首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
Abstract

The nuclear receptor Nurr1 (NR4A2) has been identified as a potential target for the treatment of Parkinson’s disease. In contrast to most other nuclear receptors, the X-ray crystal structure of the Nurr1 ligand-binding domain (LBD) lacks any ligand-binding pocket (LBP). However, NMR spectroscopy measurements have revealed that the known Nurr1 agonist docosahexaenoic acid (DHA) binds to a region within the LBD that corresponds to the classical NR ligand-binding pocket (LBP). In order to investigate the structural dynamics of the Nurr1 LBD and to study potential LBP formation, the conformational space of the receptor was sampled using a molecular dynamics (MD) simulation. Docking of DHA into 50,000 LBD structures extracted from the simulation revealed the existence of a transient LBP that is capable to fully harbor the compound. The location of the identified pocket overlaps with the ligand-binding site suggested by NMR experiments. Structural analysis of the protein-ligand complex showed that only modest structural rearrangements within the Nurr1 LBD are required for LBP formation. These findings may support structure-based drug discovery campaigns for the development of receptor-specific agonists.  相似文献   

2.
Two different, theoretical studies of intramolecular proton-proton distances in polypeptide chains are described. Firstly, the distances between amide, Cα and Cβ protons of neighbouring residues in the amino acid sequence, which correspond to the sterically allowed values for the dihedral angles φi, ψi and χi1, were computed. Secondly, the frequency with which short distances occur between amide, Cα and Cβ protons of neighbouring and distant residues in the amino acid sequence were statistically evaluated in a representative sample of globular protein crystal structures. Both approaches imply that semi-quantitative measurements of short, non-bonding proton-proton distances, e.g. by nuclear Overhauser experiments, should present a reliable and generally applicable method for sequential, individual resonance assignments in protein 1H nuclear magnetic resonance spectra. Similar calculations imply that corresponding distance measurements can be used for resonance assignments in the side-chains of the aromatic amino acid residues, asparagine and glutamine, where the complete spin systems cannot usually be identified from through-bond spin-spin coupling connectivities.  相似文献   

3.
The octapeptide hormone angiotensin II (AngII) exerts a wide variety of cardiovascular effects through the activation of the AT1 receptor, which belongs to the G protein-coupled receptor superfamily. Like other G protein-coupled receptors, the AT1 receptor possesses seven transmembrane domains that provide structural support for the formation of the ligand-binding pocket. Here, we investigated the role of the first and fourth transmembrane domains (TMDs) in the formation of the binding pocket of the human AT1 receptor using the substituted-cysteine accessibility method. Each residue within the Phe-28(1.32)–Ile-53(1.57) fragment of TMD1 and Leu-143(4.40)–Phe-170(4.67) fragment of TMD4 was mutated, one at a time, to a cysteine. The resulting mutant receptors were expressed in COS-7 cells, which were subsequently treated with the charged sulfhydryl-specific alkylating agent methanethiosulfonate ethylammonium (MTSEA). This treatment led to a significant reduction in the binding affinity of TMD1 mutants M30C(1.34)-AT1 and T33C(1.37)-AT1 and TMD4 mutant V169C(4.66)-AT1. Although this reduction in binding of the TMD1 mutants was maintained when examined in a constitutively active receptor (N111G-AT1) background, we found that V169C(4.66)-AT1 remained unaffected when treated with MTSEA compared with untreated in this context. Moreover, the complete loss of binding observed for R167C(4.64)-AT1 was restored upon treatment with MTSEA. Our results suggest that the extracellular portion of TMD1, particularly residues Met-30(1.34) and Thr-33(1.37), as well as residues Arg-167(4.64) and Val-169(4.66) at the junction of TMD4 and the second extracellular loop, are important binding determinants within the AT1 receptor binding pocket but that these TMDs undergo very little movement, if at all, during the activation process.  相似文献   

4.
Human Raf-1 kinase inhibitor protein (hRKIP) is a small multi-functional protein of 187 residues. It contains a conserved pocket, which binds a wide range of ligands from various small molecules to distinct proteins. To provide a structural basis for the ligand diversity of RKIP, we herein determined the solution structure of hRKIP, and analyzed its structural dynamics. In solution, hRKIP mainly comprises two antiparallel β sheets, two α helices and two 310 helices. NMR dynamic analysis reveals that the overall structure of hRKIP is rigid, but its C-terminal helix which is close to the ligand-binding site is mobile. In addition, residues around the ligand-binding pocket exhibit significant conformational exchange on the μs–ms timescale. Conformational flexibility may allow the ligand-binding pocket and the C-terminal helix to adopt various conformations to interact with different substrates. This work may shed light on the underlying molecular mechanisms of how hRKIP recognizes and binds diverse substrate ligands.  相似文献   

5.
Raf1 kinase inhibitor protein (RKIP) negatively regulates the Raf1/MEK/ERK pathway which is vital for cell growth and differentiation. It is also a biomarker in clinical cancer diagnosis. RKIP binds to the N-terminus of Raf1 kinase but little is known about the structural basis of RKIP binding with Raf1. Here, we demonstrate that the N-terminus of human Raf1 kinase (hRaf11-147aa) binds with human RKIP (hRKIP) at its ligand-binding pocket, loop “127–149”, and the C-terminal helix by NMR experiments. D70, D72, E83, Y120, and Y181 were further verified as the key residues participating in the interaction of hRKIP and hRaf11-147aa. G143-R146 fragment was also critical for hRKIP binding with hRaf11-147aa, for its deletion decreased the binding affinity around 300 times, from 154 to 0.46 mM?1. Our results provide important structural clues for designing the lead compound that disrupts RKIP–Raf1 interaction.  相似文献   

6.
The feasibility of practically complete backbone and ILV methyl chemical shift assignments from a single [U-2H,15N,13C; Ile??1-{13CH3}; Leu,Val-{13CH3/12CD3}]-labeled protein sample of the truncated form of ligand-free Bst-Tyrosyl tRNA Synthetase (Bst-??YRS), a 319-residue predominantly helical homodimer, is established. Protonation of ILV residues at methyl positions does not appreciably detract from the quality of TROSY triple resonance data. The assignments are performed at 40?°C to improve the sensitivity of the measurements and alleviate the overlap of 1H?C15N correlations in the abundant ??-helical segments of the protein. A number of auxiliary approaches are used to assist in the assignment process: (1) selection of 1H?C15N amide correlations of certain residue types (Ala, Thr/Ser) that simplifies 2D 1H?C15N TROSY spectra, (2) straightforward identification of ILV residue types from the methyl-detected ??out-and-back?? HMCM(CG)CBCA experiment, and (3) strong sequential HN?CHN NOE connectivities in the helical regions. The two subunits of Bst-YRS were predicted earlier to exist in two different conformations in the absence of ligands. In agreement with our earlier findings (Godoy-Ruiz in J Am Chem Soc 133:19578?C195781, 2011), no evidence of dimer asymmetry has been observed in either amide- or methyl-detected experiments.  相似文献   

7.
PsbQ is one of the extrinsic proteins situated on the lumenal surface of photosystem II (PSII) in the higher plants and green algae. Its three-dimensional structure was determined by X-ray crystallography with exception of the residues 14–33. To obtain further details about its structure and potentially its dynamics, we approached the problem by NMR. In this paper we report 1H, 15N, and 13C NMR assignments for the PsbQ protein. The very challenging oligo-proline stretches could be assigned using 13C-detected NMR experiments that enabled the assignments of twelve out of the thirteen proline residues of PsbQ. The identification of PsbQ secondary structure elements on the basis of our NMR data was accomplished with the programs TALOS+, web server CS23D and CS-Rosetta. To obtain additional secondary structure information, three-bond HN-Hα J-coupling constants and deviation of experimental 13Cα and 13Cβ chemical shifts from random coil values were determined. The resulting “consensus” secondary structure of PsbQ compares very well with the resolved regions of the published X-ray crystallographic structure and gives a first estimate of the structure of the “missing link” (i.e. residues 14–33), which will serve as the basis for the further investigation of the structure, dynamics and interactions.  相似文献   

8.
In order to understand the role of the glycans in glycoproteins in solution, structural information obtained by NMR spectroscopy is obviously required. However, the assignment of the NMR signals from the glycans in larger glycoproteins is still difficult, mainly due to the lack of appropriate methods for the assignment of the resonances originating from the glycans. By using [U-13C6,2H7]glucose as a metabolic precursor, we have successfully prepared a glycoprotein whose glycan is uniformly labeled with 13C and partially with D at the sugar residues. The D to H exchange ratios at the C1-C6 positions of the sugar residues have been proven to provide useful information for the spectral assignments of the glycan in the glycoprotein. This is the first report on the residue-specific assignment of the anomeric resonances originating from a glycan attached to a glycoprotein by using the metabolic incorporation of hydrogen from the medium into a glycan labeled with [U-13C6,2H7]glucose.  相似文献   

9.
Two-dimensional 1H-nmr methods are described to obtain information on the sidechain conformation of valyl residues of the lac repressor headpiece and to assign the resonances of their methyl groups stereospecifically. The spin–spin coupling constants (Jαβ) between Cαand Cβ protons are obtained from two-dimensional correlated spectroscopy experiments. Large values for Jαβ(10–12 Hz) corresponding to trans orientations for these protons (g+ conformation) are found for all valyl residues in α-helical segments. For these valyl residues, the distance between one methyl group (γ1)and the valyl amide proton is much shorter than for the other methyl group, so that stereospecific resonance assignments follow from relative intensities of the corresponding cross peaks in a two-dimensional nuclear Overhauser enhancement spectrum. Thus, streospecific assignments could be made for the methyl groups of Val 9, 20, 23, and 38 (of a total of eight valyl residues).  相似文献   

10.
11.
A methyl-detected ‘out-and-back’ NMR experiment for obtaining simultaneous correlations of methyl resonances of valine and isoleucine/leucine residues with backbone carbonyl chemical shifts, SIM-HMCM(CGCBCA)CO, is described. The developed pulse-scheme serves the purpose of convenience in recording a single data set for all Ileδ1, Leuδ and Valγ (ILV) methyl positions instead of acquiring two separate spectra selective for valine or leucine/isoleucine residues. The SIM-HMCM(CGCBCA)CO experiment can be used for ILV methyl assignments in moderately sized protein systems (up to ~100 kDa) where the backbone chemical shifts of 13Cα, 13Cβ and 13CO are known from prior NMR studies and where some losses in sensitivity can be tolerated for the sake of an overall reduction in NMR acquisition time.  相似文献   

12.
Fatty acid-binding proteins (FABPs) are a family of proteins that modulate the transfer of various fatty acids in the cytosol and constitute a significant portion in many energy-consuming cells. The ligand binding properties and specific functions of a particular type of FABP seem to be diverse and depend on the respective binding cavity as well as the cell type from which this protein is derived. Previously, a novel FABP (lcFABP; lc: Luciola cerata) was identified in the light organ of Taiwanese fireflies. The lcFABP was proved to possess fatty acids binding capabilities, especially for fatty acids of length C14–C18. However, the structural details are unknown, and the structure–function relationship has remained to be further investigated. In this study, we finished the 1H, 15N and 13C chemical shift assignments of 15N/13C-enriched lcFABP by solution NMR spectroscopy. In addition, the secondary structure distribution was revealed based on the backbone N, H, Cα, Hα, C and side chain Cβ assignments. These results can provide the basis for further structural exploration of lcFABP.  相似文献   

13.
The bacterial immunoglobulin-like (Big) domain is one of the prevalent domain types, which facilitates cell–cell adhesion by assembling into multi-domain architectures. We selected a four Big_2 domain protein (named ‘Arig’) from a Gram positive, Paenarthrobacter aurescens TC1 (known earlier as Arthrobacter aurescens TC1). In an attempt to characterize structural and ligand-binding features of individual Big_2 domains, we have cloned, overexpressed, isolated and purified the second Big_2 domain of Arig along with a few of its adjacent Big_2 domain residues (residue 143 to 269) referred to as ‘Arig2’. The 13C/15N-doubly-labeled His-tagged Arig2 (133 residues long) showed an ordered conformation as revealed by the well dispersed 2D [15N-1H]-HSQC spectrum. Subsequently, a suite of heteronuclear 3D NMR experiments has enabled almost complete 1H, 13C and 15N NMR resonance assignments of Arig2.  相似文献   

14.
Statistical analysis reveals that the set of differences between the secondary shifts of the α- and β-carbons for residues i of a protein (Δδ13Cαi- Δδ13Cβi) provides the means to detect and correct referencing errors for 1H and 13C nuclei within a given dataset. In a correctly referenced protein dataset, linear regression plots of Δδ13Cαi,Δδ13Cβi, or Δδ1Hαi vs. (Δδ13Cαi- Δδ13Cβi) pass through the origin from two directions, the helix-to-coil and strand-to-coil directions. Thus, linear analysis of chemical shifts (LACS) can be used to detect referencing errors and to recalibrate the 1H and 13C chemical shift scales if needed. The analysis requires only that the signals be identified with distinct residue types (intra-residue spin systems). LACS allows errors in calibration to be detected and corrected in advance of sequence-specific assignments and secondary structure determinations. Signals that do not fit the linear model (outliers) deserve scrutiny since they could represent errors in identifying signals with a particular residue, or interesting features such as a cis-peptide bond. LACS provides the basis for the automated detection of such features and for testing reassignment hypotheses. Early detection and correction of errors in referencing and spin system identifications can improve the speed and accuracy of chemical shift assignments and secondary structure determinations. We have used LACS to create a database of offset-corrected chemical shifts corresponding to nearly 1800 BMRB entries: 300 with and 1500 without corresponding three-dimensional (3D) structures. This database can serve as a resource for future analysis of the effects of amino acid sequence and protein secondary and tertiary structure on NMR chemical shifts.Supplementary material to this paper is available in electronic form at http://dx.doi.org/10.1007/s10858-005-1717-0  相似文献   

15.
Lentiviruses can infect non-dividing cells, and various cellular transport proteins provide crucial functions for lentiviral nuclear entry and integration. We previously showed that the viral capsid (CA) protein mediated the dependency on cellular nucleoporin (NUP) 153 during HIV-1 infection, and now demonstrate a direct interaction between the CA N-terminal domain and the phenylalanine-glycine (FG)-repeat enriched NUP153 C-terminal domain (NUP153C). NUP153C fused to the effector domains of the rhesus Trim5α restriction factor (Trim-NUP153C) potently restricted HIV-1, providing an intracellular readout for the NUP153C-CA interaction during retroviral infection. Primate lentiviruses and equine infectious anemia virus (EIAV) bound NUP153C under these conditions, results that correlated with direct binding between purified proteins in vitro. These binding phenotypes moreover correlated with the requirement for endogenous NUP153 protein during virus infection. Mutagenesis experiments concordantly identified NUP153C and CA residues important for binding and lentiviral infectivity. Different FG motifs within NUP153C mediated binding to HIV-1 versus EIAV capsids. HIV-1 CA binding mapped to residues that line the common alpha helix 3/4 hydrophobic pocket that also mediates binding to the small molecule PF-3450074 (PF74) inhibitor and cleavage and polyadenylation specific factor 6 (CPSF6) protein, with Asn57 (Asp58 in EIAV) playing a particularly important role. PF74 and CPSF6 accordingly each competed with NUP153C for binding to the HIV-1 CA pocket, and significantly higher concentrations of PF74 were needed to inhibit HIV-1 infection in the face of Trim-NUP153C expression or NUP153 knockdown. Correlation between CA mutant viral cell cycle and NUP153 dependencies moreover indicates that the NUP153C-CA interaction underlies the ability of HIV-1 to infect non-dividing cells. Our results highlight similar mechanisms of binding for disparate host factors to the same region of HIV-1 CA during viral ingress. We conclude that a subset of lentiviral CA proteins directly engage FG-motifs present on NUP153 to affect viral nuclear import.  相似文献   

16.
We describe an efficient NMR triple resonance approach for fast assignment of backbone amide resonance peaks in the 15N-HSQC spectrum. The exceptionally high resolutions achieved in the 3D HncocaNH and hNcocaNH experiments together with non-uniform sampling facilitate error-free sequential connection of backbone amides. Data required for the complete backbone amide assignment of the 56-residue protein GB1 domain were obtained in 14 h. Data analysis was vastly streamlined using a ‘backbone NH walk’ method to determine sequential connectivities without the need for 13C chemical shifts comparison. Amino acid residues in the sequentially connected NH chains are classified into two groups by a simple variation of the NMR pulse sequence, and the resulting ‘ZeBra’ stripe patterns are useful for mapping these chains to the protein sequence. In addition to resolving ambiguous assignments derived from conventional backbone experiments, this approach can be employed to rapidly assign small proteins or flexible regions in larger proteins, and to transfer assignments to mutant proteins or proteins in different ligand-binding states.  相似文献   

17.
Transmembrane stretch M2C from the bacterial K+-translocating protein KtrB is unusually long. In its middle part, termed M2C2, it contains several small and polar amino acids. This region is flanked by the two α-helices M2C1 and M2C3 and may form a flexible gate at the cytoplasmic side of the membrane controlling K+ translocation. In this study, we provide experimental evidence for this notion by using continuous wave and pulse EPR measurements of single and double spin-labeled cysteine variants of KtrB. Most of the spin-labeled residues in M2C2 were shown to be immobile, pointing to a compact structure. However, the high polarity revealed for the microenvironment of residue positions 317, 318, and 327 indicated the existence of a water-accessible cavity. Upon the addition of K+ ions, M2C2 residue Thr-318R1 (R1 indicates the bound spin label) moved with respect to M2B residue Asp-222R1 and M2C3 residue Val-331R1 but not with respect to M2C1 residue Met-311R1. Based on distances determined between spin-labeled residues of double-labeled variants of KtrB in the presence and absence of K+ ions, structural models of the open and closed conformations were developed.  相似文献   

18.
Double-stranded RNA binding domain (dsRBD) containing proteins are critical components of the microRNA (miRNA) pathway, with key roles in small RNA biogenesis, modification, and regulation. DiGeorge Critical Region 8 (DGCR8) is a 773 amino acid, dsRBD-containing protein that was originally identified in humans as a protein encoded in the region of chromosome 22 that is deleted in patients with DiGeorge syndrome. Now, it is realized that DGCR8 complements the nuclear RNase III Drosha to initiate miRNA biogenesis by promoting efficient recognition and cleavage of primary miRNAs (pri-miRNA). A pair of C-terminal tandem dsRBDs separated by a flexible linker are required for pri-miRNA substrate binding and recognition. The crystal structure of the DGCR8 core region comprising residues 493–720 revealed that each dsRBD adopts the canonical αβββα fold. However, several residues located in important flexible regions including the β1-β2-loop implicated in canonical dsRNA recognition are absent in the crystal structure and no RNA-bound structure of DGCR8 has been reported. Here we report the 1HN, 13C, and 15N backbone resonance assignments of the 24 kDa, 214 amino acid human DGCR8core (residues 493–706) by heteronuclear NMR spectroscopy. Our assignments lay the foundation for a detailed solution state characterization of the dynamical and RNA-binding properties of this protein in solution.  相似文献   

19.
Summary The assignments of the 1H, 15N, 13CO and 13C resonances of recombinant human basic fibroblast growth factor (FGF-2), a protein comprising 154 residues and with a molecular mass of 17.2 kDa, is presented based on a series of three-dimensional triple-resonance heteronuclear NMR experiments. These studies employ uniformly labeled 15N- and 15N-/13C-labeled FGF-2 with an isotope incorporation >95% for the protein expressed in E. coli. The sequence-specific backbone assignments were based primarily on the interresidue correlation of C, C and H to the backbone amide 1H and 15N of the next residue in the CBCA(CO)NH and HBHA(CO)NH experiments and the intraresidue correlation of C, C and H to the backbone amide 1H and 15N in the CBCANH and HNHA experiments. In addition, C and C chemical shift assignments were used to determine amino acid types. Sequential assignments were verified from carbonyl correlations observed in the HNCO and HCACO experiments and C correlations from the carbonyl correlations observed in the HNCO and HCACO experiments and C correlations from the HNCA experiment. Aliphatic side-chain spin systems were assigned primarily from H(CCO)NH and C(CO)NH experiments that correlate all the aliphatic 1H and 13C resonances of a given residue with the amide resonance of the next residue. Additional side-chain assignments were made from HCCH-COSY and HCCH-TOCSY experiments. The secondary structure of FGF-2 is based on NOE data involving the NH, H and H protons as well as 3JH n H coupling constants, amide exchange and 13C and 13C secondary chemical shifts. It is shown that FGF-2 consists of 11 well-defined antiparallel -sheets (residues 30–34, 39–44, 48–53, 62–67, 71–76, 81–85, 91–94, 103–108, 113–118, 123–125 and 148–152) and a helix-like structure (residues 131–136), which are connected primarily by tight turns. This structure differs from the refined X-ray crystal structures of FGF-2, where residues 131–136 were defined as -strand XI. The discovery of the helix-like region in the primary heparin-binding site (residues 128–138) instead of the -strand conformation described in the X-ray structures may have important implications in understanding the nature of heparin-FGF-2 interactions. In addition, two distinct conformations exist in solution for the N-terminal residues 9–28. This is consistent with the X-ray structures of FGF-2, where the first 17–19 residues were ill defined.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号