首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The activated fibroblast growth factor receptor (FGFR)-1 is phosphorylated on five tyrosine residues outside the catalytic site. Although one such residue, Tyr730, is flanked by potential binding sites for phosphotyrosine-interacting molecules, a physiological role for this region is still controversial. We report that a cell-permeant phosphopeptide mimic of this site, FGFR730(p)Y, inhibits FGF-mediated mitogenesis in cells with no effect on responses stimulated by other growth factors. A similar phosphopeptide corresponding to the phospholipase Cgamma binding site on the receptor had no effect on the mitogenic response. The FGFR730(p)Y peptide did not inhibit phosphorylation of p90/FRS2 or Erk, suggesting that it does not act by inhibiting the Erk-kinase cascade. However, the FGFR730(p)Y peptide bound Shc in a manner requiring both phosphorylated tyrosine and a putative PTB domain binding determinant. These data suggest that the peptide might inhibit mitogenesis by competing with the corresponding site on the FGFR for the ability to bind SHC.  相似文献   

2.
Fibroblast growth factor (FGF) 21, a structural relative of FGF23 that regulates phosphate homeostasis, is a regulator of insulin-independent glucose transport in adipocytes and plays a role in the regulation of body weight. It also regulates ketogenesis and adaptive responses to starvation. We report that in a reconstituted receptor activation assay system using BaF3 cells, which do not endogenously express any type of FGF receptor (FGFR) or heparan sulfate proteoglycan, FGF21 alone does not activate FGFRs and that betaKlotho is required for FGF21 to activate two specific FGFR subtypes: FGFR1c and FGFR3c. Coexpression of betaKlotho and FGFR1c on BaF3 cells enabled FGF21, but not FGF23, to activate receptor signaling. Conversely, coexpression of FGFR1c and Klotho, a protein related to betaKlotho, enabled FGF23 but not FGF21 to activate receptor signaling, indicating that expression of betaKlotho/Klotho confers target cell specificity on FGF21/FGF23. In all of these cases, heparin enhanced the activation but was not essential. In 3T3-L1 adipocytes, up-regulation of glucose transporter (GLUT) expression by FGF21 was associated with expression of betaKlotho, which was absent in undifferentiated 3T3-L1 fibroblasts. It is thus suggested that betaKlotho expression is a crucial determinant of the FGF21 specificity of the target cells upon which it acts in an endocrine fashion.  相似文献   

3.
Heparan sulfates (HS) play an important role in the control of cell growth and differentiation by virtue of their ability to modulate the activities of heparin-binding growth factors, an issue that is particularly well studied for fibroblast growth factors (FGFs). HS/heparin co-ordinate the interaction of FGFs with their receptors (FGFRs) and are thought to play a critical role in receptor dimerization. Biochemical and crystallographic studies, conducted mainly with FGF-2 or FGF-1 and FGF receptors 1 and 2, suggests that an octasaccharide is the minimal length required for FGF- and FGFR-induced dimerization and subsequent activation. In addition, 6-O-sulfate groups are thought to be essential for binding of HS to FGFR and for receptor dimerization. We show here that oligosaccharides shorter than 8 sugar units support activation of FGFR2 IIIb by FGF-1 and interaction of FGFR4 with FGF-1. In contrast, only relatively long oligosaccharides supported receptor binding and activation in the FGF-1.FGFR1 or FGF-7.FGFR2 IIIb setting. In addition, both 6-O- and 2-O-desulfated heparin activated FGF-1 signaling via FGFR2 IIIb, whereas neither one stimulated FGF-1 signaling via FGFR1 or FGF-7 via FGFR2 IIIb. These findings indicate that the structure of HS required for activating FGFs is dictated by the specific FGF and FGFR combination. These different requirements may reflect the differences in the mode by which a given FGFR interacts with the various FGFs.  相似文献   

4.
Tissue-specific alternative splicing in the second half of Ig-like domain 3 (D3) of fibroblast growth factor receptors 1–3 (FGFR1 to -3) generates epithelial FGFR1b-FGFR3b and mesenchymal FGFR1c-FGFR3c splice isoforms. This splicing event establishes a selectivity filter to restrict the ligand binding specificity of FGFRb and FGFRc isoforms to mesenchymally and epithelially derived fibroblast growth factors (FGFs), respectively. FGF1 is termed the “universal FGFR ligand” because it overrides this specificity barrier. To elucidate the molecular basis for FGF1 cross-reactivity with the “b” and “c” splice isoforms of FGFRs, we determined the first crystal structure of FGF1 in complex with an FGFRb isoform, FGFR2b, at 2.1 Å resolution. Comparison of the FGF1-FGFR2b structure with the three previously published FGF1-FGFRc structures reveals that plasticity in the interactions of the N-terminal region of FGF1 with FGFR D3 is the main determinant of FGF1 cross-reactivity with both isoforms of FGFRs. In support of our structural data, we demonstrate that substitution of three N-terminal residues (Gly-19, His-25, and Phe-26) of FGF2 (a ligand that does not bind FGFR2b) for the corresponding residues of FGF1 (Phe-16, Asn-22, and Tyr-23) enables the FGF2 triple mutant to bind and activate FGFR2b. These findings taken together with our previous structural data on receptor binding specificity of FGF2, FGF8, and FGF10 conclusively show that sequence divergence at the N termini of FGFs is the primary regulator of the receptor binding specificity and promiscuity of FGFs.  相似文献   

5.
Heparan sulfate is crucial for vital reactions in the body because of its ability to bind various proteins. The identification of protein-binding heparan sulfate sequences is essential to our understanding of heparan sulfate biology and raises the possibility to develop drugs against diseases such as cancer and inflammatory conditions. We present proof-of-principle that in vitro generated heparan sulfate oligosaccharide libraries can be used to explore interactions between heparan sulfate and proteins, and that the libraries expand the available heparan sulfate sequence space. Oligosaccharide libraries mimicking highly 6-O-sulfated domains of heparan sulfate were constructed by enzymatic O-sulfation of O-desulfated, end-group (3)H-labeled heparin octasaccharides. Acceptor oligosaccharides that were 6-O-desulfated but only partially 2-O-desulfated yielded oligosaccharide arrays with increased ratio of iduronyl 2-O-sulfate/glucosaminyl 6-O-sulfate. The products were probed by affinity chromatography on immobilized growth factors, fibroblast growth factor-1 (FGF1) and FGF2, followed by sequence analysis of trapped oligosaccharides. An N-sulfated octasaccharide, devoid of 2-O-sulfate but with three 6-O-sulfate groups, was unexpectedly found to bind FGF1 as well as FGF2 at physiological ionic strength. However, a single 2-O-sulfate group in the absence of 6-O-sulfation gave higher affinity for FGF2. FGF1 binding was also augmented by 2-O-sulfation, preferentially in combination with an adjacent upstream 6-O-sulfate group. These results demonstrate the potential of the enzymatically generated oligosaccharide libraries.  相似文献   

6.
Fibroblast growth factor-binding protein (FGF-BP) 1 is a secreted protein that can bind fibroblast growth factors (FGFs) 1 and 2. These FGFs are typically stored on heparan sulfate proteoglycans in the extracellular matrix in an inactive form, and it has been proposed that FGF-BP1 functions as a chaperone molecule that can mobilize locally stored FGF and present the growth factor to its tyrosine kinase receptor. FGF-BP1 is up-regulated in squamous cell, colon, and breast cancers and can act as an angiogenic switch during malignant progression of epithelial cells. For the present studies, we focused on FGF-1 and -2 and investigated interactions with recombinant human FGF-BP1 protein as well as effects on signal transduction, cell proliferation, and angiogenesis. We show that recombinant FGF-BP1 specifically binds FGF-2 and that this binding is inhibited by FGF-1, heparan sulfate, and heparinoids. Furthermore, FGF-BP1 enhances FGF-1- and FGF-2-dependent proliferation of NIH-3T3 fibroblasts and FGF-2-induced extracellular signal-regulated kinase 2 phosphorylation. Finally, in the chicken chorioallantoic membrane angiogenesis assay, FGF-BP1 synergizes with exogenously added FGF-2. We conclude that FGF-BP1 binds directly to FGF-1 and FGF-2 and positively modulates the biological activities of these growth factors.  相似文献   

7.
Acidic and basic fibroblast growth factors (FGFs) are proteins of 16-18 kDa. Other forms of 25-30 kDa related to this growth factor family have recently been described. All these components bind tightly to heparin-Sepharose, a property that allows the purification of several FGF-related proteins. During the purification of acidic and basic FGFs from bovine pituitary glands, we detected the presence of 28-30 kDa components that are immunoreactive against anti-basic FGF antisera. However, microsequencing analysis revealed that the 28-30 kDa components are lysosomal proteases that co-elute with basic FGF from heparin-Sepharose columns. The involvement of these proteases in the etiology of microheterogenous forms of FGFs and/or release of FGFs from the extracellular matrix is discussed.  相似文献   

8.
Secreted from intestine, human fibroblast growth factor 19 (hFGF19) is an endocrine metabolic regulator that controls bile acid synthesis in the liver. Earlier studies have suggested that hFGF19 at 10-100 nM levels signals through FGF receptor 4 (FGFR4) in the presence of a co-receptor, betaKlotho, but its activity and receptor specificity at physiological concentrations (picomolar levels) remain unclear. Here we report that hFGF19 at picomolar levels require sulfated glycosaminoglycans (sGAGs), such as heparan sulfate, heparin, and chondroitin sulfates, for its signaling via human FGFR4 in the presence of human betaKlotho. Importantly, sGAGs isolated from liver are highly active in enhancing the picomolar hFGF19 signaling. At nanomolar levels, in contrast, hFGF19 activates all types of human FGFRs, i.e. FGFR1c, FGFR2c, FGFR3c, and FGFR4 in the co-presence of betaKlotho and heparin and activates FGFR4 even in the absence of betaKlotho. These results show that sGAGs play crucial roles in specific and sensitive hFGF19 signaling via FGF receptors and suggest that hepatic sGAGs are involved in the highly potent and specific signaling of picomolar hFGF19 through FGFR4 and betaKlotho. The results further suggest that hFGF19 at pathological concentrations may evoke aberrant signaling through various FGF receptors.  相似文献   

9.
Using a radioimmunoassay for bovine pituitary fibroblast growth factor (FGF), we have established the presence of the immunoreactive mitogen in extracts of a transplantable mouse chondrosarcoma. Both neutral and acidic extracts of the tumor contain an immunoreactive FGF (ir-FGF) that cross-reacts in a parallel and dose-dependent fashion in the radioimmunoassay. The ir-FGF is retained on heparin-Sepharose affinity columns and can be detected in the same molecular weight forms as rat pituitary FGF. Mice (C57/Bl) inoculated with the tumor (10 mg, im) show a decreased rate of tumor growth when passively immunized with the antiserum to FGF. The results establish the presence of FGF in this tumor and implicate its role in the etiology of its development.  相似文献   

10.
11.
Fibroblast growth factor (FGF)-21 is a member of the FGF superfamily based on sequence homology. However, unlike most members of this family it does not show any mitogenic activity in all cell types tested. The objective of this study is to identify and characterize receptors for this molecule. Sequencing of the cDNA clones from 3T3-L1 adipocytes indicates that the only isoforms for FGFR-1 and 2 expressed in 3T3-L1 cells are 1IIIc and 2IIIc, respectively, suggesting that FGF-21 regulates glucose metabolism in 3T3-L1 adipocytes through FGFR-1IIIc and FGFR-2IIIc.  相似文献   

12.
13.
14.
The sulfated regions in heparan sulfate and heparin are known to affect fibroblast growth factor (FGF) function. We have studied the mechanism whereby heparin directs FGF-2-induced FGF receptor-1 (FGFR-1) signal transduction. FGF-2 alone stimulated maximal phosphorylation of Src homology domain 2 tyrosine phosphatase (SHP-2) and the adaptor molecule Crk, in heparan sulfate-deficient Chinese hamster ovary (CHO) 677 cells expressing FGFR-1. In contrast, for phospholipase Cgamma(1) (PLCgamma(1)) and the adaptor molecule Shb to be maximally tyrosine-phosphorylated, cells had to be stimulated with both FGF-2 and heparin (100 ng/ml). Tyrosine residues 463 in the juxtamembrane domain and 766 in the C-terminal tail in FGFR-1 are known to bind Crk and PLCgamma(1), respectively. Analysis of tryptic phosphopeptide maps of FGFR-1 from cells stimulated with FGF-2 alone and FGF-2 together with heparin showed that FGF-2 alone stimulated a several-fold increase in tyrosine 463 in the juxtamembrane domain. In contrast, heparin had to be included in order for tyrosine 766 to be phosphorylated to the same fold level. Our data imply that tyrosine 463 is phosphorylated and able to transduce signals in response to FGF-2 treatment alone; furthermore, we suggest that FGFR-1 dimerization/kinase activation is stabilized by heparin.  相似文献   

15.
The related glycosaminoglycans heparin and heparan sulfate are essential for the activity of the fibroblast growth factor (FGF) family as they form an integral part of the signaling complex at the cell surface. Using size-exclusion chromatography we have studied the capacities of a variety of heparin oligosaccharides to bind FGF1 and FGFR2c both separately and together in ternary complexes. In the absence of heparin, FGF1 had no detectable affinity for FGFR2c. However, 2:2:1 complexes formed spontaneously in solution between FGF1, FGFR2c, and heparin octasaccharide (dp8). The dp8 sample was the shortest chain length that bound FGFR2c, that dimerized FGF1, and that promoted a strong mitogenic response to FGF1 through FGFR2c. Heparin hexasaccharide and various selectively desulfated heparin dp12s failed to bind FGFR2c and could only interact with FGF1 monomerically. These saccharides formed 1:1:1 complexes with FGF1 and FGFR2c, which had no tendency to self-associate, suggesting that binding of two FGF1 molecules to the same saccharide chain is a prerequisite for subsequent FGFR2c dimerization. We found that FGF1 dimerization upon heparin was favored over monomeric interactions even when a large excess of saccharide was present. A cooperative mechanism of FGF1 dimerization could explain how 2:2:1 signaling complexes form at the cell surface, an environment rich in heparan sulfate.  相似文献   

16.
We have investigated the signaling properties of the fibroblast growth factor (FGF) receptor substrate 3 (FRS3), also known as SNT-2 or FRS2beta, in neurotrophin-dependent differentiation in comparison with the related adapter FRS2 (SNT1 or FRS2alpha). We demonstrate that FRS3 binds all neurotrophin Trk receptor tyrosine kinases and becomes tyrosine phosphorylated in response to NGF, BDNF, NT-3 and FGF stimulation in transfected cells and/or primary cortical neurons. Second, the signaling molecules Grb2 and Shp2 bind FRS3 at consensus sites that are highly conserved among FRS family members and that Shp2, in turn, becomes tyrosine phosphorylated. While FRS3 over-expression in PC12 cells neither increases NGF-induced neuritogenesis nor activation of Map kinase/AKT, comparable to previous reports on FRS2, over-expression of a chimeric adapter containing the PH/PTB domains of the insulin receptor substrate (IRS) 2, in place of the PTB domain of FRS3 (IRS2-FRS3) supports insulin-dependent Map kinase activation and neurite outgrowth in PC12 cells. Collectively, these data demonstrate that FRS3 supports ligand-induced Map kinase activation and that the chimeric IRS2-FRS3 adapter is stimulating sufficient levels of activated MapK to support neurite outgrowth in PC12 cells.  相似文献   

17.
Basic fibroblast growth factor (FGF) promotes cartilage repair in vivo   总被引:21,自引:0,他引:21  
Although it has been clearly established that basic fibroblast growth factor (FGF) is a potent mitogen for chondrocytes in vitro, there is little evidence that it can stimulate this cell type in vivo. In an effort to address this problem, we examined the effect of an intraarticular administration of basic FGF. Alzet osmotic pumps delivering the mitogen to the site of injury promotes the healing of intra-chondrial lesions by stimulating chondrocyte proliferation and the formation of extracellular matrix. The observation that chronic infusions of basic FGF can elicit a repair response at the site of injury suggests that this growth factor may have therapeutic applications that extend beyond its capacity to induce neovascularization. The results also suggest that one of the ways that the perichondrium mediates cartilage repair may be by the local production of FGF-like mitogens.  相似文献   

18.
19.
Basic fibroblast growth factor (FGF-2) is one of the prototype members of a rapidly expanding family of polypeptides. FGF-2 acts on cells via a dual-receptor system consisting of high-affinity tyrosine kinase receptors (FGFR) and low-affinity receptors comprised of heparan sulfate proteoglycans. Following ligand binding and subsequent internalization, both FGF-2 and FGFR1 are translocated to the nucleus where they have activities distinct from those expressed at the cell surface. Despite the growing number of growth factors and receptors shown to translocate to the nucleus, little is known about the mechanisms of internalization and translocation and how these processes are regulated. In the studies reported in this paper, we examined the roles of clathrin-dependent and -independent endocytosis in the uptake of FGFR1 and one of its ligands, FGF-2. While the uptake of FGF-2 occurred at least partly by a caveolar-dependent mechanism, that of FGFR1 was independent of both caveolae and coated pits. Surprisingly, neither the uptake of FGF-2 nor FGFR1 required the activity of the receptor tyrosine kinase. In addition, we identified a cell cycle-dependent pathway of FGFR1 nuclear translocation that appears to be independent of ligand binding.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号