首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
4.
Cryptochrome (CRY) is a blue-light-absorbing protein involved in the photic entrainment of the circadian clock in Drosophila melanogaster. We have investigated the locomotor activity rhythms of flies carrying cryb mutant and revealed that they have two separate circadian oscillators with different responsiveness to light. When kept in constant light conditions, wild-type flies became arrhythmic, while cryb mutant flies exhibited free-running rhythms with two rhythmic components, one with a shorter and the other with a longer free-running period. The rhythm dissociation was dependent on the light intensities: the higher the light intensities, the greater the proportion of animals exhibiting the two oscillations. External photoreceptors including the compound eyes and the ocelli are the likely photoreceptors for the rhythm dissociation, since rhythm dissociation was prevented in so1;cryb and norpAP41;cryb double mutant flies. Immunohistochemical analysis demonstrated that the PERIOD expression rhythms in ventrally located lateral neurons (LNvs) occurred synchronously with the shorter period component, while those in the dorsally located per-expressing neurons showed PER expression most likely related to the longer period component, in addition to that synchronized to the LNvs. These results suggest that the Drosophila locomotor rhythms are driven by two separate per-dependent clocks, responding differentially to constant light.  相似文献   

5.
The effect of altitude on four basic properties of the pacemaker controlling the circadian rhythm of oviposition in two strains of Drosophila ananassae was determined. The high altitude (HA) strain from Badrinath (5123 m above sea level) had a low amplitude peak in the forenoon while the low altitude (LA) strain from Firozpur (179 m a.s.l.) had a high amplitude peak after the lights-off of LD 12:12 cycles. Free running periods in continuous darkness were about 22.6 and 27.4 h in the HA and LA strains, respectively. The light pulse phase response curve (PRC) for the HA strain showed a low amplitude and a dead zone of 8h; the ratio for the advance to delay region (A/D) was less than 1, while the PRC for the LA strain had a high amplitude, which was devoid of a dead zone and showed a ratio of A/D > 1. The magnitude of the delay phase shifts at CT 18 evoked by light pulses of 1 h duration, but varying light intensity was significantly different in the HA and LA strain, which suggests that the photic sensitivity of the clock photoreceptors mediating the phase shifts had been affected by the altitude.  相似文献   

6.
Two measures, amplitude and phase, have been used to describe the characteristics of the endogenous human circadian pacemaker, a biological clock located in the hypothalamus. Although many studies of change in circadian phase with respect to different stimuli have been conducted, the physiologic implications of the amplitude changes (dynamics) of the pacemaker are unknown. It is known that phase changes of the human circadian pacemaker have a significant impact on sleep timing and content, hormone secretion, subjective alertness and neurobehavioral performance. However, the changes in circadian amplitude with respect to different stimuli are less well documented. Although amplitude dynamics of the human circadian pacemaker are observed in physiological rhythms such as plasma cortisol, plasma melatonin and core temperature data, currently methods are not available to accurately characterize the amplitude dynamics from these rhythms. Of the three rhythms core temperature is the only reliable variable that can be monitored continuously in real time with a high sampling rate. To characterize the amplitude dynamics of the circadian pacemaker we propose a stochastic-dynamic model of core temperature data that contains both stochastic and dynamic characteristics. In this model the circadian component that has a dynamic characteristic is represented as a perturbation solution of the van der Pol equation and the thermoregulatory response in the data that has a stochastic characteristic is represented as a first-order autoregressive process. The model parameters are estimated using data with a maximum likelihood procedure and the goodness-of-fit measures along with the associated standard error of the estimated parameters provided inference about the amplitude dynamics of the pacemaker. Using this model we analysed core temperature data from an experiment designed to exhibit amplitude dynamics. We found that the circadian pacemaker recovers slowly to an equilibrium level following amplitude suppression. In humans this reaction to perturbation from equilibrium value has potential physiological implications.  相似文献   

7.
Latitude dependent arrhythmicity in the circadian rhythm of oviposition of Drosophila ananassae strains originating from 8.1°N to 32.7°N was studied by inbreeding them in cycles of 12 h of light at 20 lux and 12 h of darkness. The number of inbreeding generations required to initiate arrhythmicity in oviposition rhythm was dependent on the origin of latitude of the strain. The strains from the lower latitudes became arrhythmic after notably more numbers of generations than those from the higher latitudes. This might be attributed to the higher inherent degree of oviposition rhythmicity in the F1 generation, and enhanced photic sensitivity of the circadian pacemaker mediating entrainment of oviposition rhythm of the strains from lower latitudes as compared to those from the higher latitudes.  相似文献   

8.
The mammalian circadian clock lying in suprachiasmatic nucleus (SCN) is synchronized to about 24 h by the environmental light-dark cycle (LD). The circadian clock exhibits limits of entrainment above and below 24 h, beyond which it will not entrain. Little is known about the mechanisms regulating the limits of entrainment. In this study, we show that wild-type mice entrain to only an LD 24 h cycle, whereas Clock mutant mice can entrain to an LD 24, 28, and 32 h except for LD 20 h and LD 36 h cycle. Under an LD 28 h cycle, Clock mutant mice showed a clear rhythm in Per2 mRNA expression in the SCN and behavior. Light response was also increased. This is the first report to show that the Clock mutation makes it possible to adapt the circadian oscillator to a long period cycle and indicates that the clock gene may have an important role for the limits of entrainment of the SCN to LD cycle.  相似文献   

9.
The cuticle deposition rhythm, which is observed in the apodeme of the furca in the thorax, is controlled by a peripheral circadian clock in the epidermal cells and entrained to light-dark (LD) cycles via CRYPTOCHROME (CRY) in Drosophila melanogaster. In the present study, we examined the effects of temperature (TC) cycles and the combination of LD and TC cycles on entrainment of the cuticle deposition rhythm. The rhythm was entrained to TC cycles, whose period was 28 h. In T = 21 and 24 h, the rhythm was entrained to TC cycles in some individuals. CRY is not necessary for temperature entrainment of the cuticle deposition rhythm because the rhythm in cry(b) (lacking functional CRY) was entrained to TC cycles. Temperature entrainment of the rhythm was achieved even when the thoraxes or furcae were cultured in vitro, suggesting that the mechanism for temperature entrainment is independent of the central clock in the brain and the site of the thermoreception resides in the epidermal cells. When LD and TC cycles with different periods were applied, the rhythm was entrained to LD cycles with a slight influence of TC cycles. Thus, the LD cycle is a stronger zeitgeber than the TC cycle. The variance of the number of the cuticle layers decreased in the flies kept under LD and TC cycles with the same period in which the thermophase coincided with the photophase. Therefore, we conclude that LD and TC cycles synergistically entrain the rhythm. Synergistic effects of LD and TC cycles on entrainment were also observed even when the thoraxes were cultured in vitro, suggesting that the light and temperature information is integrated within the peripheral circadian system.  相似文献   

10.
A diverse range of organisms shows physiological and behavioural rhythms with various periods. Extensive studies have been performed to elucidate the molecular mechanisms of circadian rhythms with an approximately 24 h period in both Drosophila and mammals, while less attention has been paid to ultradian rhythms with shorter periods. We used a video-tracking method to monitor the movement of single flies, and clear ultradian rhythms were detected in the locomotor behaviour of wild type and clock mutant flies kept under constant dark conditions. In particular, the Pigment-dispersing factor mutant (Pdf 01 ) demonstrated a precise and robust ultradian rhythmicity, which was not temperature compensated. Our results suggest that Drosophila has an endogenous ultradian oscillator that is masked by circadian rhythmic behaviours.  相似文献   

11.
In Nature it is possible to observe diverse rhythms. Because of their adaptive characteristics, the circadian rhythms are of major importance and have been the subject of numerous experimental and theoretical studies. In this article, we give a presentation of the main results we have obtained about the motor circadian rhythm along some years of collaboration between biologists and mathematicians. We present a mathematical model simulating changes in frequency, synchronization and amplitude of the circadian oscillation during two developmental stages of the crayfish, namely, the juvenile and the adult stages. We report also some work in progress on the simulation of the phase response curve and on a simplified model of the rhythm.  相似文献   

12.
A circadian rhythm in Daphnia magna   总被引:3,自引:0,他引:3  
  相似文献   

13.
Mutations that abolish expression of an X-linked gene, FMR1, result in the pathogenesis of fragile X syndrome, the most common form of inherited mental retardation. To understand the normal function of the FMR1 protein, we have produced fly strains bearing deletions in a Drosophila homolog of FMR1 (dfmr1). Since fragile X patients show a number of abnormal behaviors including sleep problems, we investigated whether a loss-of-function mutation of dfmr1 affect circadian behavior. Here we show that under constant darkness (DD), a lack of dfmr1 expression causes arrhythmic locomotor activity, but in light:dark cycles, their behavioral rhythms appear normal. In addition, the clock-controlled eclosion rhythm is normal in DFMR1-deficient flies. These results suggest that DFMR1 plays a critical role in the circadian output pathway regulating locomotor activity in Drosophila.  相似文献   

14.
A mechanism for generating circadian rhythms has been of major interest in recent years. After the discovery of per and tim, a model with a simple feedback loop involving per and tim has been proposed. However, it is recognized that the simple feedback model cannot account for phenotypes generated by various mutants. A recent report by Glossop, Lyons & Hardin [Science286, 766 (1999)] on Drosophila suggests involvement of another feedback loop by dClk that is interlocked with per-tim feedback loop. In order to examine whether interlocked feedback loops can be a basic mechanism for circadian rhythms, a mathematical model was created and examined. Through extensive simulation and mathematical analysis, it was revealed that the interlocked feedback model accounts for the observations that are not explained by the simple feedback model. Moreover, the interlocked feedback model has robust properties in oscillations.  相似文献   

15.
Circadian rhythms in the morphology of neurons have been demonstrated in the fly Drosophila melanogaster. One such rhythm is characterized by changes in the size of synaptic boutons of an identified flight motor neuron, with larger boutons during the day compared with those at night. A more detailed temporal resolution of this rhythm shows here that boutons grow at a time of increased locomotor activity during the morning but become gradually smaller during the day and second period of increased locomotor activity in the evening. We have experimentally manipulated the synaptic activity of the fly during short periods of the day to investigate whether changes in bouton size might be a consequence of the different levels of synaptic activity associated with the locomotion rhythm of the fly. In the late night and early morning, when the flies normally have an intense period of locomotion, the boutons grow independently of whether the flies are active or completely paralyzed. Bouton size is not affected by sleep-deprivation during the early night. The cycle in bouton size persists for 2 days even in decapitated flies, which do not move, reinforcing the notion that it is largely independent of synaptic activity, and showing that a pacemaker other than the main biological clock can drive it.  相似文献   

16.
Page SL  Hawley RS 《Genetics》2005,170(4):1797-1807
The semisterile meiotic mutant mei-352 alters the distribution of meiotic exchanges without greatly affecting their total frequency. We show that the mei-352 mutation is an allele of the klp3A gene, which encodes a kinesin-like protein of the Kinesin-4 family. The semisterility observed in mei-352 females results from a known defect of klp3A oocytes in mediating pronuclear fusion. Interestingly, other klp3A alleles also exhibit defects in meiotic recombination similar to those of mei-352. Finally, we show that the Klp3A protein localizes within the oocyte nucleus during meiotic prophase, the time at which exchange distribution is established, and extensively colocalizes with DNA. The parallel of the klp3A phenotype with a meiotic defect observed for kar3 mutants in yeast suggests a role for kinesins in early meiosis and might reflect a previously suggested role for this class of kinesins in chromosome condensation.  相似文献   

17.
Populations of Drosophila littoralis are known to be latitudinally highly variable in photoperiodic adult diapause and pupal eclosion rhythm. Phenotypic correlations between the two time-measuring systems among the strains from different latitudes are, however, weak. In the present study, two differing strains were crossed reciprocally in order to search for causal (genetic) correlations between the two traits in the strains. Segregation in the F2 generations showed that variation in each trait was based on a few variable loci only. In the F2, flies having different eclosion times also differed in their diapause. This association was not complete and could have been due to genetic linkage between the traits. For that reason, the hybrid generations were raised for eight generations more to allow recombination between the traits. In F8, selection against diapause was started in the lines by raising them in a light-dark cycle of 15:9, where only females of the southern type reproduce. After eight selected generations, the lines were studied for the traits. Diapause was completely of the southern type, and the eclosion rhythm had also changed in parallel. The change in the phase of the free-running rhythm was not complete. From the present experiment, and from earlier knowledge of the geographical variation in D. littoralis, I conclude that the same pacemaker that is seen in the eclosion rhythm could also participate in daylength measurement for diapause. However, there are also noncorrelated variable parts in the measuring systems of both traits, which may mask the correlated variation.  相似文献   

18.
Nowadays humans mainly rely on external, unnatural clocks such as of cell phones and alarm clocks--driven by circuit boards and electricity. Nevertheless, our body is under the control of another timer firmly anchored in our genes. This evolutionary very old biological clock drives most of our physiology and behavior. The genes that control our internal clock are conserved among most living beings. One organism that shares this ancient clock mechanism with us humans is the fruitfly Drosophila melanogaster. Since it turned out that Drosophila is an excellent model, it is no surprise that its clock is very well and intensely investigated. In the following review we want to display an overview of the current understanding of Drosophila's circadian clock.  相似文献   

19.

Food availability is a potent environmental cue that directs circadian locomotor activity in rodents. Daily scheduled restricted feeding (RF), in which the food available time is restricted for several hours each day, elicits anticipatory activity. This food-anticipatory activity (FAA) is controlled by a food-entrainable oscillator (FEO) that is distinct from the suprachiasmatic nucleus (SCN), the master pacemaker in mammals. In an earlier report, we described generation of transgenic (Tg) mice ubiquitously overexpressing cysteine414-alanine mutant mCRY1. The Tg mice displayed long locomotor free-running periods (approximately 28 h) with rhythm splitting. Furthermore, their locomotor activity immediately re-adjusted to the advance of light–dark cycles (LD), suggesting some disorder in the coupling of SCN neurons. The present study examined the restricted feeding cycle (RF)-induced entrainment of locomotor activity in Tg mice in various light conditions. In LD, wild-type controls showed both FAA and LD-entrained activities. In Tg mice, almost all activity was eventually consolidated to a single bout before the feeding time. The result suggests a possibility that in Tg mice the feeding cycle dominates the LD cycle as an entrainment agent. In constant darkness (DD), wild-type mice exhibited robust free-run activity and FAA during RF. For Tg mice, only the rhythm entrained to RF was observed in DD. Furthermore, after returning to free feeding, the free-run started from the RF-entrained phase. These results suggest that the SCN of Tg mice is entrainable to RF and that the mCRY1 mutation alters the sensitivity of SCN to the cycle of nonphotic zeitgebers.

  相似文献   

20.
A new clock mutant ( rhy-2) was isolated by DNA insertion mutagenesis using a plasmid that contains a region located upstream of the cmd gene in the genome of Neurospora crassa. This mutant is arrhythmic with regard to conidiation in continuous darkness but rhythmic under a light-dark cycle. After plasmid rescue from genomic DNA of the rhy-2 strain, the insertion was localized to the gene white collar-1 ( wc-1). Plasmid DNA was inserted 3' to the sequence encoding the polyglutamine region of the WC-1 gene product, and an mRNA encoding a truncated WC-1 protein must be synthesized under the control of the cmd promoter. The new wc-1 mutant, rhy-2, is still sensitive to light, although only weakly. Since the circadian rhythm of conidiation in continuous darkness is eliminated in the mutant, the polyglutamine region in WC-1 may be essential for both clock function and light-induced carotenogenesis in Neurospora.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号