共查询到20条相似文献,搜索用时 0 毫秒
1.
The isoelectric points of unbroken chloroplast lamellae and various subchloroplast fractions, including a preparation of inside-out thylakoids, have been determined using aqueous two-phase systems containing dextran and charged polyethylene glycol. When the amounts of material in the top phase in a phase system with the positively charged trimethylamino polyethylene glycol are plotted against pH the curve intersects the corresponding curve obtained from phase systems with the negatively charged polyethylene glycol sulfonate. This cross-point can be correlated with the isoelectric point of the material.The cross-point for unbroken chloroplast lamellae was found to be around pH 4.7. Mechanical disintegration lowered the cross-point to around pH 4.4, probably because of exposure of new membrane surfaces. The disintegrated chloroplasts were fractionated by differential centrifugation to separate the grana and stroma lamellae. The stroma lamellae vesicles showed the same isoelectric point as the unbroken lamellae, while a cross-point at pH 4.3 was obtained for the grana-enriched fraction. For thylakoid membranes destacked under low salt conditions the cross-point was 0.3 pH unit lower than for membranes originating exclusively from the stroma lamellae. The most acidic cross-point (pH 4.1) was observed for the fraction enriched in inside-out grana thylakoids. It is suggested that the differences in isoelectric point between various subchloroplast fractions reflect a heterogeneous arrangement of surface charge along and across the thylakoid membrane. 相似文献
2.
The isoelectric points of the membranes surrounding three classes of spinach chloroplasts have been determined by partition at different pH values in aqueous two-phase systems where the electrical potential differences at the interface are opposite (cross-partition). Class I chloroplasts, intact chloroplasts, have an isoelectric point at pH 3.8–4.1 and class II chloroplasts, broken chloroplasts or intact thylakoid membranes, have an isoelectric point at pH 4.7–4.9. The third class of particles, class III ‘chloroplasts’, that contain one or more chloroplasts, mitochondria, peroxisomes and some cytoplasm all surrounded by a membrane, probably the plasma membrane, have an isoelectric point at pH 3.4–4.0. The partition technique used presumably yields the isoelectric point of the surface of the membranes exposed to the phase system by the three classes of chloroplasts, i.e., the outer envelope membrane, the thylakoid membrane and the plasma membrane, respectively. The isoelectric points obtained with this technique are suggested to reflect protein to charged-lipid differences in the composition of the membranes. 相似文献
4.
Alterations in fluidity of thylakoid membranes isolated from spinach chloroplasts in response to sodium bisulfite (NaHSO 3), hydrogen peroxide (H 2O 2), sodium dodecyl sulfate (SDS), bovine serum albumin (BSA), and free linoleic acid (LA) were investigated by means of a fluorescence
polarization study with 1,6-diphenyl-1,3,5-hexatriene as the fluorescence probe. A decrease in fluidity and an increase in
microviscosity of membrane were caused by NaHSO 3 and H 2O 2 treatment. In contrast, SDS and BSA were found to increase thylakoid membranes fluidity and decrease microviscosity, in which
the corresponding correlation coefficients were −0.9995 to −0.9516 (SDS) and −0.9359 (BSA), respectively. No changes in thylakoid
membranes fluidity induced by free LA were found until its concentration above 5 mM where the polarization value ( P value) declined (increased fluidity). The results suggest that the changes in thylakoids membrane fluidity might depend on
the characteristics, mechanism and extent of the interactions between membrane components and compounds added. 相似文献
5.
To reveal the molecular orientation of plastocyanin (PC) on spinach thylakoid membranes, the position of Lys residues modified by acetic anhydride was compared between thylakoid-bound PC and the isolated one. Digestion of the isolated PC by a trypsin yielded a peptide map with seven spots prior to the acetylation of the protein; none of the spots appeared after the isolated PC was acetylated. On the other hand, there were two spots on the peptide map of the PC acetylated when it was bound to the thylakoids. Those spots were revealed by their amino acid compositions to correspond to the peptide fragments Phe 82-Lys 95 and Val 96-Asn 99. Thus, the Lys residues 81 and 95 of the thylakoid-bound PC were not acetylated. These results suggest that the PC molecule binds to the thylakoids with a specific region including the Lys's 81 and 95 in contact with the membranes. The Lys's 81 and 95 are located near Tyr 83, which has been thought to be the delivery site of electrons from the Cu2+ center. 相似文献
7.
Thylakoid membranes from spinach were fragmented mechanically and separated into vesicles originating from grana and stroma-exposed lamellae (Andreasson et al. (1988) Biochim Biophys Acta 936: 339–350). The grana vesicles were further fragmented and separated into smaller vesicles originating from different parts of the grana (Svensson and Albertsson (1989) Photosynth Res 20: 249–259). All vesicles so obtained were analyzed with respect to chlorophyll and carotenoid composition by reverse phase HPLC. For all fractions the following relations (mole/mole) were found: 1 carotenoid per 4 chlorophyll ( a+b), 2 lutein per 5 chlorophyll b and 5 violaxanthin per 100 chlorophyll ( a + b). The contents of lutein and neoxanthin were each linearly related to chlorophyll b and -carotene was linearly related to chlorophyll a. 相似文献
8.
It has been shown for the first time that several photosystem-II thylakoid proteins and the main chlorophyll-a/b light-harvesting complex can be phosphorylated with inorganic pyrophosphate as phosphate donor. With pyrophosphate, as with ATP, the protein-kinase reaction is dependent on light or a strong reducing agent. The reaction which can be demonstrated in well-washed spinach thylakoids is dependent on electron transport and is controlled by the redox state of the plastoquinone pool. It is suggested that the pyrophosphate-dependent thylakoid protein phosphorylation is mediated by the same kinase which is responsible for the ATP-dependent protein phosphorylation. This pyrophosphate-dependent kinase activity may be derived from an evolutionary precursor from which ATP-dependent protein phosphorylation also developed. 相似文献
9.
Non-bilayer lipids account for about half of the total lipid content in chloroplast thylakoid membranes. This lends high propensity of the thylakoid lipid mixture to participate in different phases which might be functionally required. It is for instance known that the chloroplast enzyme violaxanthin de-epoxidase (VDE) requires a non-bilayer phase for proper functioning in vitro but direct evidence for the presence of non-bilayer lipid structures in thylakoid membranes under physiological conditions is still missing.In this work, we used phosphatidylglycerol (PG) as an intrinsic bulk lipid label for 31P-NMR studies to monitor lipid phases of thylakoid membranes. We show that in intact thylakoid membranes the characteristic lamellar signal is observed only below 20 °C. But at the same time an isotropic phase is present, which becomes even dominant between 14 and 28 °C despite the presence of fully functional large membrane sheets that are capable of generating and maintaining a transmembrane electric field. Tris-washed membranes show a similar behavior but the lamellar phase is present up to higher temperatures. Thus, our data show that the location of the phospholipids is not restricted to the bilayer phase and that the lamellar phase co-exists with a non-bilayer isotropic phase. 相似文献
10.
Intact spinach chloroplasts that had been purified on gradients of silica sol incorporated [ 35S]methionine into soluble and membrane-bound products, using light as the sole energy source. The labeled chloroplasts were lysed osmotically and fractionated on a discontinuous gradient of sucrose into the soluble fraction and the thylakoid and envelope membranes. About 29% of the radioactivity in the chloroplast was recovered in the soluble fraction, 59% in the thylakoid membranes, and 0.1% in the envelope membranes. The products of protein synthesis in the different fractions, as well as in the whole chloroplast, were analyzed by electrophoresis on polyacrylamide gels in the presence of sodium dodecyl sulfate. There were two zones of radioactivity in the gels of the soluble fraction, the major zone coincident with the large subunit of ribulose diphosphate carboxylase at a molecular weight of about 50,000. The thylakoid membranes contained five labeled polypeptides, the most active having a molecular weight of about 31,000. The envelope membranes contained a major radioactive component of a molecular weight of about 50,000 and two other minor components. 相似文献
11.
Partition in an aqueous Dextran-polyethylene glycol two-phase system has been used for the separation of chloroplast membrane vesicles obtained by press treatment of a grana-enriched fraction after unstacking in a low salt buffer. The fractions obtained were analysed with respect to chlorophyll, photochemical activities and ultrastructural characteristics. The results reveal that the material partitioning to the Dextran-rich bottom phase consisted of large membrane vesicles possessing mainly Photosystem II properties with very low contribution from Photosystem I. Measurements of the H2O to phenyl-p-benzoquinone and ascorbate-Cl2Ind to NADP+ electron transport rates indicate a ratio of around six between Photosystem II and I. The total fractionation procedure could be completed within 2–3 h with high recovery of both the Photosystem II water-splitting activity and the Photosystem I reduction of NADP+. These data demonstrate that press treatment of low-salt destabilized grana membranes yields a population of highly Photosystem-II enriched membrane vesicles which can be discriminated by the phase system. We suggest that such membrane vesicles originate from large regions in the native grana membrane which contain virtually only Photosystem II. 相似文献
12.
The cytochromes in spinach chloroplasts were studied using EPR spectroscopy. In addition to the low-spin heme signals previously assigned, cytochrome f ( gz 3.51), high-potential cytochrome b-559 ( gz 3.08) and cytochrome b-559 converted to a low-potential form ( gz 2.94), a high-spin heme signal was induced by 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ). However, this signal cannot be due to cytochrome b-563 in its native form. The orientation of the cytochromes in the thylakoid membrane was studied in magnetically oriented chloroplasts. Cytochrome b-559 in the native state and in the low-potential form was found to have its heme plane perpendicular to the membrane plane. The orientation was the same for cytochrome b-559 oxidized by low-temperature illumination, which suggests that also the reduced heme is oriented perpendicular to the membrane. 相似文献
13.
The 13C-NMR spectrum at 90.5 MHz has been obtained for the photosynthetic thylakoid membrane of spinach. Specific lipid and chlorophyll resonances can be assigned in the high resolution spectrum, although protein resonances are not observed. It can be estimated from resonance intensities that at least 30% of the plant chlorophyll contributes to the high resolution 13C spectrum with the remainder broadened by incomplete motional averaging. The resonance linewidths of the observed chlorophyll phytol chains are approximately the same as those of the lipid hydrocarbon chains, indicating a similar motional state and suggesting that this particular pool of chlorophyll is lipidbound or at most only loosely associated with proteins. 相似文献
14.
Non-bilayer lipids account for about half of the total lipid content in chloroplast thylakoid membranes. This lends high propensity of the thylakoid lipid mixture to participate in different phases which might be functionally required. It is for instance known that the chloroplast enzyme violaxanthin de-epoxidase (VDE) requires a non-bilayer phase for proper functioning in vitro but direct evidence for the presence of non-bilayer lipid structures in thylakoid membranes under physiological conditions is still missing. In this work, we used phosphatidylglycerol (PG) as an intrinsic bulk lipid label for 31P-NMR studies to monitor lipid phases of thylakoid membranes. We show that in intact thylakoid membranes the characteristic lamellar signal is observed only below 20 degrees C. But at the same time an isotropic phase is present, which becomes even dominant between 14 and 28 degrees C despite the presence of fully functional large membrane sheets that are capable of generating and maintaining a transmembrane electric field. Tris-washed membranes show a similar behavior but the lamellar phase is present up to higher temperatures. Thus, our data show that the location of the phospholipids is not restricted to the bilayer phase and that the lamellar phase co-exists with a non-bilayer isotropic phase. 相似文献
15.
Viruses as well as other (bio‐)colloids possess a pH‐dependent surface charge in polar media such as water. This electrostatic charge determines the mobility of the soft particle in an electric field and thus governs its colloidal behaviour which plays a major role in virus sorption processes. The pH value at which the net surface charge switches its sign is referred to as the isoelectric point (abbreviations: pI or IEP) and is a characteristic parameter of the virion in equilibrium with its environmental water chemistry. Here, we review the IEP measurements of viruses that replicate in hosts of kingdom plantae, bacteria and animalia. IEPs of viruses are found in pH range from 1·9 to 8·4; most frequently, they are measured in a band of 3·5 < IEP < 7. However, the data appear to be scattered widely within single virus species. This discrepancy is discussed and should be considered when IEP values are used to account for virus sorption processes. 相似文献
16.
Summary ATP photophosphorylation by spinach thylakoid was examined to evaluate its use as an ATP regeneration reaction in biosynthetic reactors that consume ATP. Initial rate of cyclic photophosphorylation mediated by phenazine methosulfate was found to be 218 mole ATP/h.mg Chlorophyll. This activity was stable for over 3 months at –85°C. When phosphoryl transfer reactions were coupled to cyclic photophosphorylation, ATP was continuously regenerated by thylakoid between 14–24 times in batch reactors. 相似文献
17.
Intact chloroplasts, purified from spinach leaves by sedimentation in density gradients of colloidal silica, incorporate labeled amino acids into at least 16 different polypeptides of the thylakoid membranes, using light as the only source of energy. The thylakoid products of chloroplast translation were visualized by subjecting membranes purified from chloroplasts labeled with [35S]methionine to electrophoresis in high-resolution, SDS-containing acrylamide gradient slab gels and autoradiography. The apparent mol wt of the labeled products ranged from less than 10,000 to greater than 70,000. One of the labeled products is the apoprotein of the P700-chlorophyll a- protein (CPI). The CPI apoprotein is assembled into a pigment-protein complex which is electrophoretically indistinguishable from the native CPI complex. Isolated spinach chloroplasts also incorporate [3H]leucine and [35S]methionine into cytochrome b559. The radioactive label remains with the cytochrome through all stages of purification: extraction of the thylakoid membranes with Triton X-100 and urea, adsorption of impurities on DEAE cellulose, two cycles of electrophoresis in Triton- containing polyacrylamide gels and electrophoresis in SDS-containing gradient gels. Cytochrome b559 becomes labeled with both [3H]leucine and [35S]methionine and accounts for somewhat less than 1% of the total isotopic incorporation into thylakoid protein. The lipoprotein appears to be fully assembled during the time-course of our labeling experiments. 相似文献
18.
With appropriate preparations of spinish chloroplasts we observe three distinct effects of the nucleotides: 1. An accelaration of the dark decay of the light induced 520 nm absorbance change after ATP addition. 2. An acidification of the internal space of the thylakoids after ATP addition in darkness. 3. A dark ATPase activity which is regulated by the deltapH across the membrane. We conclude that the effect of the nucleoside triphosphates on the 520 nm signal is linked to a change of the proton conductivity of the membrane, induced by the formation of a deltapH across the membrane in consequence of the dark ATPase activity. The mode of action of the nucleoside diphosphates in the presence of inorganic phosphate on the 520 nm signal is discussed. It is proposed that the effects observed are linked to the hydrolysis of the newly formed nucleoside triphosphates. 相似文献
20.
Although the distribution of protein isoelectric points is multi-modal, large proteins show isoelectric points less variable than small proteins and their isoelectric points tend to converge to a unique value, close to the pH of the milieu in which the proteins are functional, as far as the protein dimension increases. This study demonstrates that large proteins, which contain more than a single domain, do have isoelectric points less variable than small proteins, which contains a single domain. However, the distribution of the isoelectric points of the single domains, contained in large proteins, resembles that of small proteins, which contain a single domain. Thus, large proteins can be soluble even if their pI is very close to the pH of the milieu, in which they perform their function, since they can contain several domains, the electrostatic properties of each of which mirror those of small proteins. 相似文献
|