首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Glial cells subserve a number of essential functions during development and function of the Drosophila brain, including the control of neuroblast proliferation, neuronal positioning and axonal pathfinding. Three major classes of glial cells have been identified. Surface glia surround the brain externally. Neuropile glia ensheath the neuropile and form septa within the neuropile that define distinct neuropile compartments. Cortex glia form a scaffold around neuronal cell bodies in the cortex. In this paper we have used global glial markers and GFP-labeled clones to describe the morphology, development and proliferation pattern of the three types of glial cells in the larval brain. We show that both surface glia and cortex glia contribute to the glial layer surrounding the brain. Cortex glia also form a significant part of the glial layer surrounding the neuropile. Glial cell numbers increase slowly during the first half of larval development but show a rapid incline in the third larval instar. This increase results from mitosis of differentiated glia, but, more significantly, from the proliferation of neuroblasts.  相似文献   

2.
Freeman MR  Delrow J  Kim J  Johnson E  Doe CQ 《Neuron》2003,38(4):567-580
Glia are the most abundant cell type in the mammalian brain. They regulate neuronal development and function, CNS immune surveillance, and stem cell biology, yet we know surprisingly little about glia in any organism. Here we identify over 40 new Drosophila glial genes. We use glial cells missing (gcm) mutants and misexpression to verify they are Gcm regulated in vivo. Many genes show unique spatiotemporal responsiveness to Gcm in the CNS, and thus glial subtype diversification requires spatially or temporally restricted Gcm cofactors. These genes provide insights into glial biology: we show unc-5 (a repulsive netrin receptor) orients glial migrations and the draper gene mediates glial engulfment of apoptotic neurons and larval locomotion. Many identified Drosophila glial genes have homologs expressed in mammalian glia, revealing conserved molecular features of glial cells. 80% of these Drosophila glial genes have mammalian homologs; these are now excellent candidates for regulating human glial development, function, or disease.  相似文献   

3.
Glial dysfunction has been implicated in a number of neurodegenerative diseases. In this study we investigated the consequences of glial and oligodendrocyte ablation on neuronal integrity and survival in Drosophila and adult mice, respectively. Targeted genetic ablation of glia was achieved in the adult Drosophila nervous system using the GAL80-GAL4 system. In mice, oligodendrocytes were depleted by the injection of diphtheria toxin in MOGi-Cre/iDTR double transgenic animals. Acute depletion of oligodendrocytes induced axonal injury, but did not cause neuronal cell death in mice. Ablation of glia in adult flies triggered neuronal apoptosis and resulted in a marked reduction in motor performance and lifespan. Our study shows that the targeted depletion of glia triggers secondary neurotoxicity and underscores the central contribution of glia to neuronal homeostasis. The models used in this study provide valuable systems for the investigation of therapeutic strategies to prevent axonal or neuronal damage.  相似文献   

4.
Glial cells are not passive spectators during nervous system assembly, rather they are active participants that exert significant control over neuronal development. Well-established roles for glia in shaping the developing nervous system include providing trophic support to neurons, modulating axon pathfinding, and driving nerve fasciculation. Exciting recent studies have revealed additional ways in which glial cells also modulate neurodevelopment. Glial cells regulate the number of neurons at early developmental stages by dynamically influencing neural precursor divisions, and at later stages by promoting neuronal cell death through engulfment. Glia also participate in the fine sculpting of neuronal connections by pruning excess axonal projections, shaping dendritic spines, and secreting multiple factors that promote synapse formation and functional maturation. These recent insights provide further compelling evidence that glial cells, through their diverse cellular actions, are essential contributors to the construction of a functionally mature nervous system.  相似文献   

5.
Glial cells are the most abundant cells in the human brain and have long been considered as passive supporting cells for neurons. In contrast to the extensive studies on various neuronal functions in the nervous system, we still have limited knowledge about glial cells. Recently a number of pioneering studies have provided convincing evidence that glia play active roles in development and function of the central nervous system. This review discusses recent advances in our understanding of the molecular mechanisms underlying glial cell differentiation. We then highlight some of the novel findings about glial function, i.e. the role of glia in synaptogenesis and the intricate relationship between astrocytes and adult neural stem cells. Finally, we summarize the emerging studies that implicate abnormalities in the formation or maintenance of glia leading to severe brain diseases, such as Alexander disease, glioblastoma and multiple sclerosis, and potential therapeutic strategies to tackle these diseases.  相似文献   

6.
Neuron-glia communication is central to all nervous system responses to trauma, yet neural injury signaling pathways remain poorly understood. Here we explore cellular and molecular aspects of neural injury signaling in Drosophila. We show that transected Drosophila axons undergo injury-induced degeneration that is morphologically similar to Wallerian degeneration in mammals and can be suppressed by the neuroprotective mouse Wlds protein. Axonal injury elicits potent morphological and molecular responses from Drosophila glia: glia upregulate expression of the engulfment receptor Draper, undergo dramatic changes in morphology, and rapidly recruit cellular processes toward severed axons. In draper mutants, glia fail to respond morphologically to axon injury, and severed axons are not cleared from the CNS. Thus Draper appears to act as a glial receptor for severed axon-derived molecular cues that drive recruitment of glial processes to injured axons for engulfment.  相似文献   

7.
Glial cells play a wide range of essential roles in both nervous system development and function and has been reviewed recently (Parker and Auld, 2006). Glia provide an insulating sheath, either form or direct the formation of the blood-brain barrier, contribute to ion and metabolite homeostasis and provide guidance cues. Glial function often depends on the ability of glial cells to migrate toward specific locations during nervous system development. Work in nervous system development in insects, in particular in the fruit fly Drosophila melanogaster and the tobacco hornworm Manduca sexta, has provided significant insight into the roles of glia, although the molecular mechanisms underlying glial cell migration are being determined only now. Indeed, many of the processes and mechanisms discovered in these simpler systems have direct parallels in the development of vertebrate nervous systems. In this review, we first examine the developmental contexts in which invertebrate glial cell migration has been observed, we next discuss the characterized molecules required for proper glial cell migration, and we finally discuss future goals to be addressed in the study of glial cell development.  相似文献   

8.
Glial cells are emerging from the background to become more prominent in our thinking about integration in the nervous system. Given that glial cells associated with synapses integrate neuronal inputs and can release transmitters that modulate synaptic activity, it is time to rethink our understanding of the wiring diagram of the nervous system. It is no longer appropriate to consider solely neuron-neuron connections; we also need to develop a view of the intricate web of active connections among glial cells, and between glia and neurons. Without such a view, it might be impossible to decode the language of the brain.  相似文献   

9.
李兆英 《昆虫学报》2012,55(3):309-315
神经胶质作为视觉系统的重要成分之一, 对视觉系统的发育及功能起着重要的作用。本研究通过组织解剖观察、 免疫组织化学等技术, 对中华蜜蜂Apis cerana cerana幼虫和蛹的视觉系统中神经胶质的类型和发育过程进行了比较研究。研究表明: 在中华蜜蜂视觉系统中, 根据神经胶质的位置和形态主要分为表面神经胶质、 皮层神经胶质和神经纤维网神经胶质3种类型; 神经胶质主要来源于视柄和视叶中的神经胶质前体中心; 神经胶质细胞数量的增加一方面来自于细胞的迁移, 另一方面来自于神经胶质细胞自身的分裂增殖。本研究为昆虫神经胶质的发育以及功能研究提供理论基础。  相似文献   

10.
Glial cells have diverse functions that are necessary for the proper development and function of complex nervous systems. During development, a variety of reciprocal signaling interactions between glia and neurons dictate all parts of nervous system development. Glia may provide attractive, repulsive, or contact-mediated cues to steer neuronal growth cones and ensure that neurons find their appropriate synaptic targets. In fact, both neurons and glia may act as migrational substrates for one another at different times during development. Also, the exchange of trophic signals between glia and neurons is essential for the proper bundling, fasciculation, and ensheathement of axons as well as the differentiation and survival of both cell types. The growing number of links between glial malfunction and human disease has generated great interest in glial biology. Because of its relative simplicity and the many molecular genetic tools available, Drosophila is an excellent model organism for studying glial development. This review will outline the roles of glia and their interactions with neurons in the embryonic nervous system of the fly.  相似文献   

11.
12.
The study of adult neural cell production has concentrated on neurogenesis. The mechanisms controlling adult gliogenesis are still poorly understood. Here, we provide evidence for a homeostatic process that maintains the population of glial cells in the Drosophila adult brain. Flies lacking microRNA miR-31a start adult life with a normal complement of glia, but transiently lose glia due to apoptosis. miR-31a expression identifies a subset of predominantly gliogenic adult neural progenitor cells. Failure to limit expression of the predicted E3 ubiquitin ligase, Rchy1, in these cells results in glial loss. After an initial decline in young adults, glial numbers recovered due to compensatory overproduction of new glia by adult progenitor cells, indicating an unexpected plasticity of the Drosophila nervous system. Experimentally induced ablation of glia was also followed by recovery of glia over time. These studies provide evidence for a homeostatic mechanism that maintains the number of glia in the adult fly brain.  相似文献   

13.
In the developing Drosophila visual system, glia migrate into stereotyped positions within the photoreceptor axon target fields and provide positional information for photoreceptor axon guidance. Glial migration conversely depends on photoreceptor axons, as glia precursors stall in their progenitor zones when retinal innervation is eliminated. Our results support the view that this requirement for retinal innervation reflects a role of photoreceptor axons in the establishment of an axonal scaffold that guides glial cell migration. Optic lobe cortical axons extend from dorsal and ventral positions towards incoming photoreceptor axons and establish at least four separate pathways that direct glia to proper destinations in the optic lobe neuropiles. Photoreceptor axons induce the outgrowth of these scaffold axons. Most glia do not migrate when the scaffold axons are missing. Moreover, glia follow the aberrant pathways of scaffold axons that project aberrantly, as occurs in the mutant dachsous. The local absence of glia is accompanied by extensive apoptosis of optic lobe cortical neurons. These observations reveal a mechanism for coordinating photoreceptor axon arrival in the brain with the distribution of glia to multiple target destinations, where they are required for axon guidance and neuronal survival.  相似文献   

14.
Signaling between glia and neurons: focus on synaptic plasticity   总被引:20,自引:0,他引:20  
Glial cells are now emerging from the shadows cast by their more excitable CNS counterparts. Within the developing nervous system, astrocytes and Schwann cells actively help to promote synapse formation and function, and have even been implicated in synapse elimination. In the adult brain, astrocytes respond to synaptic activity by releasing transmitters that modulate synaptic activity. Thus, glia are active participants in brain function. Many questions remain about the identity of glial-neuronal signals and their significance.  相似文献   

15.
16.
Mounting evidence demonstrates that glial cells might have important roles in regulating the physiology and behavior of adult animals. We summarize some of this evidence here, with an emphasis on the roles of glia of the differentiated nervous system in controlling neuronal excitability, behavior and plasticity. In the review we highlight studies in Drosophila and discuss results from the analysis of mammalian astrocytes that demonstrate roles for glia in the adult nervous system.  相似文献   

17.
Glial cells are essential for the development and function of the nervous system. In the mammalian brain, vast numbers of glia of several different functional types are generated during late embryonic and early foetal development. However, the molecular cues that instruct gliogenesis and determine glial cell type are poorly understood. During post-embryonic development, the number of glia in the Drosophila larval brain increases dramatically, potentially providing a powerful model for understanding gliogenesis. Using glial-specific clonal analysis we find that perineural glia and cortex glia proliferate extensively through symmetric cell division in the post-embryonic brain. Using pan-glial inhibition and loss-of-function clonal analysis we find that Insulin-like receptor (InR)/Target of rapamycin (TOR) signalling is required for the proliferation of perineural glia. Fibroblast growth factor (FGF) signalling is also required for perineural glia proliferation and acts synergistically with the InR/TOR pathway. Cortex glia require InR in part, but not downstream components of the TOR pathway, for proliferation. Moreover, cortex glia absolutely require FGF signalling, such that inhibition of the FGF pathway almost completely blocks the generation of cortex glia. Neuronal expression of the FGF receptor ligand Pyramus is also required for the generation of cortex glia, suggesting a mechanism whereby neuronal FGF expression coordinates neurogenesis and cortex gliogenesis. In summary, we have identified two major pathways that control perineural and cortex gliogenesis in the post-embryonic brain and have shown that the molecular circuitry required is lineage specific.  相似文献   

18.
Glial cells comprise most of the non-neuronal cells of the brain and peripheral nervous system, and include the myelin-forming oligodendrocytes and Schwann cells, radial glia and astrocytes. Their functions are diverse and include almost every aspect of nervous system function, from the birth and death of cells to the migrations and cell-cell interactions that connect and integrate the working elements of the nervous system. Recent studies have provided exciting insights into the mechanisms that drive the conversion into a glial cell and the developmental signals that guide the behavior of these multifunctional cells. An emerging theme is the so-called glial lineage being more diverse and more plastic than was previously thought. Here, we highlight some recent insights into glial development.  相似文献   

19.
20.
Glial cells have diverse functions that are necessary for the proper development and function of complex nervous systems. Various insects, primarily the fruit fly Drosophila melanogaster and the moth Manduca sexta, have provided useful models of glial function during development. The present review will outline evidence of glial contributions to embryonic, visual, olfactory and wing development. We will also outline evidence for non-developmental functions of insect glia including blood-brain-barrier formation, homeostatic functions and potential contributions to synaptic function. Where relevant, we will also point out similarities between the functions of insect glia and their vertebrate counterparts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号