首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
7.
The LIM only protein Lmo2 plays an important role in hematopoiesis and leukemogenesis. Lmo2 acts as a bridging molecule between components of hematopoietic gene regulatory protein complexes. We used the yeast two-hybrid system to identify novel Lmo2 interacting proteins and found that the AF6 protein binds to Lmo2. AF6 is a recurrent fusion partner of MLL, the human homolog of Drosophila trithorax chromatin remodeling protein that is involved in childhood leukemia and mixed lineage leukemia. Our data support the notion that recurrent fusion partners of chimeric MLL proteins recruit hematopoietic gene regulatory complexes.  相似文献   

8.
9.
10.
11.
12.
13.
Enigma proteins are proteins that possess a PDZ domain at the amino terminal and one to three LIM domains at the carboxyl terminal. They are cytoplasmic proteins that are involved with the cytoskeleton and signal transduction pathway. By virtue of the two protein interacting domains, they are capable of protein-protein interactions. Here we report a study on a human Enigma protein hCLIM1, in particular. Our study describes the interaction of the human 36 kDa carboxyl terminal LIM domain protein (hCLIM1), the human homologue of CLP36 in rat, with alpha-actinin 2, the skeletal muscle isoform of alpha-actinin. hCLIM1 protein was shown to interact with alpha-actinin 2 by yeast two-hybrid screening and immunochemical analyses. Yeast two-hybrid analyses also demonstrated that the LIM domain of hCLIM1 binds to the EF-hand region of alpha-actinin 2, defining a new mode of LIM domain interactions. Immunofluorescent study demonstrates that hCLIM1 colocalizes with alpha-actinin at the Z-disks in human myocardium. Taken together, our experimental results suggest that hCLIM1is a novel cytoskeletal protein and may act as an adapter that brings other proteins to the cytoskeleton.  相似文献   

14.
The overexpression of LIM-only protein 2 (LMO2) in T-cells, as a result of chromosomal translocations, retroviral insertion during gene therapy, or in transgenic mice models, leads to the onset of T-cell leukemias. LMO2 comprises two protein-binding LIM domains that allow LMO2 to interact with multiple protein partners, including LIM domain-binding protein 1 (Ldb1, also known as CLIM2 and NLI), an essential cofactor for LMO proteins. Sequestration of Ldb1 by LMO2 in T-cells may prevent it binding other key partners, such as LMO4. Here, we show using protein engineering and enzyme-linked immunosorbent assay (ELISA) methodologies that LMO2 binds Ldb1 with a twofold lower affinity than does LMO4. Thus, excess LMO2 rather than an intrinsically higher binding affinity would lead to sequestration of Ldb1. Both LIM domains of LMO2 are required for high-affinity binding to Ldb1 (K(D) = 2.0 x 10(-8) M). However, the first LIM domain of LMO2 is primarily responsible for binding to Ldb1 (K(D) = 2.3 x 10(-7) M), whereas the second LIM domain increases binding by an order of magnitude. We used mutagenesis in combination with yeast two-hybrid analysis, and phage display selection to identify LMO2-binding "hot spots" within Ldb1 that locate to the LIM1-binding region. The delineation of this region reveals some specific differences when compared to the equivalent LMO4:Ldb1 interaction that hold promise for the development of reagents to specifically bind LMO2 in the treatment of leukemia.  相似文献   

15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号