首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Adenovirus vectors induce acute inflammation of infected tissues due to activation of the innate immune system and expression of numerous chemokines and cytokines in transduced target cells. In contrast, adeno-associated virus (AAV) vectors are not associated with significant inflammation experimentally or clinically. We tested the ability of AAV vectors to induce the expression of chemokines in vitro and to activate the innate immune system in vivo. In human HeLa cells and murine renal epithelium-derived cells (REC cells) the adenovirus vector AdlacZ induced the expression of multiple inflammatory chemokines including RANTES, interferon-inducible protein 10 (IP-10), interleukin-8 (IL-8), MIP-1beta, and MIP-2 in a dose-dependent manner. The use of AAVlacZ did not induce the expression of these chemokines above baseline levels despite 40-fold-greater titers than AdlacZ and greater amounts of intracellular AAVlacZ genomes according to Southern and slot blot analysis. This finding confirmed that the lack of AAVlacZ induction of chemokine was not due to reduced transduction. In DBA/2 mice, the intravenous administration of 2.5 x 10(11) particles of AAVlacZ resulted in the rapid induction of liver tumor necrosis factor alpha (TNF-alpha), RANTES, IP-10, MIP-1beta, MCP-1, and MIP-2 mRNAs. However, 6 h following injection, chemokine mRNA levels returned to baseline. As expected, administration of 10-fold less AdlacZ caused an induction of liver TNF-alpha and chemokine mRNAs that persisted for more than 24 h posttransduction. Whereas intravenous administration of 2.5 x 10(11) particles of AAVlacZ triggered a transient infiltration of neutrophils and CD11b(+) cells into liver, this response stood in contrast to widespread inflammation and toxicity induced by AdlacZ. Kupffer cell depletion abolished AAVlacZ but not AdlacZ-induced chemokine expression and neutrophil infiltration. In summary, these results show that AAV vectors activate the innate immune system to a lesser extent than do adenovirus vectors and offer a possible explanation for the reduced inflammatory properties of AAV compared to adenovirus vectors.  相似文献   

2.
In spite of the extensive research in the field of gene therapy, host immune responses continue to be the major barrier in translating basic research to clinical practice. Helper-dependent adenoviral (HD-Ad) vectors show great potential for pulmonary gene therapy, but the knowledge of pulmonary immune responses toward these vectors is very limited. In this study, we show that HD-Ad vectors are potent stimulators of dendritic cell (DC) maturation, thus leading to stimulation of T cell proliferation with approximately 6% of naive CD4(+) T cells from pulmonary mediastinal lymph node responding to HD-Ad-treated DCs. In contrast to the belief that HD-Ad vectors are unable to prime adaptive immune response, we show for the first time, through in vivo pulmonary studies in mice, that HD-Ad vectors can prime CD4(+) and CD8(+) T cell responses in the lung at high and substantially low doses. This indicates cross-presentation of HD-Ad-derived epitopes by DCs to prime CD8(+) T cell responses. To assess the basis of pulmonary T cell response against HD-Ad vectors, we examined the response of conventional DCs (cDCs) and plasmacytoid DCs (pDCs) in the lung. In response to HD-Ad delivery, there is induction of maturation in both cDC and pDC subsets, but it is the cDCs, not pDCs, that migrate rapidly to draining lymph nodes within the first 2 days after vector delivery to prime adaptive immune response against these vectors. These findings have implications for development of strategies to prevent adaptive immune responses against gene therapy vectors.  相似文献   

3.
The success of helper-dependent adenoviral (HD-Ad) vector-mediated lung gene therapy is hampered by the host immune response, which limits pulmonary transgene expression following multiple rounds of vector readminstration. Here, we show that HD-Ad-mediated pulmonary gene expression is sustained even upon three rounds of readministration to immunodeficient mice, highlighting the need to suppress the adaptive immune response for sustained gene expression following vector readministration. Therefore, we devised a dendritic cell (DC)-based strategy for induction of immunological tolerance toward HD-Ad vectors. DCs derived in the presence of interleukin-10 (IL-10) are refractory to HD-Ad-induced maturation and instead facilitate generation of IL-10-producing Tr1 regulatory T cells which suppress HD-Ad-induced T cell proliferation. Delivery of HD-Ad-pulsed, IL-10-modified DCs to mice induces long-lasting immunological tolerance to HD-Ad vectors, whereby pulmonary DC maturation, the T cell response, and antibody response to HD-Ad vectors are suppressed even after three rounds of pulmonary HD-Ad readministration. Moreover, sustained transgene expression is also observed in the lungs of mice immunized with HD-Ad-pulsed, IL-10-modified DCs even after three rounds of pulmonary HD-Ad delivery. Taken together, these studies identify the use of DCs generated in the presence of IL-10 as a novel strategy to induce long-lasting immune tolerance to HD-Ad vectors.  相似文献   

4.
BACKGROUND: Ocular neovascular disorders, such as diabetic retinopathy and age-related macular degeneration, are the principal causes of blindness in developed countries. Current treatments are of limited efficacy, whereas a therapy based on intraocular gene transfer of angiostatic factors represents a promising alternative. For the first time we have explored the potential of helper-dependent adenovirus (HD-Ad), the last generation of Ad vectors, in the therapy of retinal neovascularization. METHODS: We first analyzed efficiency and stability of intraretinal gene transfer following intravitreous injection in mice. A HD-Ad vector expressing green fluorescent protein (GFP) under the control of the cytomegalovirus (CMV) promoter (HD-Ad/GFP) was compared with a first-generation (E1/E3-deleted) Ad vector carrying an identical GFP expression cassette (FG-Ad/GFP). We also constructed HD-Ad vectors expressing a soluble form of the VEGF receptor (sFlt-1) in a constitutive (HD-Ad/sFlt-1) or doxycycline (dox)-inducible (HD-Ad/S-M2/sFlt-1) manner and tested their therapeutic efficacy upon intravitreous delivery in a rat model of oxygen-induced retinopathy (OIR). RESULTS: HD-Ad/GFP promoted long-lasting (up to 1 year) transgene expression in retinal Müller cells, in marked contrast with the short-term expression observed with FG-Ad/GFP. Intravitreous injection of HD-Ad vectors expressing sFlt-1 resulted in detectable levels of sFlt-1 and inhibited retinal neovascularization by more than 60% in a rat model of OIR. Notably, the therapeutic efficacy of the inducible vector HD-Ad/S-M2/sFlt-1 was strictly dox-dependent. CONCLUSIONS: HD-Ad vectors enable stable gene transfer and regulated expression of angiostatic factors following intravitreous injection and thus are attractive vehicles for the gene therapy of neovascular diseases of the retina.  相似文献   

5.
The development of subunit vaccines requires the use of adjuvants that act by stimulating components of the innate immune response. Immune-stimulating complexes (ISCOMS) containing the saponin adjuvant Quil A are potential vaccine vectors that induce a wide range of Ag-specific responses in vivo encompassing both humoral and CD4 and CD8 cell-mediated immune responses. ISCOMS are active by both parenteral and mucosal routes, but the basis for their adjuvant properties is unknown. Here we have investigated the ability of ISCOMS to recruit and activate innate immune responses as measured in peritoneal exudate cells. The i.p. injection of ISCOMS induced intense local inflammation, with early recruitment of neutrophils and mast cells followed by macrophages, dendritic cells, and lymphocytes. Many of the recruited cells had phenotypic evidence of activation and secreted a number of inflammatory mediators, including nitric oxide, reactive oxygen intermediates, IL-1, IL-6, IL-12, and IFN-gamma. Of the factors that we investigated further only IL-12 appeared to be essential for the immunogenicity of ISCOMS, as IL-6- and inducible nitric oxide synthase knockout (KO) mice developed normal immune responses to OVA in ISCOMS, whereas these responses were markedly reduced in IL-12KO mice. The recruitment of peritoneal exudate cells following an injection of ISCOMS was impaired in IL-12KO mice, indicating a role for IL-12 in establishing the proinflammatory cascade. Thus, ISCOMS prime Ag-specific immune responses at least in part by activating IL-12-dependent aspects of the innate immune system.  相似文献   

6.
Autoimmune diseases can be reduced or even prevented if proinflammatory immune responses are appropriately down-regulated. Receptors (such as CTLA-4), cytokines (such as TGF-beta), and specialized cells (such as CD4+CD25+ T regulatory cells) work together to keep immune responses in check. T cell Ig mucin (Tim) family proteins are key regulators of inflammation, providing an inhibitory signal that dampens proinflammatory responses and thereby reducing autoimmune and allergic responses. We show in this study that reducing Tim-3 signaling during the innate immune response to viral infection in BALB/c mice reduces CD80 costimulatory molecule expression on mast cells and macrophages and reduces innate CTLA-4 levels in CD4+ T cells, resulting in decreased T regulatory cell populations and increased inflammatory heart disease. These results indicate that regulation of inflammation in the heart begins during innate immunity and that Tim-3 signaling on cells of the innate immune system critically influences regulation of the adaptive immune response.  相似文献   

7.
Brain abscesses arise following parenchymal infection with pyogenic bacteria and are typified by inflammation and edema, which frequently results in a multitude of long-term health problems. The impact of adaptive immunity in shaping continued innate responses during late-stage brain abscess formation is not known but is important, because robust innate immunity is required for effective bacterial clearance. To address this issue, brain abscesses were induced in TCR αβ knockout (KO) mice, because CD4(+) and NKT cells represented the most numerous T cell infiltrates. TCR αβ KO mice exhibited impaired bacterial clearance during later stages of infection, which was associated with alterations in neutrophil and macrophage recruitment, as well as perturbations in cytokine/chemokine expression. Adoptive transfer of either Th1 or Th17 cells into TCR αβ KO mice restored bacterial burdens and innate immune cell infiltrates to levels detected in wild-type animals. Interestingly, adoptively transferred Th17 cells demonstrated plasticity within the CNS compartment and induced distinct cytokine secretion profiles in abscess-associated microglia and macrophages compared with Th1 transfer. Collectively, these studies identified an amplification loop for Th1 and Th17 cells in shaping established innate responses during CNS infection to maximize bacterial clearance and differentially regulate microglial and macrophage secretory profiles.  相似文献   

8.
Toll-like receptors (TLR) initiate rapid innate immune responses by recognizing microbial products. These events in turn lead to the development of an efficient adaptive immune response through the up-regulation of a number of costimulatory molecules, including members of the TNF/TNFR superfamily, on the surface of an APC. TNFR-associated factor 6 (TRAF6) is a common signaling adapter used by members of both the TNFR and the TLR/IL-1R superfamilies, and as such plays a critical role in the development of immune responses. As TRAF6-deficient mice die prematurely, we generated chimeras reconstituted with TRAF6-deficient fetal liver cells to analyze functions of TRAF6 in vivo in the hemopoietic compartment. We found that TRAF6-deficient chimeras develop a progressive lethal inflammatory disease associated with massive organ infiltration and activation of CD4(+) T cells in a Th2-polarized phenotype, and a defect in IL-18 responsiveness. When recombination-activating gene 2(-/-) blastocysts were complemented with TRAF6-deficient embryonic stem cells, a marked elevation of activated CD4(+) T cells and progressive inflammatory disease were also observed. Moreover, T cell activation and lethal inflammation were not reversed in mixed chimeric mice generated from normal and TRAF6-deficient fetal liver cells. These results suggest that deletion of TRAF6 induces a dominant Th2-type polarized autoimmune response. Therefore, in addition to playing a critical role in innate and adaptive immunity, TRAF6 is likely to play a previously unrecognized role in the maintenance of self-tolerance.  相似文献   

9.
Adenovirus (Ad) vectors are among the most commonly used viral vectors in gene therapy clinical trials. However, the application of Ad vectors has been limited to local injection in many cases, because the systemic administration of Ad vectors triggers innate immune responses such as inflammatory cytokine production and tissue damage. To overcome this limitation, it will be necessary to develop safer Ad vectors less likely to induce the innate immune response. In the present study, we demonstrated that a suppressor of cytokine signaling-1 (SOCS1)-expressing Ad vector, Ad-SOCS1, reduces the innate immune response induced by Ad vectors. RAW264.7-SOCS1, a macrophage-like cell line that stably expresses SOCS1, was shown to produce lower levels of inflammatory cytokines after the transduction of Ad vectors. The systemic administration of Ad-SOCS1 into mice elicited the reduced production of inflammatory cytokines, as compared with that elicited by control Ad vectors, i.e., luciferase-expressing Ad vector, Ad-L2. Furthermore, the coadministration of Ad-L2 with Ad-SOCS1 attenuated inflammatory cytokine production and liver toxicity as compared with injection with Ad-L2 alone, and this was achieved without the suppression of luciferase production in various organs. The JAK/STAT pathway was involved in Ad vector-mediated cytokine production, which was impaired by the overexpression of SOCS1. These findings indicate that Ad-SOCS1 could be useful for reducing Ad vector-mediated innate immunity.  相似文献   

10.
Adenovirus (Ad) vectors are one of the most commonly used viral vectors in gene therapy clinical trials. However, they elicit a robust innate immune response and inflammatory responses. Improvement of the therapeutic index of Ad vector gene therapy requires elucidation of the mechanism of Ad vector-induced inflammation and cytokine/chemokine production as well as development of the safer vector. In the present study, we found that the fiber-modified Ad vector containing poly-lysine peptides in the fiber knob showed much lower serum IL-6 and aspartate aminotransferase levels (as a maker of liver toxicity) than the conventional Ad vector after i.v. administration, although the modified Ad vector showed higher transgene production in the liver than the conventional Ad vector. RT-PCR analysis showed that spleen, not liver, is the major site of cytokine, chemokine, and IFN expression. Splenic CD11c(+) cells were found to secret cytokines. The tissue distribution of Ad vector DNA showed that spleen distribution was much reduced in this modified Ad vector, reflecting reduced IL-6 levels in serum. Liver toxicity by the conventional Ad vector was reduced by anti-IL-6R Ab, suggesting that IL-6 signaling is involved in liver toxicity and that decreased liver toxicity of the modified Ad vector was due in part to the reduced IL-6 production. This study contributes to an understanding of the biological mechanism in innate immune host responses and liver toxicity toward systemically administered Ad vectors and will help in designing safer gene therapy methods that can reduce robust innate immunity and inflammatory responses.  相似文献   

11.
TLRs provide critical signals to induce innate immune responses in APCs such as dendritic cells (DCs) that in turn link to adaptive immune responses. Results from our previous studies demonstrated that saturated fatty acids activate TLRs, whereas n-3 polyunsaturated fatty acids inhibit agonist-induced TLR activation. These results raise a significant question as to whether fatty acids differentially modulate immune responses mediated through TLR activation. The results presented in this study demonstrate that the saturated fatty acid, lauric acid, up-regulates the expression of costimulatory molecules (CD40, CD80, and CD86), MHC class II, and cytokines (IL-12p70 and IL-6) in bone marrow-derived DCs. The dominant negative mutant of TLR4 or its downstream signaling components inhibits lauric acid-induced expression of a CD86 promoter-reporter gene. In contrast, an n-3 polyunsaturated fatty acid, docosahexaenoic acid, inhibits TLR4 agonist (LPS)-induced up-regulation of the costimulatory molecules, MHC class II, and cytokine production. Similarly, DCs treated with lauric acid show increased T cell activation capacity, whereas docosahexaenoic acid inhibits T cell activation induced by LPS-treated DCs. Together, our results demonstrate that the reciprocal modulation of both innate and adaptive immune responses by saturated fatty acid and n-3 polyunsaturated fatty acid is mediated at least in part through TLRs. These results imply that TLRs are involved in sterile inflammation and immune responses induced by nonmicrobial endogenous molecules. These results shed new light in understanding how types of dietary fatty acids differentially modulate immune responses that could alter the risk of many chronic diseases.  相似文献   

12.
Platelets' foremost role in survival is hemostasis. However, a significant quantity of research has demonstrated that platelets are an integral part of inflammation and can also be potent effector cells of the innate immune response. CD154, a molecule of vital importance to adaptive immune responses, is expressed by activated platelets and has been implicated in platelet-mediated modulation of innate immunity and inflammatory disease states. Recent studies in mice extend the role of platelet CD154 to the adaptive immune response demonstrating that platelets can enhance antigen presentation, improve CD8 T cell responses, and play a critical function in normal T-dependent humoral immunity. The latter studies suggest that the current paradigm for the B cell germinal center response should be modified to include a role for platelets.  相似文献   

13.
Unmethylated CpG motifs present in bacterial DNA (CpG DNA) induce innate inflammatory responses, including rapid induction of proinflammatory cytokines. Although innate inflammatory responses induced by CpG DNA and other pathogen-associated molecular patterns are essential for the eradication of infectious microorganisms, excessive activation of innate immunity is detrimental to the host. In this study, we demonstrate that CpG DNA, but not control non-CpG DNA, induces a fulminant liver failure with subsequent shock-mediated death by promoting massive apoptotic death of hepatocytes in D-galactosamine (D-GalN)-sensitized mice. Inhibition of mitochondrial membrane permeability transition pore opening or caspase 9 activity in vivo protects D-GalN-sensitized mice from the CpG DNA-mediated liver injury and death. CpG DNA enhanced production of proinflammatory cytokines in D-GalN-sensitized mice via a TLR9/MyD88-dependent pathway. In addition, CpG DNA failed to induce massive hepatocyte apoptosis and subsequent fulminant liver failure and death in D-GalN-sensitized mice that lack TLR9, MyD88, tumor necrosis factor (TNF)-alpha, or TNF receptor I but not interleukin-6 or -12p40. Taken together, our results provide direct evidence that CpG DNA induces a severe acute liver injury and shock-mediated death through the mitochondrial apoptotic pathway-dependent death of hepatocytes caused by an enhanced production of TNF-alpha through a TLR9/MyD88 signaling pathway in D-GalN-sensitized mice.  相似文献   

14.
Adaptive immune cells temper initial innate responses   总被引:5,自引:0,他引:5  
Kim KD  Zhao J  Auh S  Yang X  Du P  Tang H  Fu YX 《Nature medicine》2007,13(10):1248-1252
Toll-like receptors (TLRs) recognize conserved microbial structures called pathogen-associated molecular patterns. Signaling from TLRs leads to upregulation of co-stimulatory molecules for better priming of T cells and secretion of inflammatory cytokines by innate immune cells. Lymphocyte-deficient hosts often die of acute infection, presumably owing to their lack of an adaptive immune response to effectively clear pathogens. However, we show here that an unleashed innate immune response due to the absence of residential T cells can also be a direct cause of death. Viral infection or administration of poly(I:C), a ligand for TLR3, led to cytokine storm in T-cell- or lymphocyte-deficient mice in a fashion dependent on NK cells and tumor necrosis factor. We have further shown, through the depletion of CD4+ and CD8+ cells in wild-type mice and the transfer of T lymphocytes into Rag-1-deficient mice, respectively, that T cells are both necessary and sufficient to temper the early innate response. In addition to the effects of natural regulatory T cells, close contact of resting CD4+CD25-Foxp3- or CD8+ T cells with innate cells could also suppress the cytokine surge by various innate cells in an antigen-independent fashion. Therefore, adaptive immune cells have an unexpected role in tempering initial innate responses.  相似文献   

15.
Trehalose 6,6′-dimycolate (TDM), a cord factor of Mycobacterium tuberculosis (Mtb), is an important regulator of immune responses during Mtb infections. Macrophages recognize TDM through the Mincle receptor and initiate TDM-induced inflammatory responses, leading to lung granuloma formation. Although various immune cells are recruited to lung granulomas, the roles of other immune cells, especially during the initial process of TDM-induced inflammation, are not clear. In this study, Mincle signaling on neutrophils played an important role in TDM-induced lung inflammation by promoting adhesion and innate immune responses. Neutrophils were recruited during the early stage of lung inflammation following TDM-induced granuloma formation. Mincle expression on neutrophils was required for infiltration of TDM-challenged sites in a granuloma model induced by TDM-coated-beads. TDM-induced Mincle signaling on neutrophils increased cell adherence by enhancing F-actin polymerization and CD11b/CD18 surface expression. The TDM-induced effects were dependent on Src, Syk, and MAPK/ERK kinases (MEK). Moreover, coactivation of the Mincle and TLR2 pathways by TDM and Pam3CSK4 treatment synergistically induced CD11b/CD18 surface expression, reactive oxygen species, and TNFα production by neutrophils. These synergistically-enhanced immune responses correlated with the degree of Mincle expression on neutrophil surfaces. The physiological relevance of the Mincle-mediated anti-TDM immune response was confirmed by defective immune responses in Mincle−/− mice upon aerosol infections with Mtb. Mincle-mutant mice had higher inflammation levels and mycobacterial loads than WT mice. Neutrophil depletion with anti-Ly6G antibody caused a reduction in IL-6 and monocyte chemotactic protein-1 expression upon TDM treatment, and reduced levels of immune cell recruitment during the initial stage of infection. These findings suggest a new role of Mincle signaling on neutrophils during anti-mycobacterial responses.  相似文献   

16.
Inflammatory bowel disease is a chronic inflammatory response of the gastrointestinal tract mediated in part by an aberrant response to intestinal microflora. Expression of IL-23 subunits p40 and p19 within cells of the innate immune system plays a central role in the development of lower bowel inflammation in response inflammatory challenge. The NF-kappaB subunit c-Rel can regulate expression of IL-12/23 subunits suggesting that it could have a critical role in mediating the development of chronic inflammation within the lower bowel. In this study, we have analyzed the role of c-Rel within the innate immune system in the development of lower bowel inflammation, in two well-studied models of murine colitis. We have found that the absence of c-Rel significantly impaired the ability of Helicobacter hepaticus to induce colitis upon infection of RAG-2-deficient mice, and ameliorated the ability of CD4(+)CD45RB(high) T cells to induce disease upon adoptive transfer into RAG-deficient mice. The absence of c-Rel interfered with the expression of IL-12/23 subunits both in cultured primary macrophages and within the colon. Thus, c-Rel plays a critical role in regulating the innate inflammatory response to microflora within the lower bowel, likely through its ability to modulate expression of IL-12/23 family members.  相似文献   

17.
刁勇  许瑞安 《微生物学报》2012,52(5):550-557
重组腺相关病毒(rAAV)已成为基因治疗领域应用最广泛的载体之一。临床前研究显示其具有很高的安全性,但人体免疫毒性仍是制约其临床疗效的关键,因此有关rAAV免疫机制的研究成为近期热点。尽管天然免疫在获得性免疫反应中发挥重要作用,但与rAAV有关的天然免疫研究过去一直未被重视。直到最近,才确认有至少3种人体细胞(树突状细胞、巨噬细胞和内皮细胞)参与了rAAV的天然免疫,作用机制为可识别载体基因组的TLR9或病毒衣壳TLR2所介导,NF-κB或干扰素调节因子(IRFs)信号通路被激活,导致各种炎性因子及I型干扰素的大量表达。自身互补型rAAV诱导的TLR9依赖性天然免疫较单链rAAV更为强烈。本文重点对近期发现的激活天然免疫反应的宿主与rAAV的相互作用、涉及的信号通路、天然免疫对获得性免疫以及转基因表达的影响进行综述。  相似文献   

18.
Baculoviruses (BV) are DNA viruses that are pathogenic for insects. Although BV infect a range of mammalian cell types, they do not replicate in these cells. Indeed, the potential effects of these insect viruses on the immune responses of mammals are only just beginning to be studied. We show in this paper that a recombinant Autographa californica multiple nuclear polyhedrosis virus carrying a fragment of ovalbumin (OVA) on the VP39 capsid protein (BV-OVA) has the capacity to act as an adjuvant and vector of antigens in mice, thereby promoting specific CD4 and cytotoxic T cell responses against OVA. BV also induced in vivo maturation of dendritic cells and the production of inflammatory cytokines, thus promoting innate and adaptive immune responses. The OVA-specific response induced by BV-OVA was strong enough to reject a challenge with OVA-expressing melanoma cells (MO5 cells) and effectively prolonged survival of MO5 bearing mice. All these findings, together with the absence of pre-existing immunity to BV in humans and the lack of viral gene expression in mammalian cells, make BV a candidate for vaccination.  相似文献   

19.
The innate immune response is essential for controlling West Nile virus (WNV) infection but how this response is propagated and regulates adaptive immunity in vivo are not defined. Herein, we show that IPS-1, the central adaptor protein to RIG-I-like receptor (RLR) signaling, is essential for triggering of innate immunity and for effective development and regulation of adaptive immunity against pathogenic WNV. IPS-1−/− mice exhibited increased susceptibility to WNV infection marked by enhanced viral replication and dissemination with early viral entry into the CNS. Infection of cultured bone-marrow (BM) derived dendritic cells (DCs), macrophages (Macs), and primary cortical neurons showed that the IPS-1-dependent RLR signaling was essential for triggering IFN defenses and controlling virus replication in these key target cells of infection. Intriguingly, infected IPS-1−/− mice displayed uncontrolled inflammation that included elevated systemic type I IFN, proinflammatory cytokine and chemokine responses, increased numbers of inflammatory DCs, enhanced humoral responses marked by complete loss of virus neutralization activity, and increased numbers of virus-specific CD8+ T cells and non-specific immune cell proliferation in the periphery and in the CNS. This uncontrolled inflammatory response was associated with a lack of regulatory T cell expansion that normally occurs during acute WNV infection. Thus, the enhanced inflammatory response in the absence of IPS-1 was coupled with a failure to protect against WNV infection. Our data define an innate/adaptive immune interface mediated through IPS-1-dependent RLR signaling that regulates the quantity, quality, and balance of the immune response to WNV infection.  相似文献   

20.
Rabies virus (RV) induces encephalomyelitis in humans and animals. However, the pathogenic mechanism of rabies is not fully understood. To investigate the host responses to RV infection, we examined and compared the pathology, particularly the inflammatory responses, and the gene expression profiles in the brains of mice infected with wild-type (wt) virus silver-haired bat RV (SHBRV) or laboratory-adapted virus B2C, using a mouse genomic array (Affymetrix). Extensive inflammatory responses were observed in animals infected with the attenuated RV, but little or no inflammatory responses were found in mice infected with wt RV. Furthermore, attenuated RV induced the expression of the genes involved in the innate immune and antiviral responses, especially those related to the alpha/beta interferon (IFN-alpha/beta) signaling pathways and inflammatory chemokines. For the IFN-alpha/beta signaling pathways, many of the interferon regulatory genes, such as the signal transduction activation transducers and interferon regulatory factors, as well as the effector genes, for example, 2'-5'-oligoadenylate synthetase and myxovirus proteins, are highly induced in mice infected with attenuated RV. However, many of these genes were not up-regulated in mice infected with wt SHBRV. The data obtained by microarray analysis were confirmed by real-time PCR. Together, these data suggest that attenuated RV activates, while pathogenic RV evades, the host innate immune and antiviral responses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号