首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
It has been considered that healthy neurons in central nervous system (CNS) do not express major histocompatibility complex (MHC) class I molecules. However, recent studies clearly demonstrated the expression of functional MHC class I in the mammalian embryonic, neonatal and adult brain. Until now, it is still unknown whether MHC I molecules are expressed in the development of human brain. We collected nine human brain tissues from fetuses aged from 21 to 31 gestational weeks (GW), one newborn of postnatal 55 days and one adult. The expression of MHC class I molecules was detected during the development of visual system in human brain by immunohistochemistry and immunofluorescence. MHC class I proteins were located at lateral geniculate nucleus (LGN) and the expression was gradually increased from 21 GW to 31 GW and reached high levels at 30–31 GW when fine-scale refinement phase was mediated by neural electric activity. However, there was no expression of MHC class I molecules in the visual cortical cortex during all the developmental stages examined. We also concluded that MHC class I molecules were mainly expressed in neurons but not in astrocytes at LGN. In the developing visual system, the expression of β2M protein on neurons was not found in our study.  相似文献   

2.
Following infection of the central nervous system (CNS), the immune system is faced with the challenge of eliminating the pathogen without causing significant damage to neurons, which have limited capacities of renewal. In particular, it was thought that neurons were protected from direct attack by cytotoxic T lymphocytes (CTL) because they do not express major histocompatibility class I (MHC I) molecules, at least at steady state. To date, most of our current knowledge on the specifics of neuron-CTL interaction is based on studies artificially inducing MHC I expression on neurons, loading them with exogenous peptide and applying CTL clones or lines often differentiated in culture. Thus, much remains to be uncovered regarding the modalities of the interaction between infected neurons and antiviral CD8 T cells in the course of a natural disease. Here, we used the model of neuroinflammation caused by neurotropic Borna disease virus (BDV), in which virus-specific CTL have been demonstrated as the main immune effectors triggering disease. We tested the pathogenic properties of brain-isolated CD8 T cells against pure neuronal cultures infected with BDV. We observed that BDV infection of cortical neurons triggered a significant up regulation of MHC I molecules, rendering them susceptible to recognition by antiviral CTL, freshly isolated from the brains of acutely infected rats. Using real-time imaging, we analyzed the spatio-temporal relationships between neurons and CTL. Brain-isolated CTL exhibited a reduced mobility and established stable contacts with BDV-infected neurons, in an antigen- and MHC-dependent manner. This interaction induced rapid morphological changes of the neurons, without immediate killing or impairment of electrical activity. Early signs of neuronal apoptosis were detected only hours after this initial contact. Thus, our results show that infected neurons can be recognized efficiently by brain-isolated antiviral CD8 T cells and uncover the unusual modalities of CTL-induced neuronal damage.  相似文献   

3.
MHC class I (MHC-I) molecules are important components of the immune system. Recently MHC-I have been reported to also play important roles in brain development and synaptic plasticity. In this study, we examine the molecular mechanism(s) underlying activity-dependent MHC-I expression using hippocampal neurons. Here we report that neuronal expression level of MHC-I is dynamically regulated during hippocampal development after birth in vivo. Kainic acid (KA) treatment significantly increases the expression of MHC-I in cultured hippocampal neurons in vitro, suggesting that MHC-I expression is regulated by neuronal activity. In addition, KA stimulation decreased the expression of pre- and post-synaptic proteins. This down-regulation is prevented by addition of an MHC-I antibody to KA treated neurons. Further studies demonstrate that calcium-dependent protein kinase C (PKC) is important in relaying KA simulation activation signals to up-regulated MHC-I expression. This signaling cascade relies on activation of the MAPK pathway, which leads to increased phosphorylation of CREB and NF-κB p65 while also enhancing the expression of IRF-1. Together, these results suggest that expression of MHC-I in hippocampal neurons is driven by Ca2+ regulated activation of the MAPK signaling transduction cascade.  相似文献   

4.
Some immune system proteins have recently been implicated in the development and plasticity of neuronal connections. Notably, proteins of the major histocompatibility complex 1 (MHC class 1) have been shown to be involved in synaptic plasticity in the hippocampus and the development of projection patterns in the visual system. We examined the possible role for the MHC class 1 proteins in one well-characterized example of synaptic exuberance and subsequent refinement, the climbing fiber (CF) to Purkinje cell (PC) synapse. Cerebella from adult mice deficient for two MHC genes, H2-D1 and H2-K1, and for beta2-microglobulin gene were examined for evidence of deficient elimination of supernumerary CF synapses on their PCs. Electrophysiological and morphological evidence showed that, despite the absence of these MHC class 1 molecules, adult PCs in these transgenic mice are monoinnervated as in wild-type animals. These findings indicate that, at the level of restriction of afferent number at this synapse, functional MHC class 1 proteins are not required.  相似文献   

5.
The olfactory neuroepithelium is unique in adult vertebrates in that bipolar sensory neurons are constantly dying and being replaced. The sensory neurons are also unusual because they are directly exposed to the external environment via their dendritic processes in the nasal cavity. Surveillance of this tissue by major histocompatibility complex (MHC) class I-restricted cytotoxic T cells would presumably serve as an important means of defense against foreign pathogens. Although adult brain shows a lack of class I molecules, it has not been reported if either proliferating neurons or sensory neurons in olfactory neuroepithelium also lack class I. To examine olfactory neuroepithelium, an antiserum against beta 2-microglobulin (beta 2-m), the invariant light chain associated with all class I molecules, was employed as a general probe in an immunocytochemical assay. beta 2-m was detected in columnar respiratory epithelium, blood vessel walls, and a small population of interstitial cells in the lamina propria, but no cell in the olfactory neuroepithelium stained for beta 2-m. Parallel patterns were obtained in the vomeronasal organ. These results suggest that lack of beta 2-m, and presumably class I, may be a general phenotype of neuronal cells regardless of their mitotic state or exposure to environmental antigens.  相似文献   

6.
7.
Due to their unique capacity for self-renewal in addition to their ability to differentiate into cells of all neuronal lineages, neuronal stem cells (NSCs) are promising candidates for cell replacement therapy in neuronal injury and neurodegenerative diseases. However, there are few studies on immune rejection, which is one of the main problems facing successful stem cell therapy. In order to determine if human NSC might be rejected after transplantation the MHC expression level was examined in the HB1.F3 cell line, which has previously been shown to exhibit NSC properties. The results showed low expression levels of the MHC class I molecules on the surfaces of these cells. A dramatic increase in the MHC class I expression level was observed when the cells were treated with IFN-gamma, TNF-alpha, and IL-1beta, alone or in combination. The maximum induction of MHC class I protein expression was observed at above 20ng/ml IFN-gamma 48h after the treatment. The apparent additive effects of TNF-alpha and IL-1beta in combination on the maximum induction of MHC class I expression exerted by IFN-gamma treatment were not observed. The MHC class I levels elevated by IFN-gamma were sustained for 72h after withdrawing the IFN-gamma. Therefore, this study introduced human cytomegalovirus (hCMV) US genes, which are known to be able to reduce the MHC class I expression level on the cell surface after infection, into HB1.F3 cells. The cells transfected with the hCMV US2, US3, US6 or US11 genes showed 20-50% reduction in the MHC class I expression level compared with the mock-transfected cells. These results suggest that NSC expresses high levels of the MHC class I proteins, and unless they are modified, might be rejected upon transplantation. In addition, the various viral stealth mechanisms can be exploited for stem cell transplantation.  相似文献   

8.
Viruses that establish a persistent infection with their host have evolved numerous strategies to evade the immune system. Consequently, they are useful tools to dissect the complex cellular processes that comprise the immune response. Rapid progress has been made in recent years in defining the role of cellular MHC class I molecules in regulating the response of natural killer (NK) cells. Concomitantly, the roles of the MHC class I homologues encoded by human and mouse cytomegaloviruses in evading or subverting NK cell responses has received considerable interest. This review discusses the results from a number of studies that have pursued the biological function of the viral MHC class I homologues. Based on the evidence from these studies, hypotheses for the possible role of these intriguing molecules are presented.  相似文献   

9.
10.
Due to their unique capacity to self-renew and for multiple differentiation, stem cells are considered promising candidates for cell replacement therapy in many devastating diseases. However, studies on immune rejection, which is a major problem facing successful stem cell therapy, are rare. In this study, we examined MHC expression in the M13SV1 cell line, which has previously been shown to have stem cell properties and to be non-tumorigenic, in order to determine whether human adult stem cells might be rejected after transplantation. Our results show low expression levels of MHC class I molecules on the surface of these cells. An induction of MHC class I expression was observed when the cells were treated with IFN-gamma. Maximal induction of MHC class protein expression was observed at 48 h after treatment with concentrations above 5 ng/ml of IFN-gamma. Elevated MHC class I levels were sustained for 72 h after withdrawing IFN-gamma. Therefore, we introduced human cytomegalovirus (hCMV) US genes, which are known to be able to reduce MHC class I expression on the cell surface after infection, into M13SV1 cells. Cells transfected with the hCMV US2, US3, US6 or US11 genes exhibited a reduction (40-60%) of MHC class I expression compared with mock-transfected cells. These results suggest that human adult stem cells are capable of expressing high levels of MHC class I proteins, and thus may be rejected on transplantation unless they are modified. In addition, viral stealth mechanisms can be exploited for stem cell transplantation.  相似文献   

11.
MHC class I molecules (MHC-I) have been implicated in nervous system development in the mouse. In this study we present evidence for the interaction of MHC-I with the NK cell receptor Ly49 in primary cortical neuronal cultures. We show that MHC-I and Ly49 are expressed on neuronal soma and axon surfaces, with Ly49 also present on dendrites. Anti-MHC-I Abs reduce synapsin-I expression and enhance neurite outgrowth and neuronal death. Conversely, anti-Ly49 mAbs increase synapsin-I expression, reduce neurite outgrowth, and promote neuron viability. Because we show that Ly49 genes are selectively expressed in the adult brain, these findings suggest an unsuspected role for the MHC-I-Ly49 interaction in the development and function of the brain.  相似文献   

12.
An MHC class I restricted cytotoxic T lymphocyte (CTL) activity assay has recently been established for rainbow trout. MHC class I restricted cytotoxicity probably plays a critical role in immunity to most viral diseases in mammals and may play a similar role in fish. Therefore, it is very important to investigate what types of vaccines can stimulate this immune response. Although logical candidates for vaccine components that can stimulate an MHC class I restricted response are live attenuated viruses and DNA vaccines, these materials are generally not allowed in fish for commercial vaccine use due to potential safety issues. In mammals, however, a number of interesting vaccination strategies based on exogenous antigens that stimulate MHC class I restricted cytotoxicity have been described. Several of these strategies are discussed in this review in the context of fish vaccination.  相似文献   

13.
Viruses are known to employ different strategies to manipulate the major histocompatibility (MHC) class I antigen presentation pathway to avoid recognition of the infected host cell by the immune system. However, viral control of antigen presentation via the processes that supply and select antigenic peptide precursors is yet relatively unknown. The Epstein-Barr virus (EBV)-encoded EBNA1 is expressed in all EBV-infected cells, but the immune system fails to detect and destroy EBV-carrying host cells. This immune evasion has been attributed to the capacity of a Gly-Ala repeat (GAr) within EBNA1 to inhibit MHC class I restricted antigen presentation. Here we demonstrate that suppression of mRNA translation initiation by the GAr in cis is sufficient and necessary to prevent presentation of antigenic peptides from mRNAs to which it is fused. Furthermore, we demonstrate a direct correlation between the rate of translation initiation and MHC class I antigen presentation from a certain mRNA. These results support the idea that mRNAs, and not the encoded full length proteins, are used for MHC class I restricted immune surveillance. This offers an additional view on the role of virus-mediated control of mRNA translation initiation and of the mechanisms that control MHC class I restricted antigen presentation in general.  相似文献   

14.
Recovery from stroke engages mechanisms of neural plasticity. Here we examine a role for MHC class I (MHCI) H2-Kb and H2-Db, as well as PirB receptor. These molecules restrict synaptic plasticity and motor learning in the healthy brain. Stroke elevates neuronal expression not only of H2-Kb and H2-Db, but also of PirB and downstream signaling. KbDb knockout (KO) or PirB KO mice have smaller infarcts and enhanced motor recovery. KO hippocampal organotypic slices, which lack an intact peripheral immune response, have less cell death after in?vitro ischemia. In PirB KO mice, corticospinal projections from the motor cortex are enhanced, and the reactive astrocytic response is dampened after MCAO. Thus, molecules that function in the immune system act not only to limit synaptic plasticity in healthy neurons, but also to exacerbate brain injury after ischemia. These results suggest therapies for stroke by targeting MHCI and PirB.  相似文献   

15.
The tumorigenicity of adenovirus type 12 (Ad12)-transformed cells has been attributed to the low levels of class I major histocompatibility complex (MHC) protein expression by these cells. These levels of class I proteins are thought to be below the threshold critical for cytotoxic T-lymphocyte recognition, a process that may be involved in tumor cell immunosurveillance. We have used gene transfer experiments to investigate the role played by class I protein expression in the tumorigenicity of Ad12-transformed BALB/c mouse cells in naive, syngeneic adult mice. Our Ad12-transformed mouse cells were tumorigenic in adult mice and were similar to other Ad12-transformed mammalian cells in that they expressed low levels of class I MHC mRNA and cell surface proteins. Despite these low levels of expression, the cells were highly immunogenic in syngeneic mice and were rejected as allografts by allogeneic mice. Transfection of genomic H-2Dd or H-2Ld fragments into these cells produced a variety of cell clones that expressed increased levels of cell surface class I proteins. These cells expressing high levels of class I protein were up to 16-fold more tumorigenic than the parental cells in syngeneic adult mice. Thus, by quantitative assays, the tumorigenicity of Ad12-transformed BALB/c mouse cells is not functionally related to the low levels of class I MHC proteins they express. The increased tumorigenicity expressed by H-2Dd- and H-2Ld-transfected cells was not detected in BALB/c nu/nu mice, suggesting that a thymus-dependent mechanism that is not mediated by evasion of cytotoxic T-lymphocyte recognition could contribute to the difference in tumorigenicity of Ad12-transformed BALB/c mouse cells that express low and high levels of class I MHC proteins.  相似文献   

16.
Brain endothelial cells (EC) represent a major component of the blood/brain barrier, which activated CTL cross to enter the central nervous system. Several viruses also penetrate the central nervous system through the blood stream via the brain EC. The studies reported here focus on understanding the principles and consequences of interactions among viruses, lymphocytes, and EC in the brain. As shown persistent but not acute infection by lymphocytic choriomeningitis virus enhances the expression of MHC class I glycoproteins on the brain EC of mice. This increase in MHC expression during viral infection does not seem to result from the release of cytokines. However, replicative virus is required, because UV inactivated virus fails to enhance MHC expression. Viral determinants appear on EC surfaces after infection and serve as targets for CTL directed lysis. In contrast, neurons (OBL 21 neuronal cell line), which express negligible amounts of MHC class I glycoproteins, show no gain in MHC markers during persistent viral infection and are not targets for virus-specific CTL killing.  相似文献   

17.
The activity of NK cells is regulated by activating receptors that recognize mainly stress-induced ligands and by inhibitory receptors that recognize mostly MHC class I proteins on target cells. Comparing the cytoplasmic tail sequences of various MHC class I proteins revealed the presence of unique cysteine residues in some of the MHC class I molecules which are absent in others. To study the role of these unique cysteines, we performed site specific mutagenesis, generating MHC class I molecules lacking these cysteines, and demonstrated that their expression on the cell surface was impaired. Surprisingly, we demonstrated that these cysteines are crucial for the surface binding of the leukocyte Ig-like receptor 1 inhibitory receptor to the MHC class I proteins, but not for the binding of the KIR2DL1 inhibitory receptor. In addition, we demonstrated that the cysteine residues in the cytoplasmic tail of MHC class I proteins are crucial for their egress from the endoplasmic reticulum and for their palmitoylation, thus probably affecting their expression on the cell surface. Finally, we show that the cysteine residues are important for proper extracellular conformation. Thus, although the interaction between leukocyte Ig-like receptor 1 and MHC class I proteins is formed between two extracellular surfaces, the intracellular components of MHC class I proteins play a crucial role in this recognition.  相似文献   

18.
More than 20 matrix metalloproteinases (MMPs) and four of their endogenous tissue inhibitors (TIMPs) act together to control tightly temporally restricted, focal proteolysis of extracellular matrix. In the neurons of the adult brain several components of the TIMP/MMP system are expressed and are responsive to changes in neuronal activity. Furthermore, functional studies, especially involving blocking of MMP activities, along with the identification of MMP substrates in the brain strongly suggest that this enzymatic system plays an important physiological role in adult brain neurons, possibly being pivotal for neuronal plasticity.  相似文献   

19.
Increasing evidence supports the idea that spontaneous brain activity may have an important functional role. Cultured neuronal networks provide a suitable model system to search for the mechanisms by which neuronal spontaneous activity is maintained and regulated. This activity is marked by synchronized bursting events (SBEs)--short time windows (hundreds of milliseconds) of rapid neuronal firing separated by long quiescent periods (seconds). However, there exists a special subset of rapidly firing neurons whose activity also persists between SBEs. It has been proposed that these highly active (HA) neurons play an important role in the management (i.e. establishment, maintenance and regulation) of the synchronized network activity. Here, we studied the dynamical properties and the functional role of HA neurons in homogeneous and engineered networks, during early network development, upon recovery from chemical inhibition and in response to electrical stimulations. We found that their sequences of inter-spike intervals (ISI) exhibit long time correlations and a unimodal distribution. During the network's development and under intense inhibition, the observed activity follows a transition period during which mostly HA neurons are active. Studying networks with engineered geometry, we found that HA neurons are precursors (the first to fire) of the spontaneous SBEs and are more responsive to electrical stimulations.  相似文献   

20.
The basis for the immune response against intracellular pathogens is the recognition by cytotoxic T lymphocytes of antigenic peptides derived from cytosolic proteins, which are presented on the cell surface by major histocompatibility complex (MHC) class I molecules. The understanding of MHC class I-restricted peptide presentation has recently improved dramatically with the elucidation of the structural basis for the specificity of peptide binding to MHC class I molecules and the identification of proteins encoded in the class II region of the MHC that are putatively involved in the production of peptides and their transport into the endoplasmic reticulum, where they assemble with class I molecules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号