首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Theactin-binding proteins dystrophin and -actinin are members of afamily of actin-binding proteins that may link the cytoskeleton tomembrane proteins such as ion channels. Previous work demonstrated thatthe activity of Ca2+ channels can be regulated by agentsthat disrupt or stabilize the cytoskeleton. In the present study, weemployed immunohistochemical and electrophysiological techniques toinvestigate the potential regulation of cardiac L-type Ca2+channel activity by dystrophin and -actinin in cardiac myocytes andin heterologous cells. Both actin-binding proteins were found tocolocalize with the Ca2+ channel in mouse cardiac myocytesand to modulate channel function. Inactivation of the Ca2+channel in cardiac myocytes from mice lacking dystrophin(mdx mice) was reduced compared with that in wild-typemyocytes, voltage dependence of activation was shifted by 5 mV to morepositive potentials, and stimulation by the -adrenergic pathway andthe dihydropyridine agonist BAY K 8644 was increased. Furthermore, heterologous coexpression of the Ca2+ channel with muscle,but not nonmuscle, forms of -actinin was also found to reduceinactivation. As might be predicted from a reduction ofCa2+ channel inactivation, a prolonging of the mouseelectrocardiogram QT was observed in mdx mice. These resultssuggest a combined role for dystrophin and -actinin in regulatingthe activity of the cardiac L-type Ca2+ channel and apotential mechanism for cardiac dysfunction in Duchenne and Beckermuscular dystrophies.

  相似文献   

2.
We have shown previously that the N-terminal actin-binding domain of alpha-actinin retains activity when expressed in E. coli as a fusion protein with glutathione-S-transferase. In the present study we have made a series of N- and C-terminal deletions within this domain and show that an actin-binding site is contained within residues 120-134. Amino acid substitutions within this region indicate that several highly conserved hydrophobic residues are involved in binding to F-actin. The hypothesis that the interaction between alpha-actinin and F-actin is predominantly hydrophobic in nature is supported by the observation that binding is relatively independent of salt concentration.  相似文献   

3.
Alpha-actinin belongs to the spectrin family of actin crosslinking and bundling proteins that function as key regulators of cell motility, morphology and adhesion. The actin-binding domain (ABD) of these proteins consists of two consecutive calponin homology (CH) domains. Electron microscopy studies on ABDs appear to support two competing actin-binding models, extended and compact, whereas the crystal structures typically display a compact conformation. We have determined the 1.7A resolution structure of the ABD of alpha-actinin 1, a ubiquitously expressed isoform. The structure displays the classical compact conformation. We evaluated the two binding models by surface conservation analysis. The results show a conserved surface that spans both domains and corresponds to two previously identified actin-binding sites (ABS2 and ABS3). A third, and probably less important site, ABS1, is mostly buried in the compact conformation. However, a thorough examination of existing structures suggests a weak and semi-polar binding interface between the two CHs, leaving open the possibility of domain reorientation or opening. Our results are consistent with a two-step binding mechanism in which the ABD interacts first in the compact form observed in the structures, and then transitions toward a higher affinity state, possibly through minor rearrangement of the domains.  相似文献   

4.
Cytokeratins 8 and 19 concentrate at costameres of striated muscle and copurify with the dystrophin-glycoprotein complex, perhaps through the interaction of the cytokeratins with the actin-binding domain of dystrophin. We overexpressed dystrophin's actin-binding domain (Dys-ABD), K8 and K19, as well as closely related proteins, in COS-7 cells to assess the basis and specificity of their interaction. Dys-ABD alone associated with actin microfilaments. Expressed with K8 and K19, which form filaments, Dys-ABD associated preferentially with the cytokeratins. This interaction was specific, as the homologous ABD of betaI-spectrin failed to interact with K8/K19 filaments, and Dys-ABD did not associate with desmin or K8/K18 filaments. Studies in COS-7 cells and in vitro showed that Dys-ABD binds directly and specifically to K19. Expressed in muscle fibers in vivo, K19 accumulated in the myoplasm in structures that contained dystrophin and spectrin and disrupted the organization of the sarcolemma. K8 incorporated into sarcomeres, with no effect on the sarcolemma. Our results show that dystrophin interacts through its ABD with K19 specifically and are consistent with the idea that cytokeratins associate with dystrophin at the sarcolemma of striated muscle.  相似文献   

5.
6.
Protein kinase A anchoring proteins (AKAPs), defined by their capacity to target the cAMP-dependent protein kinase to distinct subcellular locations, function as molecular scaffolds mediating the assembly of multicomponent complexes to integrate and organise multiple signalling events. Despite their central importance in regulating cellular processes, little is known regarding their diverse structures and molecular mechanisms. Here, using bioinformatics and X-ray crystallography, we define a central domain of AKAP18δ (AKAP18CD) as a member of the 2H phosphoesterase family. The domain features two conserved His-x-Thr motifs positioned at the base of a groove located between two lobes related by pseudo 2-fold symmetry. Nucleotide co-crystallisation screening revealed that this groove binds specifically to adenosine 5'-monophosphate (5'AMP) and cytosine 5'-monophosphate (5'CMP), with the affinity constant for AMP in the physiological concentration range. This is the first example of an AKAP capable of binding a small molecule. Our data generate two functional hypotheses for the AKAP18 central domain. It may act as a phosphoesterase, although we did not identify a substrate, or as an AMP sensor with the potential to couple intracellular AMP levels to PKA signalling events.  相似文献   

7.
8.
The E5 protein of bovine papillomavirus is a 44-amino acid, Golgi-resident, type II transmembrane protein that efficiently transforms immortalized mouse fibroblasts. The transmembrane (TM) domain of E5 is not only critical for biological activity, it also regulates interactions with cellular targets including the platelet derived growth factor receptor (PDGF-R) and the 16-kDa subunit of the vacuolar proton ATPase (V-ATPase). In order to define the specific TM amino acids essential for E5 biological and biochemical activity, we performed scanning alanine mutagenesis on 25 of the 30 potential TM residues and genetically mapped discrete alpha-helical domains which separately regulated the ability of E5 to bind PDGF-R, activate PDGF-R, and to form oligomers. Alanine substitutions at positions 17, 21, and 24 (which lie on the same helical face) greatly inhibited E5 association with the PDGF-R, suggesting that this region comprises the receptor binding site. PDGF-R activation also mapped to a specific but broader domain in E5; mutant proteins with alanines on one helical face (positions 8, 9, 11, 16, 19, 22, and 23) continued to induce PDGF-R tyrosine phosphorylation, whereas mutant proteins with alanines on the opposite helical face (positions 7, 10, 13, 17, 18, 21, 24, and 25) did not, indicating that the latter helical face was critical for mediating receptor transphosphorylation. Interestingly, these "activation-defective" mutants segregated into two classes: 1) those that were unable to form dimers but that could still form higher order oligomers and transform cells, and 2) those that were defective for PDGF-R binding and were transformation-incompetent. These findings suggest that the ability of E5 to dimerize and to bind PDGF-R is important for receptor activation. However, since several transformation-competent E5 mutants were defective for binding and/or activating PDGF-R, it is apparent that E5 must have additional activities to mediate cell transformation. Finally, alanine substitutions also defined two separate helical faces critical for E5/E5 interactions (homodimer formation). Thus, our data identify distinct E5 helical faces that regulate homologous and heterologous intramembrane interactions and define two new classes of biologically active TM mutants.  相似文献   

9.
BACKGROUND: Dystrophin is an essential component of skeletal muscle cells. Its N-terminal domain binds to F-actin and its C terminus binds to the dystrophin-associated glycoprotein (DAG) complex in the membrane. Dystrophin is therefore thought to serve as a link from the actin-based cytoskeleton of the muscle cell through the plasma membrane to the extracellular matrix. Pathogenic mutations in dystrophin result in Duchenne or Becker muscular dystrophy. RESULTS: The crystal structure of the dystrophin actin-binding domain (ABD) has been determined at 2.6 A resolution. The structure is an antiparallel dimer of two ABDs each comprising two calponin homology domains (CH1 and CH2) that are linked by a central alpha helix. The CH domains are both alpha-helical globular folds. Comparisons with the structures of utrophin and fimbrin ABDs reveal that the conformations of the individual CH domains are very similar to those of dystrophin but that the arrangement of the two CH domains within the ABD is altered. The dystrophin dimer reveals a change of 72 degrees in the orientation of one pair of CH1 and CH2 domains (from different monomers) relative to the other pair when compared with the utrophin dimer. The dystrophin monomer is more elongated than the fimbrin ABD. CONCLUSIONS: The dystrophin ABD structure reveals a previously uncharacterised arrangement of the CH domains within the ABD. This observation has implications for the mechanism of actin binding by dystrophin and related proteins. Examining the position of three pathogenic missense mutations within the structure suggests that they exert their effects through misfolding of the ABD, rather than through disruption of the binding to F-actin.  相似文献   

10.
We have characterized a protein immunologically related to dystrophin, the protein product of the Duchenne muscular dystrophy gene. We identify this related protein as a fast-twitch glycolytic isoform (mouse extensor digitorum longus-specific) of myofibrillar alpha-actinin. This specific isoform of alpha-actinin exhibits a more restricted pattern of expression in skeletal muscle than fast-twitch-specific isoforms of both myosin and Ca2+-ATPase. Our results provide evidence that dystrophin and myofibrillar alpha-actinin are related proteins, reinforcing the previous data concerning the sequence homologies noted between nonmuscle cytoskeletal alpha-actinin and dystrophin. In addition, we describe the first antisera directed against a specific myofibrillar skeletal muscle isoform of alpha-actinin.  相似文献   

11.
Actin interaction with L-plastin, a plastin/fimbrins isoform of the alpha-actinin family of molecules, is poorly characterized, from the biochemical point of view. Besides, molecular modeling of the T-isoform has recently provided a complete model of interaction with filamentous actin [Volkmann, N., DeRosier, D., Matsudaira, P., and Hanein, D. (2001) J. Cell Biol. 153, 947-956]. In this study, we report that recombinant L-plastin binds actin in a manner that strongly resembles that of the alpha-actinin-actin interface. The similitudes concern the absence of specificity toward the actin isoform and the inhibition of the binding by phosphoinositides. Furthermore, the participation of actin peptides 112-125 and 360-372 in the interface together with an inhibition of the rate of pyrenyl F-actin depolymerization is in favor of a lateral binding of the plastin isoform along the filament axis and strenghtens the similitudes in the way L-plastin and alpha-actinin bind to actin. We have also investigated the functional aspect and the putative equivalence of the two actin-binding domains of L-plastin toward actin binding. We demonstrate for the first time that the two recombinant fragments, expressed as single domains, have different affinities for actin. We further analyzed the difference using chemical cross-linking and F-actin depolymerization experiments assayed by fluorescence and high-speed centrifugation. The results clearly demonstrate that the two actin-binding domains of plastin display different modes of interaction with the actin filament. We discuss these results in light of the model of actin interaction proposed for T-plastin.  相似文献   

12.
The precise localization of dystrophin in the skeletal muscle cell should contribute to a better understanding of the yet unclear functional role of this protein, both in normal and in Duchenne muscular dystrophy. Immunocytochemical studies did not give conclusive results on the localization of dystrophin with respect to the sarcolemma and to the cytoskeletal components. To improve the reliability of the electron microscopic immunocytochemical localization of dystrophin, a mAb against the COOH-terminus of the molecule has been used in association with the fracture-label technique, which, causing a partition of the membrane in protoplasmic and exoplasmic halves, allows a more precise dystrophin localization. The results obtained indicate that dystrophin is associated with the protoplasmic half of the plasmalemma, and the observation that it does not randomly follow the partition of the membrane is consistent with a stable association with the cytoskeleton.  相似文献   

13.
Homology models were built for various length sequences of the kinesin-1 light chain (KLC) domain of Drosophila melanogaster and subjected to 200 ns of all-atom molecular dynamics. We also cloned, expressed and characterized these regions spectroscopically. Results confirm that KLC contains tetratricopeptide repeat units; a regular array of repeating 34-residue helix-loop-helix monomers. Experimental and computational evidence is provided confirming the stability and overall helicity of individual TPR repeats as well as individual TPR units incorporated into a multi-TPR structure.  相似文献   

14.
Myosin heavy-chain kinase A (MHCK A) catalyses the disassembly of myosin II filaments in Dictyostelium cells via myosin II heavy-chain phosphorylation. MHCK A possesses a 'coiled-coil'-enriched domain that mediates the oligomerization, cellular localization and actin-binding activities of the kinase. F-actin (filamentous actin) binding by the coiled-coil domain leads to a 40-fold increase in MHCK A activity. In the present study we examined the actin-binding characteristics of the coiled-coil domain as a means of identifying mechanisms by which MHCK A-mediated disassembly of myosin II filaments can be regulated in the cell. Co-sedimentation assays revealed that the coiled-coil domain of MHCK A binds co-operatively to F-actin with an apparent K(D) of approx. 0.5 muM and a stoichiometry of approx. 5:1 [actin/C(1-498)]. Further analyses indicate that the coiled-coil domain binds along the length of the actin filament and possesses at least two actin-binding regions. Quite surprisingly, we found that the coiled-coil domain cross-links actin filaments into bundles, indicating that MHCK A can affect the cytoskeleton in two important ways: (1) by driving myosin II-filament disassembly via myosin II heavy-chain phosphorylation, and (2) by cross-linking/bundling actin filaments. This discovery, along with other supporting data, suggests a model in which MHCK A-mediated bundling of actin filaments plays a central role in the recruitment and activation of the kinase at specific sites in the cell. Ultimately this provides a means for achieving the robust and highly localized disruption of myosin II filaments that facilitates polarized changes in cell shape during processes such as chemotaxis, cytokinesis and multicellular development.  相似文献   

15.
An extensive survey was carried out for compounds capable of regulating actin-binding proteins in a manner similar to phosphatidylinositol 4,5 bisphosphate (PI 4,5-P2). For this purpose we developed a sensitive assay involving release of radioactively phosphorylated actin from the fragminP-actin complex. We found that the structurally simplest lysophospholipid, lysophosphatidic acid (LPA), dissociated the complex between fragminP and actin, whereas other lysophospholipids or sphingosine-1-phosphate were inactive. Furthermore, LPA inhibited the F-actin severing activity of human gelsolin, purified from plasma or as recombinant protein, mouse adseverin and Physarum fragminP. Dissociation of actin-containing complexes by LPA analyzed by gelfiltration indicated that LPA is active as a monomer, in contrast to PI 4,5-P2. We further show that binding of LPA to these actin-regulatory proteins promotes their phosphorylation by pp60(c-src). A PI 4,5-P2-binding peptide counteracted the effects mediated by LPA, suggesting that LPA binds to the same target region in these actin-binding proteins. When both LPA and PI 4,5-P2 were used in combination we found that LPA reduced the threshold concentration at which PI 4,5-P2 was active. Significantly, LPA promoted the release of gelsolin from barbed actin filaments in octylglucoside-permeabilized human platelets. These results suggest that lysophosphatidic acid could act as an intracellular modulator of actin-binding proteins. Our findings can also explain agonist-induced changes in the actin cytoskeleton that are not mediated by polyphosphoinositides.  相似文献   

16.
Roy H  Ibba M 《Biochemistry》2006,45(30):9156-9162
Phenylalanyl-tRNA synthetase (PheRS) is a multidomain (alphabeta)2 heterotetrameric protein responsible for synthesizing Phe-tRNA(Phe) during protein synthesis. Previous studies showed that the alpha subunit forms the catalytic core of the enzyme, while the beta subunit contains a number of autonomous structural modules with a wide range of functions including tRNA anticodon binding and editing of the misaminoacylated species Tyr-tRNA(Phe). The B2 domain of the beta subunit is a structural homologue of the EMAPII/OB fold, which has been shown in other systems to contribute to tRNA binding. Structural studies of PheRS indicated that the B2 domain is distant from bound tRNA(Phe), leaving the role of this module in question. On the basis of homology modeling with other EMAPII domain-containing proteins, the 110 amino acid B2 domain was deleted to produce PheRS deltaB2. Full-length PheRS and PheRS deltaB2 showed comparable kinetics for in vitro aminoacylation, and both enzymes complemented a defect in phenylalanylation in vivo. PheRS deltaB2 showed a 2-fold drop compared to full-length PheRS in the catalytic efficiency (kcat/KM) of Tyr-tRNA(Phe) hydrolysis, suggesting a role for the B2 domain in post-transfer editing. A comparison of tRNA binding by full-length PheRS and PheRS deltaB2 indicated that the B2 domain acts as a secondary tRNA-binding site that could contribute to editing by promoting the translocation of mischarged tRNA to the editing site of PheRS. This proposed role for the B2 domain of PheRS is consistent with previous studies, suggesting that the highly conserved EMAPII fold is able to modulate the affinity of tRNA for its primary binding site.  相似文献   

17.
The N-terminal head domain of human dystrophin has been expressed in soluble form and high yield in E. coli, allowing us to test the previously unconfirmed assumption that dystrophin binds actin. DMD246, the first 246 amino acid residues of dystrophin, binds F-actin in a strongly co-operative manner with a Hill constant of 3.5, but does not bind G-actin. Dystrophin heads are thus functionally competent actin-binding proteins. This result opens the way to identifying critical residues in the actin-binding site and encourages us that the other domains of dystrophin might also be treated as functionally autonomous modules, accessible to a similar approach.  相似文献   

18.
The polysaccharide alginate forms a protective capsule for Pseudomonas aeruginosa during chronic pulmonary infections. The structure of alginate, a linear polymer of beta1-4-linked O-acetylated d-mannuronate (M) and l-guluronate (G), is important for its activity as a virulence factor. Alginate structure is mediated by AlgG, a periplasmic C-5 mannuronan epimerase. AlgG also plays a role in protecting alginate from degradation by the periplasmic alginate lyase AlgL. Here, we show that the C-terminal region of AlgG contains a right-handed beta-helix (RHbetaH) fold, characteristic of proteins with the carbohydrate-binding and sugar hydrolase (CASH) domain. When modeled based on pectate lyase C of Erwinia chrysanthemi, the RHbetaH of AlgG has a long shallow groove that may accommodate alginate, similar to protein/polysaccharide interactions of other CASH domain proteins. The shallow groove contains a 324-DPHD motif that is conserved among AlgG and the extracellular mannuronan epimerases of Azotobacter vinelandii. Point mutations in this motif disrupt mannuronan epimerase activity but have no effect on alginate secretion. The D324A mutation has a dominant negative phenotype, suggesting that the shallow groove in AlgG contains the catalytic face for epimerization. Other conserved motifs of the epimerases, 361-NNRSYEN and 381-NLVAYN, are predicted to lie on the opposite side of the RHbetaH from the catalytic center. Point mutations N362A, N367A, and V383A result in proteins that do not protect alginate from AlgL, suggesting that these mutant proteins are not properly folded or not inserted into the alginate biosynthetic scaffold. These motifs are likely involved in asparagine and hydrophobic stacking, required for structural integrity of RHbetaH proteins, rather than for mannuronan catalysis. The results suggest that the AlgG RHbetaH protects alginate from degradation by AlgL by channeling the alginate polymer through the proposed alginate biosynthetic scaffold while epimerizing approximately every second d-mannuronate residue to l-guluronate along the epimerase catalytic face.  相似文献   

19.
The amino acid sequences of chick and slime mould alpha-actinin each contain four repeats of approximately 122 residues. These repeats are homologous to the 18-22 repeats, each of approximately 106 residues, found in the alpha and beta subunits of spectrin and fodrin, and to the multiple repeats of approximately 110 residues found in the Duchenne muscular dystrophy protein (dystrophin). The repeats correspond to the elongated rod-like portion of these molecules. We present a multiple sequence alignment of 21 repeats from this superfamily (8 alpha-actinin and 13 spectrin/fodrin), based on optimal pairwise alignments, from which a characteristic consensus pattern of amino acid types is deduced. Trp 46 is invariant in all but one repeat, and physicochemical classes of amino acids are conserved at 25 other positions. Secondary structure prediction on both the alpha-actinin and spectrin repeats taken together with the distribution of proline residues in the sequences, strongly suggest that each repeated domain consists of a four-helix structure. Our predictions differ significantly from previous three-helix models based on analyses of fewer sequences. To determine possible interdomain regions, sites of limited proteolysis of the native chick alpha-actinin dimer were determined and located in the amino acid sequence. The majority of these sites were in corresponding positions in different repeats within a segment predicted as a long helix. We propose a model, consistent with the overall dimensions of the rod-like portions of the molecules, in which these long, probably interrupted helices, link adjacent domains.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号