首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The allocation of foragers in red wood ants   总被引:1,自引:0,他引:1  
Abstract. 1. We studied how colonies of the red wood ant, Formica polyctena , adjust the numbers of foragers allocated to different foraging trails. In a series of field experiments, foragers were marked and transferred from one nest to another, related nest, where they joined the foraging force. Transferred workers acted as a reserve of uncommitted, available foragers.
2. Previous work shows that each individual forager habitually uses one trail. We found that for an uncommitted forager, the influence of recruitment initially is stronger than that of directional fidelity. Transferred workers were likely to use trails leading to new food sources. When transferred to a new nest, foragers were not likely to use a trail in the same direction as their original trail in the donor nest.
3. After a week, transferred foragers tended to develop route fidelity. Even after bait was no longer present, they continued to use the trail that had formerly led to a bait source.
4. We examined how colonies adjust numbers on a trail by experimentally depleting some trails. Colonies usually did not compensate for depletion: foragers were not recruited to depleted trails.
5. In general, the dynamics of foraging in this species facilitate a consistent foraging effort rather than rapid adjustments of forager allocation.  相似文献   

2.
The foraging behavior of the arboreal turtle ant, Cephalotes goniodontus, was studied in the tropical dry forest of western Mexico. The ants collected mostly plant-derived food, including nectar and fluids collected from the edges of wounds on leaves, as well as caterpillar frass and lichen. Foraging trails are on small pieces of ephemeral vegetation, and persist in exactly the same place for 4–8 days, indicating that food sources may be used until they are depleted. The species is polydomous, occupying many nests which are abandoned cavities or ends of broken branches in dead wood. Foraging trails extend from trees with nests to trees with food sources. Observations of marked individuals show that each trail is travelled by a distinct group of foragers. This makes the entire foraging circuit more resilient if a path becomes impassable, since foraging in one trail can continue while a different group of ants forms a new trail. The colony’s trails move around the forest from month to month; from one year to the next, only one colony out of five was found in the same location. There is continual searching in the vicinity of trails: ants recruited to bait within 3 bifurcations of a main foraging trail within 4 hours. When bait was offered on one trail, to which ants recruited, foraging activity increased on a different trail, with no bait, connected to the same nest. This suggests that the allocation of foragers to different trails is regulated by interactions at the nest.  相似文献   

3.
More than 100 years of scientific research has provided evidence for sophisticated navigational mechanisms in social insects. One key role for navigation in ants is the orientation of workers between food sources and the nest. The focus of recent work has been restricted to navigation in individually foraging ant species, yet many species do not forage entirely independently, instead relying on collectively maintained information such as persistent trail networks and/or pheromones. Harvester ants use such networks, but additionally, foragers often search individually for food either side of trails. In the absence of a trail, these ‘off-trail’ foragers must navigate independently to relocate the trail and return to the nest. To investigate the strategies used by ants on and off the main trails, we conducted field experiments with a harvester ant species, Messor cephalotes, by transferring on-trail and off-trail foragers to an experimental arena. We employed custom-built software to track and analyse ant trajectories in the arena and to quantitatively compare behaviour. Our results indicate that foragers navigate using different cues depending on whether they are travelling on or off the main trails. We argue that navigation in collectively foraging ants deserves more attention due to the potential for behavioural flexibility arising from the relative complexity of journeys between food and the nest.  相似文献   

4.
Summary Establishment and maintenance of foraging trails to an artificial nectar source by ten colonies ofParaponera davata (Fabr.) in Panama is reported. The first forager to locate the artificial nectar source was responsible for recruiting additional foragers and for marking trails to orient these foragers. More than half of the trail marking was performed by the first two ants to mark the path back to the colony, although up to 11 ants per colony per hour marked trails. The number of trail marks and the number of marking ants decreased through time, presumably as foragers learned the location of the artificial nectar source. Four categories of recruits were noted: markers, foragers, patrollers, and visitors.  相似文献   

5.
Many social insects use pheromones to communicate and coordinatetheir activities. Investigation of intraspecific differencesin pheromone use is a new area of social insect research. Forexample, interindividual variation in alarm pheromone contenthas been found in physical castes of polymorphic ants. Manyant species use multiple trail pheromones. Here we present novelresearch into trail pheromone variations between behavioralsubcastes of pharaoh ants, Monomorium pharaonis. Monomoriumpharaonis is attracted to trail pheromones found in its poisonglands (monomorines) and Dufour's glands (faranal). We showthat the most abundant monomorines, I (M1) and III (M3), canbe readily detected in pheromone trails. A behaviorally distinctsubcaste known as "pathfinder" foragers can relocate long-livedpheromone trails. Chemical analysis showed that pathfinder foragershad low M3:M1 ratios (mean 3.09 ± 1.53, range 1.03–7.10).Nonpathfinder foragers had significantly greater M3:M1 ratios(38.3 ± 60.0, range 3.54–289). We found that M3:M1ratio did not differ between foragers of different age but wascorrelated with behavioral subcaste at all ages. The relativeabundance of M3:M1 on foraging trails ranged from 3.03–41.3over time during pheromone trail build-up. M3:M1 ratio alsovaried spatially throughout trail networks, being lowest ontrail sections closest to a food source (M3:M1 = 1.9–3.61)and highest near the nest (M3:M1 = 67–267). Our resultsindicate a functional role for differences in pheromone trailcomposition, whereby pathfinder foragers might preferentiallymark sections of pheromone trail networks for future exploration.  相似文献   

6.
Many animals, including humans, organize their foraging activity along well-defined trails. Because trails are cleared of obstacles, they minimize energy expenditure and allow fast travel. In social insects such as ants, trails might also promote social contacts and allow the exchange of information between workers about the characteristics of the food. When the trail traffic is heavy, however, traffic congestion occurs and the benefits of increased social contacts for the colony can be offset by a decrease of the locomotory rate of individuals. Using a small laboratory colony of the leaf-cutting ant Atta colombica cutting a mix of leaves and Parafilm, we compared how foraging changed when the width of the bridge between the nest and their foraging area changed. We found that the rate of ants crossing a 5 cm wide bridge was more than twice as great as the rate crossing a 0.5 cm bridge, but the rate of foragers returning with loads was less than half as great. Thus, with the wide bridge, the ants had about six times lower efficiency (loads returned per forager crossing the bridge). We conclude that crowding actually increased foraging efficiency, possibly because of increased communication between laden foragers returning to the nest and out-going ants. Received 15 December 2006; revised 16 February 2007; accepted 19 February 2007.  相似文献   

7.
Many dynamical networks, such as the ones that produce the collective behavior of social insects, operate without any central control, instead arising from local interactions among individuals. A well-studied example is the formation of recruitment trails in ant colonies, but many ant species do not use pheromone trails. We present a model of the regulation of foraging by harvester ant (Pogonomyrmex barbatus) colonies. This species forages for scattered seeds that one ant can retrieve on its own, so there is no need for spatial information such as pheromone trails that lead ants to specific locations. Previous work shows that colony foraging activity, the rate at which ants go out to search individually for seeds, is regulated in response to current food availability throughout the colony's foraging area. Ants use the rate of brief antennal contacts inside the nest between foragers returning with food and outgoing foragers available to leave the nest on the next foraging trip. Here we present a feedback-based algorithm that captures the main features of data from field experiments in which the rate of returning foragers was manipulated. The algorithm draws on our finding that the distribution of intervals between successive ants returning to the nest is a Poisson process. We fitted the parameter that estimates the effect of each returning forager on the rate at which outgoing foragers leave the nest. We found that correlations between observed rates of returning foragers and simulated rates of outgoing foragers, using our model, were similar to those in the data. Our simple stochastic model shows how the regulation of ant colony foraging can operate without spatial information, describing a process at the level of individual ants that predicts the overall foraging activity of the colony.  相似文献   

8.
Behavioral plasticity in social insects is intriguing because colonies adjust to environmental change through the aggregated responses of individuals. Without central control, colonies adjust numbers of workers allocated to various tasks. Individual decisions are based on local information from the environment and other workers. This study examines how colonies of the seed-eating ant Pogonomyrmex barbatus adjust the intensity of foraging in an arid environment where conspecific neighbors compete for foraging area. The main question is how foragers decide whether to leave the nest. Patrollers search the area before foragers emerge. Removal experiments show that the return of the patrollers stimulates the onset of foraging, and later, the rate at which foragers return affects the rate at which foragers continue to leave the nest. Foraging activity is less sensitive to changes in the rate of returning foragers than to changes in the rate of returning patrollers. These results suggest that whether a colony forages at all on a given day depends on conditions detected early by patrollers but that once foraging begins, the intensity of foraging does not track, on an hourly timescale, how quickly foragers can find food.  相似文献   

9.
Summary: The ant Messor barbarus is a major seed predator on annual grasslands of the Mediterranean area. This paper is an attempt to relate the foraging ecology of this species to resource availability and to address several predictions of optimal foraging theory under natural conditions of seed harvesting.¶Spatial patterns of foraging trails tended to maximise acquisition of food resources, as trails led the ants to areas where seeds were more abundant locally. Moreover, harvesting activity concentrated on highly frequented trails, on which seeds were brought into the nest in larger numbers and more efficiently, at a higher mean rate per worker.¶The predictions of optimal foraging theory that ants should be more selective in both more resource-rich and more distant patches were tested in the native seed background. We confirm that selectivity of ants is positively related to trail length and thus to distance from the nest of foraged seeds. Conversely, we fail to find a consistent relationship between selectivity and density or species diversity of seed patches. We discuss how selectivity assessed at the colony level may depend on factors other than hitherto reported behavioural changes in seed choice by individual foragers.  相似文献   

10.
This study investigates variation in collective behavior in a natural population of colonies of the harvester ant, Pogonomyrmex barbatus. Harvester ant colonies regulate foraging activity to adjust to current food availability; the rate at which inactive foragers leave the nest on the next trip depends on the rate at which successful foragers return with food. This study investigates differences among colonies in foraging activity and how these differences are associated with variation among colonies in the regulation of foraging. Colonies differ in the baseline rate at which patrollers leave the nest, without stimulation from returning ants. This baseline rate predicts a colony's foraging activity, suggesting there is a colony-specific activity level that influences how quickly any ant leaves the nest. When a colony's foraging activity is high, the colony is more likely to regulate foraging. Moreover, colonies differ in the propensity to adjust the rate of outgoing foragers to the rate of forager return. Naturally occurring variation in the regulation of foraging may lead to variation in colony survival and reproductive success.  相似文献   

11.
The stochasticity in food quality and availability, and physical trail characteristics experienced by leaf-cutter ants, may favour individual flexibility in load-mass selection so as to forage effectively. The present study aimed to confirm previous evidence, from Atta cephaoltes foragers, of variable load-mass selection in response to steep inclines and declines in the leaf-cutter ant Acromyrmex octospinosus. The foraging trail gradient of a captive colony of Ac. octospinosus was manipulated by altering the position of a foraging platform relative to the nest box. The results indicate an effect of steep gradients on walking speed and variation in load mass in relation to gradient as a result of individual plasticity, not recruitment of different-sized individuals. Ants selected heavier loads when returning to the nest vertically downwards than when returning horizontally or vertically upwards. These results are discussed with reference to foraging performance. Walking speed was considerably reduced on upward returns to the nest, but was also slower when travelling vertically downwards compared with horizontal trails, suggesting vertical trails per se impact on the time costs of foraging. Differences in load-mass selection were evident from the onset of foraging and did not change significantly over the course of 24 h, suggesting this behaviour was based on individual experience, rather than colony-level information feedback. The present study has demonstrated that Ac. octospinosus foragers are capable of individual flexibility in load-mass selection in response to a physical trail characteristic that is pertinent to their natural habitat and is a factor seldom considered in theoretical foraging models.  相似文献   

12.
To understand the significance of the trail pheromone used in chemical communication of the leaf-cutting ants Atta opaciceps we investigated, under laboratory conditions, the trail-following behaviour of different castes. We observed a clear behavioural discrimination of conspecific venom gland extract of foraging ants from those of other species. Additionally, we determined the pheromone composition of A. opaciceps venom gland secretion using a two-dimensional gas chromatography coupled with mass spectrometry. Chemical analyses revealed the presence of three nitrogen-containing compounds, identified as 2,5-dimethylpyrazine, 3-ethyl-2,5-dimethylpyrazine and methyl 4-methylpyrrole-2-carboxylate (M4MPC). Four different bioassays performed with workers from different castes of A. opaciceps suggested that the trail pheromone elicits the trail-following behaviour in conspecifics of all castes, but the foragers respond more strongly to their own pheromone than to that of other castes (gardeners, generalists and soldiers). In addition, A. opaciceps foragers follow the trails made with the venom gland extracts of the unrelated Acromyrmex subterraneus subterraneus foragers as well as they follow the trails made with their own venom gland extract. M4MPC was identified to be the most abundant and the most behaviourally active component of the venom gland extract of A. opaciceps foragers.  相似文献   

13.
Positive feedback plays a major role in the emergence of many collective animal behaviours. In many ants pheromone trails recruit and direct nestmate foragers to food sources. The strong positive feedback caused by trail pheromones allows fast collective responses but can compromise flexibility. Previous laboratory experiments have shown that when the environment changes, colonies are often unable to reallocate their foragers to a more rewarding food source. Here we show both experimentally, using colonies of Lasius niger, and with an agent-based simulation model, that negative feedback caused by crowding at feeding sites allows ant colonies to maintain foraging flexibility even with strong recruitment to food sources. In a constant environment, negative feedback prevents the frequently found bias towards one feeder (symmetry breaking) and leads to equal distribution of foragers. In a changing environment, negative feedback allows a colony to quickly reallocate the majority of its foragers to a superior food patch that becomes available when foraging at an inferior patch is already well underway. The model confirms these experimental findings and shows that the ability of colonies to switch to a superior food source does not require the decay of trail pheromones. Our results help to resolve inconsistencies between collective foraging patterns seen in laboratory studies and observations in the wild, and show that the simultaneous action of negative and positive feedback is important for efficient foraging in mass-recruiting insect colonies.  相似文献   

14.
Animals principally forage to try to maximize energy intake per unit of feeding time, developing different foraging strategies. Temperature effects on foraging have been observed in diverse ant species; these effects are limited to the duration of foraging or the number of foragers involved. The harvester ant Messor barbarus L. 1767 has a specialized foraging strategy that consists in the formation of worker trails. Because of the high permeability of their body integument, we presume that the length, shape, and type of foraging trails of M. barbarus must be affected by temperature conditions. From mid-June to mid-August 1999, we tested the effect on these trail characteristics in a Mediterranean forest. We found that thermal stress force ants to use a foraging pattern based on the variation of the workers trail structure. Ants exploit earlier well-known sources using long physical trails, but as temperatures increases throughout the morning, foragers reduce the length of the foraging column gradually, looking for alternative food sources in nonphysical trails. This study shows that animal forage can be highly adaptable and versatile in environments with high daily variations.  相似文献   

15.
In leaf-cutting ants, the handling of waste materials from the fungus culture increases the risk of infection. Consequently, ants should manage their waste in a way that minimizes the spread of diseases. We investigated whether in Acromyrmex lobicornis, waste-worker ants (a) also perform roles in foraging or mound maintenance, (b) are morphologically different than other ant workers, and (c) are aggressively discriminated by other worker ants from the same colony. In addition, we investigated whether the location of external waste piles minimizes the probability that wastes spread to the ant nest. In the field, we (a) marked with different colours waste-workers, foragers and mound-workers and monitored whether these ants interchanged their tasks; (b) measured head width, head length, hind femur length and total length of waste-workers; foragers and mound-workers; (c) forced field encounters between waste-workers and foragers, and (d) measured the cardinal orientation of the waste piles in relation to the colony mound. Waste-worker ants did not perform other function outside the nest; neither foragers nor mound-workers managed the waste. Moreover, waste-workers were smaller than foragers and mound-workers, and were attacked if they tried to enter their nest using foraging entrances. The location of external refuse dumps also appears to reduce contamination risks. Waste piles always were down-slope, and often followed the prevailing wind direction. The importance of behaviours such as the division of labour, aggressions against waste-workers and nest compartmentalization (i.e., the orientation of external waste piles) to minimize the spread of pathogens is discussed.  相似文献   

16.
Social insect colonies operate without central control or any global assessment of what needs to be done by workers. Colony organization arises from the responses of individuals to local cues. Red harvester ants (Pogonomyrmex barbatus) regulate foraging using interactions between returning and outgoing foragers. The rate at which foragers return with seeds, a measure of food availability, sets the rate at which outgoing foragers leave the nest on foraging trips. We used mimics to test whether outgoing foragers inside the nest respond to the odor of food, oleic acid, the odor of the forager itself, cuticular hydrocarbons, or a combination of both with increased foraging activity. We compared foraging activity, the rate at which foragers passed a line on a trail, before and after the addition of mimics. The combination of both odors, those of food and of foragers, is required to stimulate foraging. The addition of blank mimics, mimics coated with food odor alone, or mimics coated with forager odor alone did not increase foraging activity. We compared the rates at which foragers inside the nest interacted with other ants, blank mimics, and mimics coated with a combination of food and forager odor. Foragers inside the nest interacted more with mimics coated with combined forager/seed odors than with blank mimics, and these interactions had the same effect as those with other foragers. Outgoing foragers inside the nest entrance are stimulated to leave the nest in search of food by interacting with foragers returning with seeds. By using the combined odors of forager cuticular hydrocarbons and of seeds, the colony captures precise information, on the timescale of seconds, about the current availability of food.  相似文献   

17.
Summary Most studies on leaf-cutting ant foraging examined forest species that harvest dicot leaves. We investigated division of labor and task partitioning during foraging in the grass-cutting ant Atta vollenweideri. Workers of this species harvest grass fragments and transport them to the nest for distances up to 150 m along well-established trunk trails. We recorded the behavior of foraging ants while cutting and monitored the transport of individually-marked fragments from the cutting site until they reached the nest. A. vollenweideri foragers showed division of labor between cutting and carrying, with larger workers cutting the fragments, and smaller ones transporting them. This division was less marked when plants were located very close to the nest and no physical trail was present, i.e., the cutter often transported its own fragment back to the nest. On long foraging trails, the transport of fragments was a partitioned task, i.e., workers formed transport chains composed of 2 to 5 carriers. This sequential load transport occurred more often on long than on short trails. The first carriers in a transport chain covered only short distances before dropping their fragments, and they were observed to turn back and revisit the patch. The last carriers covered the longest distance. The probability of dropping the carried fragment on the trail was independent of both worker and fragment size, and there was no particular location on the trail for dropping, i.e., fragments were not cached. Transport time of fragments transported by a chain was longer than for those transported by single workers all the way to the nest, i.e., sequential transport did not save foraging time. Two hypotheses concerning the possible adaptive value of transport chains are discussed. The first one argues that sequential transport may lead to an increased material transport rate compared to individual transport. The second one considers sequential transport as a way to enhance the information flow among foragers, thus leading to a quicker build-up of workers at particular harvesting places. It is suggested that rather than increasing the gross transport rate of material, transport via chains may favor the transfer of information about the kind of resource being actually harvested.Received 19 December 2002; revised 14 March 2003; accepted 19 March 2003  相似文献   

18.
The search for food in the French subterranean termite Reticulitermes santonensis De Feytaud is organized in part by chemical trails laid with the secretion of their abdominal sternal gland. Trail-laying and -following behavior of R. santonensis was investigated in bioassays. During foraging for food termites walk slowly (on average, 2.3 mm/s) and lay a dotted trail by dabbing the abdomen at intervals on the ground. When food is discovered they return at a quick pace (on average, 8.9 mm/s) to the nest, laying a trail for recruiting nestmates to the food source. While laying this recruitment trail the workers drag the abdomen continuously on the ground. The recruitment trail is highly attractive: it is followed within a few seconds, by more nestmates, and at a quicker pace (on average, 6.4 mm/s) than foraging trails (on average, 2.9 mm/s). The difference between foraging and recruitment trails in R. santonensis could be attributed to different quantities of trail pheromone. A caste-specific difference in trail pheromone thresholds, with workers of R. santonensis being more sensitive to trails than soldiers, was also documented: soldiers respond only to trails with a high concentration of trail pheromone.  相似文献   

19.
Waste management in the leaf-cutting ant Atta colombica   总被引:1,自引:0,他引:1  
Unlike most leaf-cutting ants, which have underground wastedumps, the leaf-cutting ant Atta colombica dumps waste in aheap outside the nest. Waste is hazardous, as it is contaminatedwith pathogens. We investigated the organization of the workforceinvolved in outside-nest tasks (foraging, waste disposal) andquantified task switching and heap location to test hypothesesthat these tasks are organized to minimize contact between the heap and foraging entrances and trails. Waste management isan important task: 11% of externally working ants were eithertransporting waste or manipulating waste on the heap, and theother 89% were foragers. There is strict division of laborbetween foragers and waste workers, with no task switching.Waste management also has division of labor and is undertakenby transporters that carry waste to the heap margins and heapworkers that manage the heap. Waste heaps are always locateddownhill from nest entrances. The distance to the waste heapis positively related to colony size and negatively relatedto slope. Foraging trails avoid the heap, with 92% of trailsgoing away from the heap. This avoidance behavior is costly,increasing foraging trail length by at least 6%. Waste managementin A. colombica is a sophisticated system that encompassesboth work and spatial organization. This organization is probablyadaptive in reducing disease transmission. Division of labor separates waste management from foraging, reducing the likelihoodof foragers becoming contaminated with waste. The downhilllocation of heaps reduces waste entering entrances during rain.The orientation of foraging trails reduces the possibilityof foragers becoming accidentally contaminated with waste.  相似文献   

20.
By comparing the behaviour of Lasius niger scouts at sucrose droplets of different volumes, we empirically identified the criterion used by each scout to assess the amount of food available as well as the rules governing its decision to lay a recruitment trail. When scouts discovered food volumes exceeding the capacity of their crop (3 or 6 μl), 90% immediately returned to the nest laying a recruitment trail. In contrast, when smaller food droplets (0.3, 0.7 or 1 μl) were offered, several scouts stayed on the foraging area, presumably exploring it for additional food. If unsuccessful, they returned to the nest without laying a trail. The droplet volume determined the percentage of trail-laying ants but had no influence on the intensity of marking when this was initiated. The key criterion that regulated the recruiting behaviour of scouts was their ability to ingest their own desired volume. This volume acted as a threshold triggering the trail-laying response of foragers. Collective regulation of foraging according to food size resulted from the interplay between the distribution of these desired volume thresholds among colony members and the food volume available. We relate some aspects of the foraging ecology of aphid-tending ants to this decision-making process. Copyright 2000 The Association for the Study of Animal Behaviour.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号