryl S-300, TSK-400, and DEAE-Sephacel columns gave results suggesting that a single stimulated kinase accounted for the enhanced S6 and RRLSSLRA phosphorylating activities. The mitogen-activated kinase had an apparent Mr of about 85,000 as determined with Sephacryl S-300, but eluted with an apparent Mr of 26,000 from a TSK-400 high pressure liquid chromatography column. The S6 kinase was also stimulated in cytosols from insulin-like growth factor 1- (100 nM), vasopressin- (250 nM), prostaglandin F2 alpha- (250 nM), and 10% fetal calf serum-treated cells but not from quiescent cells exposed to beta-transforming growth factor (2 ng/ml). TPA, vasopressin and prostaglandin F2 alpha appeared to stimulate this kinase via a protein kinase C-dependent mechanism, since the responses to these hormones, but not to platelet-derived growth factor, epidermal growth factor, and insulin, were lost in protein kinase C-depleted cells.  相似文献   

8.
The role of tyrosine phosphorylation of the insulin receptor substrate 1 (IRS-1) was studied utilizing parental CHO cells or CHO cells that overexpress IRS-1, the insulin receptor, or both IRS-1 and the insulin receptor. Insulin stimulation of these four cell lines led to progressive levels of IRS-1 tyrosine phosphorylation of one, two, four, and tenfold. Maximal insulin-stimulated IRS-1 associated Ptdlns 3′-kinase activit in these cells was 1-, 1.5-, 3-, and 3-fold, while insulin sensitivity, as determined by ED50, was 1-, 2.5-, 10-, and 10-fold. Both sensitivity and maximal response paralleled the increased level of phosphotyrosyl-IRS-1; however, the increased level of phosphotyrosyl-IRS-1 seen in CHO/IR/IRS-1 cells did not further increase these responses. Likewise, maximal insulin-stimulated MAP kinase activity in these cell lines increased in parallel with IRS-1 tyrosine phosphorylation except in the CHO/IR/IRS-1 cell lines with activity levels of one-, five-, nine-, and ninefold. However, insulin sensitivity of the MAP and S6 kinases and maximal insulin-stimulated S6 kinase activity was not changed by a twofold increase in phosphotyrosyl-IRS-1, but an increase was observed with insulin-stimulated receptor autophosphorylation and kinase activity in CHO/IR cells which led to a tenfold increase in insulin receptor autophosphorylation and a fourfold increase in IRS-1 tyrosine phosphorylation. Thus, these three kinase activities may be differentially coupled to the activation of the insulin receptor kinase activity via IRS-1 and other possible cellular substrates. © 1995 Wiley-Liss, Inc.  相似文献   

9.
In Xenopus oocytes ribosomal protein S6 becomes phosphorylated on serine residues in response to hormones or growth factors and following microinjection of the tyrosine-specific protein kinases associated with Rous sarcoma virus or Abelson murine leukemia virus. To begin characterization of the enzymes responsible for S6 phosphorylation in this system, we have undertaken the purification of S6 protein kinases from unfertilized Xenopus eggs. DEAE-Sephacel chromatography of crude extracts revealed two peaks of S6 kinase activity, and the peak eluting at 160 mM NaCl was chosen for further purification. Successive chromatography on Mono S, Sephacryl S-200, Mono Q, and heparin-Sepharose resulted in purification of the enzyme to a single protein migrating at Mr = 92,000 on polyacrylamide gels. The final preparation was purified about 500-fold from the DEAE-Sephacel peak with a recovery of 10%. Apparent Km values of the enzyme for ATP and 40 S subunits were 28 and 5 microM, respectively, and the specific activity with 330 microM ATP and 5.6 microM 40 S subunits was 300 nmol/min/mg. The enzyme was inhibited by beta-glycerophosphate, sodium fluoride, potassium phosphate, ADP, heparin, quercetin, and spermine. The availability of a purified S6 protein kinase should facilitate elucidation of the molecular mechanism of S6 phosphorylation during growth stimulation.  相似文献   

10.
Treatment of adipocytes with okadaic acid (a specific inhibitor of type 1 and 2a protein phosphatases) resulted in a rapid 8-10-fold stimulation of cell extract myelin basic protein (MBP) kinase activity (t1/2 = 10 min) and kinase activity toward a synthetic peptide RRLSSLRA (S6 peptide) (t1/2 = 5 min). Insulin brought about a smaller stimulation of these two activities (t1/2 = 2.5 min). MBP kinase activity from cells treated with okadaic acid or insulin was resolved by anion exchange chromatography into two well defined peaks; S6 peptide kinase activity was less well resolved. The two partially purified MBP kinases were inactivated by the protein tyrosine phosphatase CD45 or by protein phosphatase 2a (PP-2a). In contrast, partially purified S6 peptide kinase activity was inactivated only by PP-2a or protein phosphatase 1 (PP-1). Furthermore, a 38-kDa protein which co-eluted with one peak of MBP kinase and a 42-kDa protein which co-eluted with the other peak of MBP kinase were phosphorylated on tyrosine after treatment with okadaic acid. These findings illustrate several important points concerning regulation of MBP and S6 peptide kinases. First, these protein kinases are regulated by phosphorylation, and, second, in the absence of hormonal stimuli their activities are strongly suppressed by protein phosphatases. Lastly, the increased tyrosine phosphorylation accompanying the activation of MBP kinases following okadaic acid treatment suggests a role for PP-2a in events that are mediated by tyrosine phosphorylation.  相似文献   

11.
p21ras plays an important role in the control of cell proliferation. The molecular mechanisms implicated are unknown. We report that the injection of oncogenic Lys12 Ras into Xenopus laevis oocytes promoted the activation of mitogen-activated protein kinase (MAP kinase) after a lag of about 90 min. MAP kinase activity was 10-fold higher 4 h after injection of oncogenic Lys12 Ras than after injection of nononcogenic Gly12 Ras. The stimulated MAP kinase activity remained at a plateau for at least 18 h. Maximal stimulation was obtained with 5 ng of Lys12 Ras, which is similar to the amount that elicits germinal vesicle breakdown. DEAE-Sephacel chromatography of extracts from Lys12 Ras-injected oocytes showed one peak of MAP kinase. MAP kinase activation by Lys12 Ras was associated with tyrosine phosphorylation of MAP kinase (p42). As previously shown, the S6-kinase II (likely pp90rsk), which is activated in vitro by MAP kinase, was also activated by oncogenic Lys12 Ras. Lys12 Ras with an additional mutation (Glu38) in the effector region that binds GTPase-activating protein (GAP) did not promote MAP kinase or S6 kinase activations. Thus, GAP may be involved downstream to Ras in these activation processes. Our results indicate that the Ras-GAP complex promotes MAP kinase activation in oocytes. This supports the idea that Ras-GAP controls MAP kinase, a kinase implicated in the action of various stimuli.  相似文献   

12.
13.
An insulin-stimulated phosphorylation cascade was examined in rat liver after insulin injection via a portal vein by the use of immune complex kinase assays specific to the mitogen-activated protein (MAP) kinase and S6 kinase II homologue (rsk) kinase. We have prepared an antibody against the peptide consisting of a carboxyl-terminal portion of the extracellular signal-regulated kinase 1 (alpha C92), one of the MAP kinases, and an antibody against the peptide consisting of the carboxyl terminus of the mouse S6 kinase II homologue (alpha rsk(m)C). In alpha C92 immune complex assay, maximal activation of rat liver MAP kinases (approximately 4.3-fold) were observed 4.5 min after insulin injection. We also observed an insulin-stimulated MAP kinase activity (approximately 3-fold) in liver extracts from insulin-treated rat in fractions eluted from phenyl-Sepharose with 30-50% ethylene glycol. Kinase assay in myelin basic protein (MBP)-containing gel after sodium dodecyl sulfate-polyacrylamide gel electrophoresis followed by denaturation with 6 M guanidine HCl, and renaturation revealed that insulin injection stimulated the kinase activity of the 42- and 44-kDa proteins, which corresponded to the two distinct MAP kinases. In alpha rsk(m)C immune complex assay, maximal stimulation (approximately 5-fold) of the S6 peptide (Arg-Arg-Leu-Ser-Ser-Leu-Arg-Ala) kinase activity was observed 7.5 min after insulin injection. In addition, MAP kinases purified from insulin-treated rat liver were able to activate S6 peptide kinase activity in vitro in alpha rsk(m)C immunoprecipitates from untreated rat liver, accompanied by the appearance of several phosphorylated bands including a major band at 88 kDa. We also examined whether insulin injection stimulates the MAP kinase activator (Ahn, N. G., Seger, R., Bratlien, R. L., Diltz, C. D., Tonks, N. K., and Krebs, E. G. (1991) J. Biol. Chem. 266, 4220-4227) in rat liver. Using recombinant Xenopus MAP kinase, fractions of Q-Sepharose eluted early in the NaCl gradient were found to have MAP kinase activator activity accompanied by the phosphorylation of 42-kDa recombinant Xenopus MAP kinase. From these data, we demonstrate three tiers of a cascade composed of the MAP kinase activator, MAP kinases, and an S6 peptide kinase activity in rat liver under physiological conditions in the intact animal.  相似文献   

14.
Treatment of quiescent human embryonic lung fibroblastic cells (TIG-3) with 10 nM epidermal growth factor (EGF) resulted in 4-6-fold activation of a protein kinase activity in cell extracts that phosphorylated microtubule-associated protein 2 (MAP2) on serine and threonine residues in vitro. The half-maximal activation of the kinase activity occurred within 5 min after EGF treatment, and the maximal level was attained at 15 min. Casein and histone were very poor substrates for this EGF-stimulated MAP2 kinase activity. The activation of the kinase activity persisted after brief dialysis. Interestingly, the EGF-stimulated MAP2 kinase activity was sensitive to micromolar concentrations of free Ca2+; it was inhibited 50% by 0.5 microM Ca2+ and almost totally inhibited by 2 microM Ca2+. The activated MAP2 kinase activity was recovered in flow-through fractions on phosphocellulose column chromatography, while kinase activities that phosphorylate 40 S ribosomal protein S6 (S6 kinase activities) were mostly retained on the column and eluted at 0.5 M NaCl. Platelet-derived growth factor, fibroblast growth factor, insulin-like growth factor-I, insulin, phorbol esters (12-O-tetradecanoylphorbol 13-acetate and phorbol 12,13-dibutyrate), and fresh fetal calf serum also induced activation of the MAP2 kinase in the quiescent TIG-3 cells. The activated MAP2 kinase activity in cells stimulated by platelet-derived growth factor, fibroblast growth factor, insulin-like growth factor-I, insulin, 12-O-tetradecanoylphorbol 13-acetate, phorbol 12,13-dibutyrate, or fetal calf serum was almost completely inhibited by 2 microM Ca2+, like the EGF-stimulated kinase. In addition, MAP2 phosphorylated by the kinase activated by different stimuli gave very similar phosphopeptide mapping patterns. These results suggest that several growth factors, phorbol esters, and serum activate a common, Ca2+-inhibitable protein kinase which is distinct from S6 kinase in quiescent human fibroblasts.  相似文献   

15.
Insulin was found to stimulate the serine/threonine kinase activity of the proto-oncogene product Raf-1. This stimulation was observed in HeLa, NIH 3T3, and Chinese hamster ovary cells, all overexpressing the human insulin receptor. In the HeLa cells, 100 pM insulin gave a significant increase in Raf-1 kinase activity, and 100 nM insulin caused a maximal 2-5-fold increase in activity. The increase in activity was detected after 2 min of insulin treatment and peaked after 5 min. In addition to stimulating Raf-1 kinase activity, insulin caused a shift in the electrophoretic mobility of the Raf-1 protein and an increase in the amount of serine phosphorylation of Raf-1. Moreover, a serine/threonine-specific phosphatase, phosphatase 1, but not two tyrosine-specific phosphatases, was found to deactivate the insulin-activated Raf-1 kinase activity. These findings indicate that insulin activates the serine/threonine kinase activity of the Raf-1 proto-oncogene by increasing its content of phosphoserine.  相似文献   

16.
A synthetic peptide Arg-Arg-Leu-Ser-Ser-Leu-Arg-Ala, the structure of which is based on that of a phosphorylated sequence in ribosomal protein S6, was employed as a probe for stimulated kinase activity in Xenopus laevis oocytes induced to mature with insulin or progesterone. Insulin elicited an early (20-30 min) 3-fold stimulation of S6 peptide phosphorylating activity that was not evident with progesterone. However, both hormones produced a delayed 7-12-fold stimulation of S6 peptide phosphorylating activity at the time of germinal vesicle breakdown. The results of DEAE-Sephacel, Sephacryl S-200, TSK-400, and heparin-Sepharose chromatographic fractionation experiments imply that a common S6 peptide kinase is activated as a consequence of short and long term insulin exposure, as well as in long term progesterone treatment of oocytes. Omission of potassium from the oocyte culture medium greatly facilitated insulin-induced meiotic maturation.  相似文献   

17.
Growth of the human mammary tumor cell line ZR-75-1 is stimulated by epidermal growth factor (EGF) and alpha-type transforming growth factor (alpha TGF), as well as by estradiol (E2). The role of activation of S6 kinase and S6 phosphorylation in the EGF(alpha TGF)-induced and E2-induced growth was investigated. Maximal effects on growth are observed at 10 nM EGF or alpha TGF. EGF as well as alpha TGF treatment of serum-starved cells leads to rapid activation of S6 kinase; the activity is increased about tenfold after 30 min of EGF treatment and declines with the time reaching about 25% of the maximal activity after 2 h of EGF treatment. Similar to the growth response, S6 kinase is activated at lower doses of EGF than alpha TGF and shows a maximal response at 10 nM for both growth factors. In contrast to this finding the incubation of serum-starved cells with E2 over a concentration range between 1 pM and 10 nM and times from 30 min to 4 h does not lead to increased S6 kinase activity. On investigating whether this lack of response to E2 is due to desensitization of the system by induction of alpha TGF it was found that preincubation of cells with alpha TGF for 2-6 h desensitizes them to reactivation of S6 kinase by alpha TGF, whereas preincubation with E2 does not. When S6 phosphorylation is monitored over times from 1 h to 6 h, it is observed that EGF leads to increased S6 phosphorylation, whereas E2 does not. The rate of onset of protein synthesis in the first 2 h of stimulation, when EGF-induced S6 phosphorylation is maximal, is more rapid with EGF than with E2. The results suggest that different pathway are involved in E2-induced and EGF(alpha TGF)-induced proliferation.  相似文献   

18.
Activation of ribosomal S6 kinase (RSK) during porcine oocyte maturation   总被引:1,自引:0,他引:1  
The normal kinetics of ribosomal S6 kinase (RSK) during the meiotic maturation of porcine oocytes were examined. The phosphorylation states of RSK and extracellular signal-regulated kinase (ERK), major mitogen-activated protein (MAP) kinases in maturating porcine oocytes, were detected by Western blotting analysis. The S6 protein kinase activity was assayed using a specific substrate peptide which contained the major phosphorylation sites of S6 kinase. Full phosphorylation of RSK was correlated with ERK phosphorylation and was observed before germinal vesicle breakdown. S6 kinase activity was low in both freshly isolated and 20 h cultured oocytes. S6 kinase activity was significantly elevated in matured oocytes to a level about 6 times higher than that in freshly isolated oocytes. Furthermore, full phosphorylation of RSK was inhibited when oocytes were treated with U0126, a specific MAP kinase kinase inhibitor, in dose-dependent manner, indicating that RSK is one of the substrates of MAP kinase. These results suggest that the activation of RSK is involved in the regulation of meiotic maturation of porcine oocytes.  相似文献   

19.
The tyrosine kinase activity intrinsic to the insulin receptor is thought to be important in eliciting the intracellular responses to insulin; however, it has been difficult to determine the biochemical functions of the proteins which are substrates for this receptor. Treatment of Chinese hamster ovary (CHO) cells overexpressing the human insulin receptor (CHO.T) with insulin results in a 38 +/- 11 (mean +/- S.E., n = 9)-fold increase in a phosphatidylinositol (PtdIns) kinase activity in anti-phosphotyrosine immunoprecipitates of whole cell lysates. One minute of treatment of cells with insulin causes a dramatic increase in the PtdIns kinase activity in the anti-phosphotyrosine immunoprecipitates; the activity peaks within 5 min and remains elevated for at least 60 min after addition of insulin to the cells. This response is only slightly delayed compared with the time course we observe for activation of the insulin receptor tyrosine kinase. The insulin dose-response curves are also very similar for the activation of the insulin receptor tyrosine kinase activity and for the appearance of PtdIns kinase in the anti-phosphotyrosine immunoprecipitates. Stimulation of the endogenous insulin receptor of CHO cells also results in the association of PtdIns kinase activity with phosphotyrosine-containing proteins. However, CHO cells are less sensitive to insulin than CHO.T cells, and the maximal PtdIns kinase activity in antiphosphotyrosine immunoprecipitates from CHO cells is one-sixth that of CHO.T cells. In contrast, immunoprecipitates from CHO.T cells made with anti-insulin receptor antibodies do not contain significant levels of PtdIns kinase activity. This demonstrates that the PtdIns kinase is either a substrate for the insulin receptor tyrosine kinase or is tightly associated with another tyrosine phosphoprotein, which is not the insulin receptor.  相似文献   

20.
Ribosomal protein S6 (S6rp) is phosphorylated by the p70S6K enzyme in mammals, under mitogen/IGF regulation. This event has been correlated with an increase in 5'TOP mRNA translation. In this research, a maize S6 kinase (ZmS6K) was isolated from maize (Zea mays L.) embryonic axes by human p70S6K antibody immunoprecipitation. This enzyme, a 62 kDa peptide, proved to be specific for S6rp phosphorylation, as revealed by in vivo and in vitro kinase activity using either the 40S ribosomal subunit or the RSK synthetic peptide as the substrates. ZmS6K activation was achieved by phosphorylation on serine/threonine residues. Specific phospho-Threo recognition by the p70S6K antibody directed to target phospho-Threo residue 389 correlated with ZmS6K activation. The ZmS6K protein content remained almost steady during maize seed germination, whereas the ZmS6K activity increased during this process, consistent with Zm6SK phosphorylation. Addition of insulin to germinating maize axes proved to increase ZmS6K activity and the extent of S6rp phosphorylation. These events were blocked by rapamycin, an inhibitor of the insulin signal transduction pathway in mammals, at the TOR (target of rapamycin) enzyme level. We conclude that ZmS6K is a kinase, structurally and functionally ortholog of the mammalian p70S6K, responsible for in vivo S6rp phosphorylation in maize. Its activation is induced by insulin in a TOR-dependent manner by phosphorylation on conserved serine/threonine residues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号