首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Noton SL  Fearns R 《RNA (New York, N.Y.)》2011,17(10):1895-1906
There is limited knowledge regarding how the RNA-dependent RNA polymerases of the nonsegmented negative-strand RNA viruses initiate genome replication. In a previous study of respiratory syncytial virus (RSV) RNA replication, we found evidence that the polymerase could select the 5'-ATP residue of the genome RNA independently of the 3' nucleotide of the template. To investigate if a similar mechanism is used during antigenome synthesis, a study of initiation from the RSV leader (Le) promoter was performed using an intracellular minigenome assay in which RNA replication was restricted to a single step, so that the products examined were derived only from input mutant templates. Templates in which Le nucleotides 1U, or 1U and 2G, were deleted directed efficient replication, and in both cases, the replication products were initiated at the wild-type position, at position -1 or -2 relative to the template, respectively. Sequence analysis of the RNA products showed that they contained ATP and CTP at the -1 and -2 positions, respectively, thus restoring the mini-antigenome RNA to wild-type sequence. These data indicate that the RSV polymerase is able to select the first two nucleotides of the antigenome and initiate at the correct position, even if the 3'-terminal two nucleotides of the template are missing. Substitution of positions +1 and +2 of the template reduced RNA replication and resulted in increased initiation at positions +3 and +5. Together these data suggest a model for how the RSV polymerase initiates antigenome synthesis.  相似文献   

2.
The 3' termini of the genomic and antigenomic RNAs of human respiratory syncytial virus (RSV) are identical at 10 of the first 11 nucleotide positions and 21 of the first 26 positions. These conserved 3'-terminal sequences are thought to contain the genomic and antigenomic promoters. Furthermore, the complement of each conserved sequence (i.e., the 5' end of the RNA it encodes) might contain an encapsidation signal. Using an RSV minigenome system, we individually mutated each of the last seven nucleotides in the 5' trailer region of the genome. We analyzed effects of these mutations on encapsidation of the T7 polymerase-transcribed negative-sense genome, its ability to function as a template for RSV-driven synthesis of positive-sense antigenome and mRNA, and the ability of this antigenome to be encapsidated and to function as template for the synthesis of more genome. As a technical complication, mutations in the last five nucleotides of the trailer region were found to affect the efficiency of the adjoining T7 promoter over more than a 10-fold range, even though three nonviral G residues had been included between the core promoter and the trailer to maximize the efficiency of promoter activity. This was controlled in all experiments by monitoring the levels of total and encapsidated genome. The efficiency of encapsidation of the T7 polymerase-transcribed genome was not affected by any of the trailer mutations. Furthermore, neither the efficiency of positive-sense RNA synthesis from the genome nor the efficiency of encapsidation of the encoded antigenome was affected by the mutations. However, nucleotide substitution at positions 2, 3, 6, or 7 relative to the 5' end of the trailer blocked the production of progeny genome, whereas substitution at positions 1 and 5 allowed a low level of genome production and substitutions at position 4 were tolerated. Position 4 is the only one of the seven positions examined that is not conserved between the 3' ends of genomic and antigenomic RNA. The mutations that blocked the synthesis of progeny genome thus limited RNA replication to one step, namely, the synthesis and encapsidation of antigenome. Restoration of terminal complementarity for one of the trailer mutants by making a compensatory mutation in the leader region did not restore synthesis of genomic RNA, confirming that its loss was not due to reduced terminal complementarity. Interestingly, this leader mutation appeared to prevent antigenome synthesis with only a slight effect on mRNA synthesis, apparently providing a dissociation between these two synthetic activities. Genomes in which the terminal 24 or 325 nucleotides of the trailer have been deleted were competent for encapsidation and the synthesis of mRNA and antigenomic RNA, further confirming that terminal complementarity was not required for these functions.  相似文献   

3.
4.
Respiratory syncytial virus (RSV) is an RNA virus in the Family Paramyxoviridae. Here, the activities performed by the RSV polymerase when it encounters the viral antigenomic promoter were examined. RSV RNA synthesis was reconstituted in vitro using recombinant, isolated polymerase and an RNA oligonucleotide template representing nucleotides 1–25 of the trailer complement (TrC) promoter. The RSV polymerase was found to have two RNA synthesis activities, initiating RNA synthesis from the +3 site on the promoter, and adding a specific sequence of nucleotides to the 3′ end of the TrC RNA using a back-priming mechanism. Examination of viral RNA isolated from RSV infected cells identified RNAs initiated at the +3 site on the TrC promoter, in addition to the expected +1 site, and showed that a significant proportion of antigenome RNAs contained specific nucleotide additions at the 3′ end, demonstrating that the observations made in vitro reflected events that occur during RSV infection. Analysis of the impact of the 3′ terminal extension on promoter activity indicated that it can inhibit RNA synthesis initiation. These findings indicate that RSV polymerase-promoter interactions are more complex than previously thought and suggest that there might be sophisticated mechanisms for regulating promoter activity during infection.  相似文献   

5.
6.
7.
8.
The second gene in the 3′-to-5′ gene order in respiratory syncytial virus (RSV) encodes the nonstructural protein NS2, for which there is no assigned function. To study the function of NS2, we have used a recently developed reverse genetics system to ablate expression of NS2 in recombinant RSV. A full-length cDNA copy of the antigenome of RSV A2 strain under the control of a T7 promoter was modified by introduction of tandem termination codons within the NS2 open reading frame (NS2stop) or by deletion of the entire NS2 gene (ΔNS2). The NS2 knockout antigenomic cDNAs were cotransfected with plasmids encoding the N, P, L, and M2-1 proteins of RSV, each controlled by the T7 promoter, into cells infected with a vaccinia virus recombinant expressing T7 RNA polymerase. Recombinant NS2stop and ΔNS2 RSVs were recovered and characterized. Both types of NS2 knockout virus displayed pinpoint plaque morphology and grew more slowly than wild-type RSV. The expression of monocistronic mRNAs for the five genes examined (NS1, NS2, N, F, and L) was unchanged in cells infected with either type of NS2 knockout virus, except that no NS2 mRNA was detected with the ΔNS2 virus. Synthesis of readthrough mRNAs was affected only for the ΔNS2 virus, where the NS1-NS2, NS2-N, and NS1-NS2-N mRNAs were replaced with the predicted novel NS1-N mRNA. Upon passage, the NS2stop virus stock rapidly developed revertants which expressed NS2 protein and grew with similar plaque morphology and kinetics wild-type RSV. Sequence analysis confirmed that the termination codons had reverted to sense, albeit not the wild-type assignments, and provided evidence consistent with biased hypermutation. No revertants were recovered from recombinant ΔNS2 RSV. These results show that the NS2 protein is not essential for RSV replication, although its presence greatly improves virus growth in cell culture. The attenuated phenotype of these mutant viruses, coupled with the expected genetic stability associated with gene deletions, suggests that the ΔNS2 RSV is a candidate for vaccine development.  相似文献   

9.
10.
11.
12.
Members of two temperature-sensitive (ts) mutant groups of influenza A/WSN virus defective in complementary RNA synthesis were analyzed with respect to the identity of their defective genes. RNA analysis of recombinants having a ts+ phenotype derived from the mutants and HK virus permitted the identification of RNA 1 and RNA 2 as the single defective gene in mutant groups I and III, respectively. Based on knowledge obtained by mapping the WSN virus genome, it then was possible to determine that biologically functional P3 protein (coded for by RNA 1) and P1 protein (RNA 2) are required for complementary RNA synthesis of influenza virus.  相似文献   

13.
14.
15.
A collection of influenza virus PB2 mutant genes was prepared, including N-terminal deletions, C-terminal deletions, and single-amino-acid insertions. These mutant genes, driven by a T7 promoter, were expressed by transfection into COS-1 cells infected with a vaccinia virus encoding T7 RNA polymerase. Mutant proteins accumulated to levels similar to that of wild-type PB2. Immunofluorescence analyses showed that the C-terminal region of the protein is essential for nuclear transport and that internal sequences affect nuclear localization, confirming previous results (J. Mukaijawa and D. P. Nayak, J. Virol. 65:245-253, 1991). The biological activity of these mutants was tested by determining their capacity to (i) reconstitute RNA polymerase activity in vivo by cotransfection with proteins NP, PB1, and PA and a virion-like RNA encoding the cat gene into vaccinia virus T7-infected COS-1 cells and (ii) complete with the wild-type PB2 activity. In addition, when tested at different temperatures in vivo, two mutant PB2 proteins showed a temperature-sensitive phenotype. The lack of interference shown by some N-terminal deletion mutants and the complete interference obtained with a C-terminal deletion mutant encoding only 124 amino acids indicated that this protein domain is responsible for interaction with another component of the polymerase, probably PB1. To further characterize the mutants, their ability to induce in vitro synthesis of viral cRNA or mRNA was tested by using ApG or beta-globin mRNA as a primer. One of the mutants, 1299, containing an isoleucine insertion at position 299, was able to induce cRNA and mRNA synthesis in ApG-primed reactions but required a higher beta-globin mRNA concentration than wild-type PB2 for detection of in vitro synthesis. This result suggested that mutant I299 has diminished cap-binding activity.  相似文献   

16.
The Sendai virus P protein is an essential component of the viral RNA polymerase (P-L complex) required for RNA synthesis. To identify amino acids important for P-L binding, site-directed mutagenesis of the P gene changed 17 charged amino acids, singly or in groups, and two serines to alanine within the L binding domain from amino acids 408 to 479. Each of the 10 mutants was wild type for P-L and P-P protein interactions and for binding of the P-L complex to the nucleocapsid template, yet six showed a significant inhibition of in vitro mRNA and leader RNA synthesis. To determine if binding was instead hydrophobic in nature, five conserved hydrophobic amino acids in this region were also mutated. Each of these P mutants also retained the ability to bind to L, to itself, and to the template, but two gave a severe decrease in mRNA and leader RNA synthesis. Since all of the mutants still bound L, the data suggest that L binding occurs on a surface of P with a complex tertiary structure. Wild-type biological activity could be restored for defective polymerase complexes containing two P mutants by the addition of wild-type P protein alone, while the activity of two others could not be rescued. Gradient sedimentation analyses showed that rescue was not due to exchange of the wild-type and mutant P proteins within the P-L complex. Mutants which gave a defective RNA synthesis phenotype and could not be rescued by P establish an as-yet-unknown role for P within the polymerase complex, while the mutants which could be rescued define regions required for a P protein function independent of polymerase function.  相似文献   

17.
Many paramyxoviruses express small basic C proteins, from an alternate, overlapping open reading frame of the P gene mRNA, which were previously found to inhibit mRNA synthesis. During recent experiments in which infectious Sendai virus (SeV) was recovered from cDNA via the initial expression of the viral N, P, and L genes from plasmids, the abrogation of C protein expression from the plasmid P gene was found to be necessary for virus recovery. We have investigated the effect of C coexpression on the amplification of an internally deleted defective interfering (DI) genome directly in the transfected cell, for which, in contrast to virus recovery experiments, genome amplification is independent of mRNA synthesis carried out by the SeV polymerase. We find that C protein coexpression also strongly inhibits the amplification of this DI genome but has little or no effect on that of a copy-back DI genome (DI-H4). We have also characterized the C protein from a mutant SeV and found that (i) it had lost most of its inhibitory activity on internally deleted DI genome amplification and (ii) its coexpression no longer prevented the recovery of SeV from DNA. However, consistent with the insensitivity of copy-back DI genomes to C protein inhibition, C coexpression did not prevent the recovery of copy-back nondefective viruses from DNA. The inhibitory effects of C coexpression thus appear to be promoter specific.  相似文献   

18.
19.
20.
Initial attempts to clone the matrix (M) gene of vesicular stomatitis virus (VSV) in a vaccinia virus expression vector failed, apparently because the expressed M protein, and particularly a carboxy-terminus-distal two-thirds fragment, was lethal for the virus recombinant. Therefore, a transient eucaryotic expression system was used in which a cDNA clone of the VSV M protein mRNA was inserted into a region of plasmid pTF7 flanked by the promoter and terminator sequences for the T7 bacteriophage RNA polymerase. When CV-1 cells infected with recombinant vaccinia virus vTF1-6,2 expressing the T7 RNA polymerase were transfected with pTF7-M3, the cells produced considerable amounts of M protein reactive by Western blot (immunoblot) analysis with monoclonal antibodies directed to VSV M protein. Evidence for biological activity of the plasmid-expressed wild-type M protein was provided by marker rescue of the M gene temperature-sensitive mutant tsO23(III) at the restrictive temperature. Somewhat higher levels of M protein expression were obtained in CV-1 cells coinfected with a vaccinia virus-M gene recombinant under control of the T7 polymerase promoter along with T7 polymerase-expressing vaccinia virus vTF1-6,2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号