首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The serine proteinase alpha chymotrypsin from bovine pancreas (CT) is known to expose fibrinogen binding sites on the surface of human platelets in the absence of cell activation and granular secretion. This is accompanied by the appearance of membrane-bound chymotryptic fragments of both glycoprotein (GP) IIb and GPIIIa, the two subunits of the platelet fibrinogen receptor, the GPIIb-IIIa complex. However, no clear relationship between discrete proteolytic event(s) within GPIIb-IIIa and fibrinogen-binding-site expression has yet been established. We have now evaluated the proteolysis of GPIIb-IIIa by CT by Western blot analyses using a panel of polyclonal and monoclonal antibodies against GPIIb or GPIIIa. The different proteolytic events were then correlated with the kinetics of the expression of active fibrinogen binding sites on platelets, as measured through the binding of 125I-labelled purified fibrinogen and to the capacity of CT-treated platelets to aggregate. Treatment of platelets with CT at 22 degrees C resulted in the expression of fibrinogen binding sites prior to cleavage of GPIIIa (Mr approximately 90,000) into a previously described, major membrane-bound fragment with Mr 60,000. In contrast, fibrinogen receptor expression closely paralleled a proteolytic cleavage at the carboxy terminus of the GPIIb heavy chain (Mr approximately 120,000), which was converted into a faster migrating species with Mr approximately 115,000). This proteolysis resulted in the release of a soluble peptide with an expected molecular mass of less than 3.7 kDa. Quantitation of this peptide using a competitive immunoenzymatic assay, confirmed that its release from the platelet surface correlated with the expression of fibrinogen binding sites and aggregability. When platelets were exposed to CT at 37 degrees C, a prompt increase in fibrinogen binding sites and platelet aggregability was observed, whereas the GPIIb heavy chain was rapidly converted into the carboxy-terminal-cleaved form. However, incubation at 37 degrees C for longer than 10 min resulted in extensive and simultaneous degradation of both the GPIIb heavy and light chains and of GPIIIa, with the latter being converted into the 60-kDa fragment. These later events were associated with a sharp decline of platelet aggregability and a reduction in the number of fibrinogen binding sites. These data allow us to propose that an early and limited proteolytic processing of the GPIIb component of the platelet fibrinogen receptor is associated with a shift of this receptor complex into a state which expresses specific binding sites for fibrinogen. Further cleavage of GPIIIa to generate the 60-kDa fragment results in loss of receptor activity.  相似文献   

3.
Summary The platelet GPIIb-IIIa complex functions as a receptor for fibrinogen, fibronectin, and von Willebrand factor on activated platelets. This glycoprotein is a member of a broadly distributed family of structurally and immunologically related membrane receptors involved in cell-cell contact and cell-matrices interactions. GPIIb-IIIa is a heterodimer complex composed of GPIIb (the subunit), which consists of two disulfide-linked heavy and light chains, and GPIIIa (the subunit), which is a single polypeptide chain. Congenital absence of platelet GPIIb-IIIa in Glanzmann's thrombasthenia results in a severe bleeding disorder characterized by defective platelet aggregation and failure of fibrinogen to bind to platelets. The gene coding for GPIIb was located on 17q21.1-17q21.3 as determined by in situ hybridization with a 2650-pb GP2B (GPIIb) cDNA probe prepared from human megakaryocytes.  相似文献   

4.
Glycoproteins IIb (GPIIb) and IIIa (GPIIIa) form the Ca2(+)-dependent GPIIb/IIIa complex, which acts as the fibrinogen receptor on activated platelets. GPIIb and GPIIIa are synthesized as single peptide chains. The GPIIb precursor is processed proteolytically to yield two disulphide-bonded chains, GPIIb alpha and GPIIb beta. The GPIIb/IIIa complex has two membrane attachment sites located at the C-termini of GPIIb beta and GPIIIa. The short cytoplasmic tails of GPIIb beta and/or GPIIIa become most likely associated to the cytoskeleton of activated platelets. In the present work the C-terminal amino acid residues of platelet GPIIb beta and GPIIIa have been analyzed by protein-chemical methods and compared with those predicted from cDNA analysis. We were able to confirm the positions of the C-termini in both glycoproteins and the identity of the C-terminus predicted for GPIIIa, i.e. threonine. However, glutamine, not glutamic acid as predicted for GPIIb beta from the human erythroleukemic cell line and megakaryocyte cells, was found to be the C-terminal amino acid of GPIIb beta. This indicates that the glutamic acid in the GPIIb precursor is posttranslationally modified to glutamine.  相似文献   

5.
We examined the biosynthetic processing and assembly of the platelet glycoprotein (GP) IIb-IIIa complex in [35S]methionine-labeled HEL cells, a human cell line with features of megakaryocytes. Both GPIIb and GPIIIa were synthesized as single-chain precursors to which high mannose N-linked oligosaccharides were added in the endoplasmic reticulum (ER). A 5-fold excess of the major IIb precursor, preIIb, was synthesized relative to GPIIIa. Two smaller proteins immunologically related to GPIIb were synthesized in smaller amounts. Assembly of the GPIIb and GPIIIa precursors required 4-6 h for completion. All GPIIIa molecules were eventually assembled; the excess GPIIb precursors were degraded without reaching the cell surface. Following assembly, preIIb-IIIa complexes were rapidly transported to the Golgi apparatus where preIIb underwent modification of high mannose chains into complex oligosaccharides and proteolytic cleavage to yield disulfide-linked heavy and light chains. Pretreating cells with the ionophore monensin blocked cleavage of preIIb but not its carbohydrate modification or its assembly with GPIIIa. These studies suggest that 1) assembly of the precursors of GPIIb and GPIIIa in the ER is a slow process requiring conformational maturation of one or both subunits, and 2) only heterodimers assembled in the ER are transported to the Golgi apparatus for additional processing and, ultimately, expression on the cell surface.  相似文献   

6.
Translation in vitro of mRNA and immunoprecipitation with specific rabbit antisera showed that the unglycosylated precursor polypeptides of the mouse Mac-1 and lymphocyte function associated antigen (LFA-1) alpha subunits are 130,000 Mr and 140,000 Mr, respectively. Furthermore, polysomes purified by using anti-Mac-1 IgG yielded a similar major product of translation in vitro of Mr = 130,000. The Mac-1 and LFA-1 alpha subunit translation products are immunologically noncross-reactive, showing that differences between these related proteins are not due to post-translational processing. Mac-1 and LFA-1 alpha subunits could only be in vitro translated from mRNA from cell lines the surfaces of which express the corresponding Mac-1 and LFA-1 alpha-beta complexes, showing tissue-specific expression is regulated at the mRNA level. The glycosylation of Mac-1 was examined by both translation in vitro in the presence of dog pancreas microsomes and by biosynthesis in vivo and treatment with tunicamycin, endoglycosidase H, and the deglycosylating agent trifluoromethane sulfonic acid. High mannose oligosaccharides are added to the Mac-1 alpha and beta polypeptide backbones of Mr = 130,000 and 72,000, respectively, to yield precursors of Mr = 164,000 and 91,000, respectively. The alpha and beta subunit precursors are then processed with partial conversion of high mannose to complex type carbohydrate to yield the mature subunits of Mr = 170,000 and 95,000, respectively.  相似文献   

7.
Platelet glycoprotein (GP) IIb is one of the two subunits of the common platelet adhesion receptor, GPIIb-IIIa. The isolation, characterization and sequencing of cDNA clones encoding for the two polypeptide chains of GPIIb are described. A number of clones were isolated from lambda gt11 libraries constructed with mRNA from an erythroleukemic cell line, HEL, and human megakaryocytes. Two of these clones, lambda IIb1, from HEL cells, and lambda IIb2, from megakaryocytes, cross-hybridized and were selected for detailed analysis. The identification of these as authentic GPIIb clones was based on immunological criteria and confirmed by the presence of nucleotide sequences in each insert encoding for known protein sequences of platelet GPIIb. These clones contained inserts of 1.54 kb and 1.39 kb, respectively, with an overlapping sequence of 801 bp. The nucleotide sequence of the overlapping region was identical indicating that HEL cells produce a protein closely related, if not identical, to platelet GPIIb. The determined nucleotide sequence of two inserts included a coding sequence for 648 amino acid residues, a TAG stop codon and 185 nucleotides of 3' non-coding sequence followed by a poly(A) tail. The coding sequence contained a portion of the heavy chain, the junction between the heavy and light chains and the entire light chain including a potential transmembrane-spanning domain and a short cytoplasmic tail. When these cDNA were used to probe for GPIIb mRNA, a single mRNA species of 3.9 kb was identified in both HEL cells and human megakaryocytes. A comparison of the deduced amino acid sequence for GPIIb with those of the alpha subunit of the vitronectin and the fibronectin receptors revealed extensive homologies. These homologies further establish that GPIIb-IIIa from platelets, together with the vitronectin and the fibronectin receptors, are members of a supergene family of adhesion receptors with a recognition specificity for Arg-Gly-Asp amino acid sequences.  相似文献   

8.
Glycoprotein IIb (GPIIb) and glycoprotein IIIa (GPIIIa) form a macromolecular complex on the activated platelet surface which contains the fibrinogen-binding site necessary for normal platelet aggregation. To identify the specific region of the fibrinogen molecule responsible for its interaction with the GPIIb-GPIIIa complex, purified fragment D1 (Mr = 100,000) and fragment E (Mr = 50,000) were prepared from plasmin digests of purified human fibrinogen. In addition, the polypeptide chain subunits A alpha, B beta, and gamma of fibrinogen were prepared. Using an enzyme-linked immunosorbent assay we have demonstrated that isolated fragment D1 in a solid phase system forms a complex with a mixture of GPIIb and GPIIIa. The binding of the GPIIb-GPIIIa mixture to fragment D1-coated plates reached saturation at 8 nM and to fibrinogen-coated plates at 24 nM. Isolated A alpha, B beta, and gamma chains were not reactive with added glycoproteins. Fragment E coated directly on plastic plates or immobilized on antibody-coated plastic plates did not form a complex with GPIIb-GPIIIa. Only fluid phase fibrinogen and fragment D1 but not fragment E were inhibitory toward formation of a complex between solid phase fibrinogen and GPIIb-GPIIIa. Isolated A alpha, B beta, and gamma chains at concentrations equivalent to fluid phase fibrinogen were inactive. Binding of fragment D1 but not fragment E to the GPIIb-GPIIIa complex was also demonstrated by rocket immunoelectrophoresis of the membrane glycoprotein mixture through a gel containing the individual fragments and subsequent autoradiography of the complex following exposure to 125I-anti-fibrinogen. These observations with isolated platelet membrane glycoproteins provide strong evidence that each of the D domains of the fibrinogen molecule interacts directly with the GPIIb-GPIIIa complex on the activated platelet surface, thus allowing formation of a tertiary molecular "bridge" across the surface of two adjacent activated platelets.  相似文献   

9.
Integrins are alpha beta heterodimers that play a major role in cell-cell contacts and in interactions between cells and extracellular matrices. Identification of structural domains that are critical for the expression of such receptors at the cell surface in a functional conformation is one of the major issues that has not yet been resolved. In the present study, the role of the cytoplasmic and transmembrane domains of each of the subunits has been examined using platelet GPIIb/IIIa as a prototypic integrin. GPIIb/IIIa (alpha IIb/beta 3) is a member of the integrin family and functions as a receptor for fibrinogen, fibronectin, von Willebrand factor, and vitronectin at the surface of activated platelets. Human megakaryocyte GPIIb and GPIIIa cDNAs were used to create a GPIIb mutant coding for the extracellular GPIIb heavy chain alone (GPIIb delta 1) and a GPIIIa mutant lacking the transmembrane and cytoplasmic domains (GPIIIa delta m). Full length and mutant cDNAs were subcloned into the expression vector pECE and used to transfect COS cells. The formation of heterodimers and their cellular localization was analyzed by immunoprecipitation and immunofluorescence labeling using anti-platelet GPIIb/IIIa antibodies. We show here that the extracellular domains of alpha and beta subunits are able to form a heterodimer, although with a lower efficiency, in the absence of the transmembrane and cytoplasmic domains. The presence of the cytoplasmic and transmembrane domains in the alpha subunit is, however, necessary for expression at the surface of the cell whereas the corresponding domains of the beta subunit are not required.  相似文献   

10.
The precursor of platelet membrane glycoprotein IIb (GPIIb) undergoes endoproteolytic cleavage into heavy and light chains post-translation. Endoproteolysis occurs within a 17-amino acid stretch of the precursor that contains 4 arginine residues, 3 in dibasic sequences [Lys-Arg (855-856) and Arg-Arg (858-859)] and a single arginine at 871. To determine the site of GPIIb cleavage and its role in the function of the glycoprotein IIb/IIIa heterodimer, we mutated arginine 856, the di-arginine sequence 858-859, and arginine 871 and coexpressed the mutants with glycoprotein IIIa (GPIIIa) in COS-1 cells. Each GPIIb mutant formed recombinant GPIIb-IIIa heterodimers, but mutants lacking arginine at 856 or 858-859 failed to undergo cleavage. Nevertheless, heterodimers containing the uncleaved GPIIb were expressed on the cell surface. Because endoproteolysis most often occurs after arginines in dibasic sequences, we next expressed GPIIb mutants containing lysine at 856 or aspartic acid at 855 with GPIIIa. Both mutants were cleaved and surface-expressed, indicating that the dibasic sequence at 858-859, but not at 855-856, is required for GPIIb cleavage. Lastly, we tested the function of GPIIb-IIIa containing uncleaved GPIIb by measuring adhesion of transfected cells to immobilized fibrinogen. We found no difference in the adhesion of cells expressing either wild-type or mutant GPIIb, indicating GPIIb-IIIa heterodimers containing uncleaved GPIIb maintain their ability to interact with fibrinogen.  相似文献   

11.
The p150,95 cell surface protein is a member of a family of heterodimeric leukocyte adhesion proteins that have homologous alpha subunits, each noncovalently associated with a common beta subunit. In this report we have metabolically labeled the U937 cell line at various timepoints during its phorbol myristic acetate-induced maturation to examine the kinetics of synthesis of these proteins during monocytic differentiation, and their maturation and glycosylation. The p150,95 alpha subunit was immunoprecipitated with p150,95-specific monoclonal antibody (MAb), or an antiserum to the denatured, purified alpha X subunit. The glycosylation and polypeptide chain length of the p150,95, Mac-1, and lymphocyte function associated antigen (LFA-1) alpha and beta subunits were compared by immunoprecipitation with subunit specific MAb and antisera, and by digestion with Endo H and N-glycanase. The p150,95 alpha subunit is synthesized as a precursor of 146,000 Mr, has five to six N-linked oligosaccharides, and has a polypeptide chain backbone of 132,000 Mr. Over 50% of the carbohydrate on the mature alpha subunit of 150,000 Mr was sensitive to Endo H digestion. The p150,95 alpha and beta precursors can associate before maturation into the mature form. Conversion to the mature form was accompanied by loss of reactivity with the antiserum to the denatured alpha X subunit, suggesting a change in conformation. Mac-1 and LFA-1 alpha subunits have precursors of 160,000 Mr and 165,000 Mr, respectively, and contain N-linked carbohydrates. The polypeptide chain length for the Mac-1 alpha subunit is 137,000 Mr, and for LFA-1 is 149,000 Mr. Only 14% of the oligosaccharide on the mature LFA-1 alpha subunit was sensitive to Endo H, suggesting that unlike p150,95, most is converted to the complex type. The differences noted in the Mr of the three homologous alpha subunits are therefore due to differences in both polypeptide chain length and carbohydrate processing during biosynthesis.  相似文献   

12.
To identify structural characteristics of the closely related cell surface receptors for insulin and IGF-I that define their distinct physiological roles, we determined the complete primary structure of the human IGF-I receptor from cloned cDNA. The deduced sequence predicts a 1367 amino acid receptor precursor, including a 30-residue signal peptide, which is removed during translocation of the nascent polypeptide chain. The 1337 residue, unmodified proreceptor polypeptide has a predicted Mr of 151,869, which compares with the 180,000 Mr IGF-I receptor precursor. In analogy with the 152,784 Mr insulin receptor precursor, cleavage of the Arg-Lys-Arg-Arg sequence at position 707 of the IGF-I receptor precursor will generate alpha (80,423 Mr) and beta (70,866 Mr) subunits, which compare with approximately 135,000 Mr (alpha) and 90,000 Mr (beta) fully glycosylated subunits.  相似文献   

13.
The non-covalent and Ca(2+)-dependent heterodimer GPIIb/IIIa, formed by platelet glycoproteins IIb (GPIIb) and IIIa (GPIIIa), also known as the integrin alpha IIb beta 3, is the inducible receptor for fibrinogen and other adhesive proteins on the surface of activated platelets. A fraction of the isolated GPIIb/IIIa in solution binds RGD or KQAGDV inhibitory peptides and, upon peptide removal, apparently acquires the capacity to bind fibrinogen ('activated' GPIIb/IIIa) [Du, X., Plow, E. F., Frelinger, A. L., III, O'Toole, T. E., Loftus, J. C. & Ginsberg, M. H. (1991) Cell 65, 409-416]. Photoaffinity labelling was used here to study the ligand binding site(s) of GPIIb/IIIa in solution, for which the peptides CKRKRKRKRRGDV (alpha 1), CGRGDF (alpha 2), CYHHLGGAKQAGDV (gamma 1) and CGAKQAGDV (gamma 2) were synthesized with a photoactivable cross-linker group and a fluorescent reporter group attached to the N-terminal cysteine residue. Contrary to the situation in activated platelets, both GPIIb and GPIIIa were equally labelled by the four peptides and the cross-linking sites were localized by protein chemical analyses of the fluorescently labelled tryptic peptides of both subunits. Thus, the localization of the cross-linking sites in GPIIb varies considerably with the peptide length and is very different from that localization observed in activated platelets: alpha 2 and gamma 2 were found cross-linked to the N-terminal of both the heavy (GPIIbH 42-73) and the light (GPIIbL2 30-75) chains of GPIIb; while the longer peptides alpha 1 and gamma 1 were cross-linked to the C-terminal of GPIIbH within the 696-724 and 752-768 peptide stretches, respectively. On the other hand, the cross-linking sites of the four inhibitory peptides in GPIIIa were found mainly within the proteolysis susceptible region, between the N-terminal (GPIIIa 1-52) and the core (GPIIb 423-622) highly disulphide-bonded domains, observing that the longer the peptide the closer the cross-linking site is to the N-terminal of GPIIIa: alpha 1 at GPIIIa 63-87 and 303-350; gamma 1 at GPIIIa 9-37; alpha 2 at GPIIIa 151-191; and gamma 2 at GPIIIa 303-350. These results led us to the following conclusions. (a) The GPIIIa 100-400 region contributes to the ligand-binding domain in GPIIb/IIIa both in solution and in activated platelets.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

14.
The Arg-Gly-Asp (RGD)-binding domain of GPIIb-IIIa has been localized in a fragment of the GPIIIa subunit that includes the sequence between amino acids 109 and 171. To examine, in a platelet membrane environment, the activated versus nonactivated status of this domain, we have produced a monoclonal antibody against a synthetic peptide (residues 109-128) located within the RGD-binding region on GPIIIa. This kappa-IgM, named AC7, was specific for GPIIIa peptide 109-128 and interacted only with activated platelets. Fibrinogen, RGDF peptide, and the fibrinogen phi chain decapeptide LGGAKQAGDV inhibited the binding of AC7 to ADP-stimulated platelets. AC7 IgM and "small fragments" inhibited fibrinogen binding and platelet aggregation in a dose-dependent fashion. Induction of AC7 binding by D33C, a monoclonal antibody recognizing the GPIIb 426-437 sequence and stimulating fibrinogen binding, indicated that the GPIIb 426-437 and the GPIIIa 109-128 sequences were both involved in a stimulation-dependent conformational modification of the receptor. AC7 was able to recognize beta subunits other than GPIIIa on leucocyte surfaces but only after cell fixation with glutaraldehyde. The results are consistent with the implication of the RGD-binding domain in receptor ligand interaction on the platelet surface and its conformational modification and exposure upon receptor induction.  相似文献   

15.
Platelet GPIIbIIIa is only synthesized in megakaryocyte or in cell lines with megakaryocytic features. The sequence for GPIIb and GPIIIa have recently been derived from cDNAs obtained from HEL cells. The sequence of these proteins produced by the megakaryocyte, has however, not been determined yet. This study describes full length cDNAs for GPIIb and GPIIIa isolated from megakaryocyte cDNA libraries. The cDNA sequences indicate the presence of nucleotide differences, between the sequence of the GPIIIa cDNAs from HEL cells, endothelial cells and megakaryocytes. One difference was also observed between HEL and megakaryocyte GPIIb at position 633 where a cystein in the megakaryocyte GPIIb, is replaced by a serine in the HEL sequence. The mRNA species for GPIIb (3.4kb) and GPIIIa (6.1 kb) were of the same size in HEL cells and human megakaryocytes.  相似文献   

16.
The alpha- and beta-subunits of glycoprotein IIb (GPIIb) of human platelet plasma membrane were isolated in fully reduced, partially reduced and alkylated, and fully alkylated forms, by size-exclusion chromatography after reduction of pure GPIIb. The sugar moiety of GPIIb alpha accounts for 16.4% of its total weight, whereas that of GPIIb beta accounts for only 10.2%. The molar percentages (per 100 mol of total amino acids) of neuraminic acid and galactose in the alpha-subunit more than double those in the beta-subunit, whereas galactosamine is present only in GPIIb alpha. From the amino acid and sugar compositions the acidic nature of both subunits was confirmed. The Mr values obtained, 114,000 for GPIIb alpha and 22,200 for GPIIb beta, are in very good agreement with those obtained by physical methods. We found by stepwise reduction of pure GPIIb with dithioerythritol that GPIIb alpha and GPIIb beta are joined by a single interchain disulphide bridge, while the remaining half-cystine residues participate in intrachain bonds, six in GPIIb alpha and one in GPIIb beta, the intersubunit disulphide bond being that reduced first. Neither of the two subunits is liberated from isolated plasma membranes when this GPIIb interchain bond is reduced in isolated membranes.  相似文献   

17.
A Salzman  C F Wan  C S Rubin 《Biochemistry》1984,23(26):6555-6565
The biogenesis, intracellular transport, and functional properties of the insulin proreceptor and modified insulin receptors were studied in hormone-responsive 3T3-L1 adipocytes. After control cells were labeled with [35S]Met for 7 min, the principal polypeptide that was precipitated by anti-insulin receptor antibodies had a molecular weight (Mr) of 180 000. This initial precursor was rapidly converted (t1/2 = 35 min) to a 200-kilodalton (kDa) polypeptide, designated the insulin proreceptor, by the apparent posttranslational addition of N-linked, high mannose core oligosaccharide units. Mature alpha (Mr 130 000) and beta (Mr 90 000) subunits were derived from sequences within the proreceptor by proteolytic cleavage and late processing steps, and these subunits appeared on the cell surface 2-3 h after synthesis of the 180-kDa precursor. The cation ionophore monensin was used in combination with metabolic labeling, affinity cross-linking, and external proteolysis to probe aspects of proreceptor function, transit, and the development of insulin sensitivity at the target cell surface. At 5 micrograms/mL, monensin potently inhibited the proteolytic cleavage step, and the 200-kDa polypeptide accumulated. Lower concentrations of the ionophore selectively blocked late processing steps in 3T3-L1 adipocytes so that apparently smaller alpha' (Mr 120 000) and beta' (Mr 85 000) subunits were produced. Proreceptor and alpha' and beta' subunits were translocated to the cell surface, indicating that the signal for intracellular transit occurs in the 200-kDa polypeptide and is independent of the posttranslational proteolysis and late processing steps. The alpha' subunit bound insulin both at the surface of intact cells and after solubilization with Triton X-100; the beta' subunit was phosphorylated in an insulin-stimulated manner. The detergent-solubilized 200-kDa proreceptor also exhibited both functional properties. However, the proreceptor that was transported to and exposed on the cell surface was incapable of binding insulin in intact adipocytes. Thus, late processing is not essential for the expression of functions associated with mature alpha and beta subunits. In contrast, it appears that the proteolytic generation of subunits is required for the correct orientation of the hormone binding site in the plasma membrane bilayer and the development of insulin responsiveness in 3T3-L1 adipocytes.  相似文献   

18.
The authors isolated a product of proteolytic degradation of glycoprotein IIIa (GPIIIa) which is formed on the surface of human platelets during incubation with chymotrypsin and which was previously described as the 66 kDa platelet membrane component. This component migrated with an apparent Mr 62,400 in a non-reduced system of sodium dodecyl sulfate polyacrylamide gel electrophoresis. In a reduced system it yielded two major subunits migrating with apparent Mr 14,000-17,000 and 65,000. The low-molecular weight component began with the NH2-terminal sequence of GPIIIa (GPNICTTR...) and the larger component with residue 348 of GPIIIa (GKIRSKKA...) as deduced from a cDNA clone of this glycoprotein. The two subunits appeared to be linked by one or more S-S bridges supporting the contention that GPIIIa is a highly folded molecule on the platelet membrane. In contrast to GPIIIa, the '66 kDa component' did not bind to GRGDSPK-agarose, to fibrinogen-agarose nor to insolubilized monoclonal antibody recognizing the GPIIb/IIIa complex. The exposure of fibrinogen receptors during the course of incubation of platelets with chymotrypsin preceded the formation of the '66 kDa component' characterized in this study. An intermediate product of GPIIIa proteolysis migrating with an apparent Mr 120,000 in a non-reduced system and Mr 80,000 in a reduced system was identified as a precursor of the '66 kDa component'. The '120 kDa component' was not retained on GRGDSPK-agarose or on fibrinogen-agarose but it was retained on insolubilized antibody recognizing the GPIIb/IIIa complex. Incubation of platelets with porcine pancreatic elastase or human granulocytic elastase resulted in the formation of similar proteolytic degradation fragments.  相似文献   

19.
This study characterized conformational states of platelet glycoprotein IIb-IIIa (GPIIb-IIIa) and regions of the molecule required for fibrinogen binding. Platelet lysates were passed sequentially over concanavalin A and aminoethylglycine (Aeg)RGDS affinity columns. Approximately 10% of the total GPIIb-IIIa bound to the Aeg-RGDS column. The non-binding GPIIb-IIIa was further purified by S300 gel filtration. Only GPIIb-IIIa which recognized immobilized RGDS bound fibrinogen. The functional difference between the Aeg-RGDS binding GPIIb-IIIa (active) and the S300-purified complex (inactive) suggested that the two populations existed in different conformations. This was confirmed immunochemically and in an assay utilizing endoproteinase Arg-C. Active GPIIb-IIIa was heavily degraded by Arg-C, whereas inactive GPIIb-IIIa was highly resistant to degradation. Receptor occupancy by RGDV or peptidomimetic inhibitors prevented degradation of regions of the active complex and stimulated hydrolysis of the inactive receptor such that the two populations yielded fragments of identical electrophoretic mobility. Induction of hydrolysis of inactive GPIIb-IIIa required 15-fold higher concentrations of RGDV than protection of the active complex. Upon removal of inhibitor, fragments generated from either active or inactive GPIIb-IIIa bound fibrinogen. The ability of carboxypeptidase Y to digest inhibitor-protected GPIIb-IIIa was also examined. GPIIb was cleaved to a 58-kDa NH2-terminal fragment, whereas GPIIIa remained essentially intact. The complexed fragments bound fibrinogen with similar affinity as intact GPIIb-IIIa. This binding was inhibited by both RGDV and HHLGGAKQAGDV peptides. These data suggest that: 1) purified active and inactive GPIIb-IIIa exist in different conformations and have different affinities for RGDV; 2) certain peptidomimetic inhibitors (Ro 42-1499 and Ro 43-5054) alter the conformation of inactive GPIIb-IIIa; 3) GPIIIa and a 58-kDa NH2-terminal fragment of GPIIb alpha form a high affinity fibrinogen binding complex.  相似文献   

20.
Insulin-stimulated phosphorylation of the insulin receptor precursor   总被引:2,自引:0,他引:2  
The alpha and beta subunits of the insulin receptor, Mr = 135K and 95K, appear to be synthesized via a single polypeptide precursor of Mr = 190K. We have investigated whether insulin stimulates the phosphorylation of this proreceptor, as is the case with mature receptor. Rat liver endoplasmic reticulum membranes were solubilized in Triton X-100 and chromatographed sequentially on wheat-germ agglutinin-agarose and lentil lectin-agarose columns. Phosphorylation of the lentil eluate with [gamma 32P]ATP revealed an insulin-stimulated phosphoprotein of Mr = 192K, which was recognized by antireceptor antibody, compatible with the receptor precursor. This suggests that further processing of the Mr = 190K insulin receptor precursor is not necessary for insulin binding, kinase activation, and receptor phosphorylation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号