首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary The rufous horseshoe bat, Rhinolophus rouxi, was trained to discriminate differences in target distance. Loud free running artificial pulses, simulating the bat's natural long-CF/FM echolocation sounds, interfered with the ability of the bat to discriminate target distance. Interference occurred when the duration of the CF component of the CF/FM artificial pulse was between 2 and 70 ms. A brief (2.0 ms) CF signal 2–68 ms before an isolated FM signal was as effective as a continuous CF component of the same duration. When coupled with the bat's own emissions, a 2 ms FM sweep alone was effective in interfering when it came 42 to 69 ms after the onset of the bat's pulse. The coupled FM artificial pulses did not interfere when they began during the bat's own emissions.It appears that the onset of the CF component activates a gating mechanism that establishes a time window during which FM component signals must occur for proper neural processing. A comparison with a similar gating mechanism in Noctillo albiventris, which emits short-CF/FM echolocation sounds, reveals that the temporal parameters of the time window of the gating mechanism are species specific and specified by the temporal structure of the echolocation sound pattern of each species.Abbreviations FM frequency modulated - CF constant frequency  相似文献   

2.
Summary Bats of the speciesNoctilio albiventris, trained to discriminate differences in target distance, emitted pairs of pulses at a rate of 7–10/s, the first a constant frequency (CF) pulse of about 8 ms duration and 75 kHz frequency, followed after about 28 ms by a CF/FM pulse having a 6 ms, 75 kHz CF component that terminates in a 2 ms FM sweep to about 57 kHz.Loud free-running artificial pulses, simulating the bat's natural CF/FM echolocation sound, interfered with distance discrimination at repetition rates exceeding 5/s. Systematic modifications in the temporal and frequency structure of the artificial pulses resulted in orderly changes in the degree of interference. Artificial pulses simulating the natural CF or FM components alone had no effect, nor did 10/s white noise pulses, although constant white noise of the same intensity masked the behavior.Interference occurred when the CF of the artificial pulses was between 52 and 77 kHz, ending with a downward FM sweep of 25 kHz from the CF. For interference to occur there was a much more critical requirement that the FM sweep begin at approximately the frequency of the CF component. The FM sweep needed to be 11 kHz or greater bandwidth. Interference occurred when the duration of the CF component of the CF/FM artificial pulse was between 2 and 30 ms, with maximal effect between 10 and 20 ms. However, a brief (2.0 ms) CF signal 2–27 ms before an isolated FM signal was as effective as a continuous CF component of the same duration.When coupled with the bat's own emissions, artificial CF/FM pulses interfered if they occurred after the bat's CF/FM pulse and before the next natural emission. A 2 ms FM sweep alone was effective in interfering with distance discrimination when it came 8–27 ms after the onset of the bat's own CF/FM pulse. Neither CF/FM nor FM artificial pulses interfered when they began during the bat's own emission. A 10 ms CF pulse alone had no effect at any time.These findings indicate thatN. albiventris uses both the CF and FM components of its short-CF/FM echolocation sound for distance discrimination. The CF onset activates a gating mechanism that, during a narrowly defined subsequent time window, enables the nervous system to process FM pulse-echo pairs for distance information, within a fairly broad frequency range, as long as the frequencies of the CF and the beginning of the FM sweep are nearly identical.Abbreviations CF constant frequency - FM frequency modulation  相似文献   

3.
Summary Bats of the speciesNoctilio albiventris emit short-constant frequency/frequency modulated (short-CF/FM) pulses with a CF component frequency at about 75 kHz. Bats sitting on a stationary platform were trained to discriminate target distance by means of echolocation. Loud, free-running artificial pulses, simulating the bat's natural CF/FM echolocation sounds or with systematic modifications in the frequency of the sounds, were presented to the bats during the discrimination trials. When the CF component of the artificial CF/FM sound was between 72 and 77 kHz, the bats shifted the frequency of the CF component of their own echolocation sounds toward that of the artificial pulse, tracking the frequency of the artificial CF component.Bats flying within a large laboratory flight cage were also presented with artificial pulses. Bats in flight lower the frequency of their emitted pulses to compensate for Doppler shifts caused by their own flight speed and systematically shift the frequency of their emitted CF component so that the echo CF frequency returns close to that of the CF component of the artificial CF/FM pulse, over the frequency range where tracking occurs.Abbreviations CF constant frequency - FM frequency modulation  相似文献   

4.
Summary Horseshoe bats (Rhinolophus rouxi) were deafened in their 3rd–5th postnatal week. Subsequently their vocalisations were monitored to evaluate the impact of audition on the development of echolocation pulses. Hearing impairment affected the echolocation pulses as follows: the frequency of the constant frequency (CF) component was altered by between + 4 kHz and – 14 kHz, and the dominance of the second harmonic of the pulses was neutralised by a relative increase in intensity of the first and third harmonics.A second experiment focused on possible influences of acoustical self-stimulation with echolocation pulses on the establishment of auditory fovea representation in the inferior colliculus (IC). Frequency control of echolocation pulses was disrupted by larynx denervation. Thereafter, the bats produced multiharmonic echolocation signals (4–11 harmonics) varying in frequency. IC tonotopy, however, as monitored by stereotaxic electrophysiology, showed the same developmental dynamics as seen in control specimens (Fig. 10).Both experiments indicate that throughout postnatal development echolocation pulses are under auditory feedback control, whereas maturation of the auditory fovea and shifts in its frequency tuning represent an innate process. The significance of this postnatal development might be the adjustment of the vocal motor system of each bat to the frequency of its personal auditory fovea.Abbreviations CF constant frequency - CF1, CF2, CF3 harmonics of pure tone components of the echolocation pulses - FM frequency modulation - IC inferior colliculus of the midbrain  相似文献   

5.
Summary Bats of the species Rhinolophus rouxi, Hipposideros lankadiva and Eptesicus fuscus were trained to discriminate between two simultaneously presented artificial insect wingbeat targets moving at different wingbeat rates. During the discrimination trials, R. rouxi, H. lankadiva and E. fuscus emitted long-CF/FM, short-CF/FM and FM echolocation sounds respectively. R. rouxi, H. lankadiva and E. fuscus were able to discriminate a difference in wingbeat rate of 2.7 Hz, 9.2 Hz and 15.8 Hz, respectively, between two simultaneously presented targets at an absolute wingbeat rate of 60 Hz, using a criterion of 75% correct responses.The performance of the different bat species is correlated with the echolocation signal design used by each species, particularly with the presence and relative duration of a narrowband component preceding a broadband FM component. These results provide behavioral evidence supporting the hypothesis that bats that use CF/FM echolocation sounds have adaptations for the perception of insect wingbeat motion and that long-CF/FM species are more specialized for this task than short-CF/FM species.Abbreviations CF constant frequency - FM frequency modulation  相似文献   

6.
Summary Bats of the speciesNoctilio albiventris were trained to detect the presence of a target or to discriminate differences in target distance by means of echolocation. During the discrimination trials, the bats emitted pairs of pulses at a rate of 7–10/s. The first was an 8 ms constant frequency (CF) signal at about 75 kHz. This was followed after about 28 ms by a short-constant frequency/ frequency modulated (short-CF/FM) signal composed of a 6 ms CF component at about 75 kHz terminating in a 2 ms FM component sweeping downward to about 57 kHz. There was no apparent difference in the pulse structure or emission pattern used for any of the tasks. The orientation sounds of bats flying in the laboratory and hunting prey under natural conditions follow the same general pattern but differ in interesting ways.The bats were able to discriminate a difference in target distance of 13 mm between two simultaneously presented targets and of 30 mm between single sequentially presented targets around an absolute distance of 35 cm, using a criterion of 75% correct responses.The bats were unable to detect the presence of the target or to discriminate distance in the presence of continuous white noise of 54 dB or higher SPL. Under conditions of continuous white noise, the bats increased their pulse repetition rate and the relative proportion of CF/FM pulses.The bats required a minimum of 1–2 successive CF/FM pulse-echo pairs for target detection and 2–3 to discriminate a 5 cm difference in distance. When the distance discrimination tasks were made more difficult by reducing the difference in distance between the two targets the bats needed to integrate information from a greater number of successive CF/FM pulse-echo pairs to make the discrimination.Abbreviations CF constant frequency - FM frequency modulation  相似文献   

7.
Summary The echolocating bat,Plecotus phyllotis (Vespertilionidae), uses long-CF/FM and FM sonar sounds in different situations. The CF component in long-CF/FM sounds occurs at 27 kHz and has a duration of 20 to 200 ms. The FM component sweeps down from 24 to 12 kHz, with a prominent second harmonic from 40 to 22 kHz. This second harmonic sweep is interrupted at 28 to 25 kHz, providing a notch in the spectrum of the FM component at the CF frequency. This notch probably permits isolation of CF and FM components in echoes for separate processing, thus avoiding mutual interference with the different kinds of target information the two components convey. The FM component is also used without the CF component as a sonar sound. Two other FM orientation sounds are used when the bat is in a confined space such as a room. One contains only the second and fourth harmonics of the 24 to 12 kHz fundamental sweep, while the other contains only the fifth harmonic. This bat's repertoire of sonar sounds closely matches the hearing capacities of the genus.We thank P.H. Dolkart and W.A. Lavender, of Washington University, and the Nevada State Parks Department for their assistance. This research was supported by Grant # BMS-72-02351-A01 from the National Science Foundation.  相似文献   

8.
Summary The frequency-place map of the horseshoe bat cochlea was studied with the horseradish peroxidase (HRP) technique involving focal injections into various, physiologically defined regions of cochlear nucleus (CN). The locations of labeled spiral ganglion cells and their termination sites on inner hair cells of the organ of Corti from injections into CN-regions responsive to different frequencies were analyzed in three dimensional reconstructions of the cochlea. Horseshoe bats from different geographical populations were investigated. They emit orientation calls with constant frequency (CF) components around 77 kHz (Rhinolophus rouxi from Ceylon) and 84 kHz (Rhinolophus rouxi from India) and their auditory systems are sharply tuned to the respective CF-components.The HRP-map shows that in both populations: (i) the frequency range around the CF-component of the echolocation signal is processed in the second half-turn of the cochlea, where basilar membrane (BM) is not thickened, secondary spiral lamina (LSS) is still present and innervation density is maximal; (ii) frequencies more than 5 kHz above the CF-component are processed in the first halfturn, where the thickened BM is accompanied by LSS and innervation density is low; (iii) frequencies below the spectral content of the orientation call are represented in apical turns showing no morphological specializations. The data demonstrate that the cochlea of horseshoe bats is normalized to the frequency of the individual specific CF-component of the echolocation call.The HRP-map can account for the overrepresentation of neurons sharply tuned to the CF-signal found in the central auditory system. A comparison of the HRP-map with a map derived with the swollen nuclei technique following loud sound exposure (Bruns 1976b) reveals that the latter is shifted towards cochlear base by about 4 mm. This discrepancy warrants a new interpretation of the functional role of specialized morphological structures of the cochlea within the mechanisms giving rise to the exceptionally high frequency selectivity of the auditory system.Abbreviations AVCN anteroventral CN - BF best frequency - BM basilar membrane - CF constant frequency - CN cochlear nucleus - DCN dorsal CN - FM frequency modulated - HRP horseradish peroxidase - IHC inner hair cell - LSS secondary spiral lamina - OHC outer hair cell - PVCN posteroventral CN - RF resting frequency - RRc Rhinolophus rouxi from Ceylon - RRi Rhinolophus rouxi from India  相似文献   

9.
Summary Auditory response properties were studied in the superior colliculus (SC) of the echolocating horseshoe bat Rhinolophus rouxi, a long CF-FM bat, by the use of stationary, dichotic stimuli.The most striking finding in the horseshoe bat was an enormous overrepresentation of neurons with best frequencies in the range of the constant frequency component of the species specific echolocation call (72% of the auditory neurons). These neurons had response thresholds as low as 0 dB SPL and were narrowly tuned with Q10 dB — values up to 400, just as in the nuclei of the primary auditory pathway in this species. This overrepresentation may suggest the importance of the superior colliculus in the context of echolocation behavior.While noise stimuli were not particularly effective, other auditory response properties were similar to those described in other mammals. 65% of the SC neurons in the horseshoe bat responded only to monaural stimulation of one ear, primarily the contralateral one. 32% of the neurons received monaural input from both ears. The proportion of neurons responsive to ipsilateral stimulation (41%) was rather high. Mean response latency was 8.9 ms for contralateral stimulation.A tonotopic organization is lacking, but high-frequency neurons are less frequent in rostral SC.Abbreviations CF constant frequency component of echolocation call; - >CF frequencies above range of CF-component - FM frequency modulated component of echolocation call - <FM frequencies below range of FM-component - RF resting frequency of an individual bat - Rh.r. Rhinolophus rouxi - SC superior colliculus  相似文献   

10.
Summary The relationship between the orientation sounds and hearing sensitivity in the greater Japanese horseshoe bat,Rhinolophus ferrumequinum nippon was studied.An orientation pulse consisted of a constant frequency (CF) component followed by a short downward frequency-modulated (FM) component. Sometimes, an initial upward FM component preceded the CF component. Duration of pulses was about 30 ms and the CF of resting pulses (RF) averaged 65.5 kHz. The best frequency (BF) at the lowest threshold in audiograms as measured by the pinna reflex averaged 66.1 kHz. Audiograms showed remarkable sharp cut-offs on both sides near the BF. The frequency difference between the BF and the RF was about 0.6 kHz, and the RF was always below the BF. The values of RF and BF were characteristically different from those of the European subspecies,Rhinolophus ferrumequinum ferrumequinum.Abbreviations BF best frequency - CF constant frequency - FM frequency modulated - RF resting frequency  相似文献   

11.
Summary The greater horseshoe bat (Rhinolophus ferrumequinum) emits echolocation sounds consisting of a long constant-frequency (CF) component preceeded and followed by a short frequency-modulated (FM) component. When an echo returns with an upward Doppler-shift, the bat compensates for the frequency-shift by lowering the emitted frequency in the subsequent orientation sounds and stabilizes the echo image. The bat can accurately store frequency-shift information during silent periods of at least several minutes. The stored frequency-shift information is not affected by tone bursts delivered during silent periods without an overlap with an emitted orientation sound. The system for storage of Doppler-shift information has properties similar to a sample and hold circuit with sampling at vocalization time and with a rather flat slewing rate for the stored frequency information.Supported by Stiftung Volkswagenwerk, grant No. 111858, Deutsche Forschungsgemeinschaft, grant No. Ne 146/7, National Science Foundation (USA), grant No. GB-40018 and the Alexander von Humboldt-Stiftung.  相似文献   

12.
Summary This report describes the ontogenesis of tonotopy in the inferior colliculus (IC) of the rufous horseshoe bat (Rhinolophus rouxi). Horseshoe bats are deaf at birth, but consistent tonotopy with a low-to-high frequency gradient from dorsolateral to ventromedial develops from the 2nd up to the 5th week. The representation of the auditory fovea is established in ventro-mediocaudal parts of the IC during the 3rd postnatal week (Fig. 3). Then, a narrow frequency band 5 kHz in width, comprising 16% of the bat's auditory range, captures 50–60 vol% of the IC (Fig. 3c). However, foveal tuning is 10–12 kHz (1/3 octave) lower than in adults; foveal tuning in females (65–68 kHz) is 2–3 kHz higher than in males (62–65 kHz). Thereafter, foveal tuning increases by 1–1.5 kHz per day up to the 5th postnatal week, when the adult hearing range is established (Figs. 4, 5). The increase of sensitivity and of tuning sharpness of single units also follows a low-to-high frequency gradient (Fig. 6).Throughout this development the foveal tuning matches the second harmonic of the echolocation pulses vocalised by these young bats. The results confirm the hypothesis of developmental shifts in the frequency-place code for the foveal high frequency representation in the IC.Abbreviations BF best frequency - CF constant frequency - FM frequency modulation - IC inferior colliculus - IHC inner hair cell; - OHC outer hair cell - RR Rhinolophus rouxi  相似文献   

13.
A stereotypical approach phase vocalization response of the lesser bulldog bat, Noctilio albiventris, to artificial echoes simulating a virtual approaching object was used to assess the ability of the bat to analyze and extract distance information from the artificial echoes. The performance of the bat was not significantly different when presented with naturally structured CF/FM echoes containing FM elements that sweep continuously from about 75-55 kHz in 4 ms or with CF/FM echoes containing FM components constructed from a series of 98 pure tone frequency steps, each with a duration of 0.04 ms. The performance of the bat remained unchanged when the duration of the tone steps was increased up to 0.08 ms but declined sharply to a level that was significantly below that seen with a naturally structured echo when the steps were 0.09 ms or longer. The performance of the bat depended on the duration of the individual tone steps, which could not exceed a specific upper limit of about 0.08 ms. The study suggests that the bats have adaptations for processing individual narrow band segments of FM signals over specific time intervals.Abbreviations CF constant frequency - FM frequency modulation  相似文献   

14.
One hundred and thirty-eight echolocation calls of 63 free-flying individuals of five bat species (Rhinolophus ferrumequinum, Myotis formosus, Myotis ikonnikovi, Myotis daubentoni and Murina leucogaster) were recorded (by ultrasonic bat detector (D980)) in Zhi’an village of Jilin Province, China. According to the frequency-time spectra, these calls were categorized into two types: FM/CF (constant frequency) / FM (R. ferrumequinum) and FM (frequency modulated) (M. formosus, M. ikonnikovi, M. daubentoni and M. leucogaster). Sonograms of the calls of R. ferrumequinum could easily be distinguished from those of the other four species. For the calls of the remaining four species, six echolocation call parameters, including starting frequency, ending frequency, peak frequency duration, longest inter-pulse interval and shortest inter-pulse interval, were examined by stepwise discriminant analysis. The results show that 84.1% of calls were correctly classified, which indicates that these parameters of echolocation calls play an important role in identifying bat species. These parameters can be used to test the accuracy of general predictions based on bats’ morphology in the same forest and can provide essential information for assessing patterns of bat habitat use. __________ Translated from Journal of Northeast Normal University (Natural Science Edition), 2006, 38 (3): 109–114 [译自: 东北师范大学学报(自然科学版)]  相似文献   

15.
Summary Five Greater Horseshoe bats,Rhinolophus ferrumequinum, were trained in a two-alternative forced-choice procedure to discriminate between artificial echoes of insects fluttering at different wingbeat rates. The stimuli were electronically produced phantom targets simulating fluttering insects with various wingbeat frequencies (Figs. 3, 4). Difference thresholds for wingbeat rates of 50 Hz and 100 Hz were determined. For an S+ of 50 Hz the difference threshold values lay between 2.8 and 4.6 Hz for individual bats; with an S+ of 100 Hz they increased to between 9.8 and 12.0 Hz (Figs. 5, 6, Table 1).Three bats, previously trained to discriminate between a S+ of 50 Hz and a S– with a lower wingbeat rate, were tested with higher frequency stimuli. When they had to decide between their old S+ of 50 Hz and either a 60 or 70 Hz echo two bats continued to select the 50 Hz stimulus while the third bat now preferred the faster fluttering insects (Table 2).During the discrimination task the echolocation behavior of the bats was monitored. When the phantom targets were presented all bats increased their duty-cycle of sound emission from about 40% to sometimes near 70%. They did so by either emitting longer echolocation calls or by increasing the sound repetition rate (Figs. 7, 8).The results show that Greater Horseshoe bats can determine the wingbeat rate of flying insects with an accuracy between 6 and 12%. Possible cues for flutter rate determination by cf-fm bats from natural and artificial insect echoes are discussed.Abbreviations DC duty-cycle - PD pulse duration - PI pulse interval - cf constantfrequency - fm frequency modulation  相似文献   

16.
One hundred and thirty-eight echolocation calls of 63 free-flying individuals of five bat species (Rhinolophus ferrumequinum,Myotis formosus,Myotis ikonnikovi,Myotis daubentoni and Murina leucogaster)were recorded (by ultrasonic bat detector (D980)) in Zhi'an village of Jilin Province,China.According to the frequency-time spectra,these calls were categorized into two types:FM/CF (constant frequency) / FM (R.ferrumequinum) and FM (frequency modulated)(M.formosus,M.ikonnikovi,M.daubentoni and M.leucogaster).Sonograms of the calls of R.ferrumequinum could easily be distinguished from those of the other four species.For the calls of the remaining four species,six echolocation call parameters,including starting frequency,ending frequency,peak frequency duration,longest inter-pulse interval and shortest inter-pulse interval,were examined by stepwise discriminant analysis.The results show that 84.1% of calls were correctly classified,which indicates that these parameters of echolocation calls play an important role in identifying bat species.These parameters can be used to test the accuracy of general predictions based on bats' morphology in the same forest and can provide essential information for assessing patterns of bat habitat use.  相似文献   

17.
Summary The activity of the external (motor) branch of the superior laryngeal nerve (SLN), innervating the cricothyroid muscle, was recorded in the greater horseshoe bat,Rhinolophus ferrumequinum. The bats were induced to change the frequency of the constant frequency (CF) component of their echolocation signals by presenting artificial signals for which they Doppler shift compensated. The data show that the SLN discharge rate and the frequency of the emitted CF are correlated in a linear manner.Abbreviations SLN Superior laryngeal nerve - RLN Recurrent laryngeal nerve - DCS Doppler compensation system - CF Constant frequency - FM Frequency modulation Supported by grants of the Deutsche Forschungsgemeinschaft (DFG), Az.: Schu 390/1, /2 and SFB 45We are indebted to Dipl.-Ing. H. Zöller for providing the computer programs. We want to thank H. Hahn and A. Polotzek for technical help.  相似文献   

18.
Summary For echolocation, the mustached bat,Pteronotus parnellii rubiginosus, emits orientation sounds (pulses) and listens to echoes. Each pulse is made up of 8 components, of which 4 are constant frequencies (CF1–4) and 4 are frequency-modulated (FM1–4). Target-range information, conveyed by the time delay of the echo FM from the pulse FM, is processed in this species by specialized neurons in a part of the auditory cortex known as the FM-FM area. These cortical neurons are responsive to pulse-echo pairs at specific echo delays (Fig. 1). The essential components in the sound pair include the pulse FM1 followed by an echo FMn (n=2, 3 or 4). Downward sweeping FM1-FMn sounds that are similar to those the animal naturally hears during echolocation are the most effective in evoking facilitative responses. Most FM-FM neurons, however, still exhibit facilitative responses to stimulus pairs consisting of upward sweeping FM sounds and/or pure tones at frequencies found in FM sweeps (Figs. 2 and 3). The magnitude of facilitation is altered by changes in echo rather than pulse amplitude (Figs. 5 and 6). Neurons characterized by shorter best delays (or echoes from closer targets) do not require larger best echo amplitudes for facilitation.Abbreviations CF constant frequency - FM frequency modulation - H n CF — FM harmonics of the mustached bat biosonar signal - CF n CF components of the harmonics - FM n FM components of the harmonics - PCF n pulse CFn - ECF n echo CFn - PFM n pulse FMn - EFM n echo FMn - PH n pulse Hn - EH n echo Hn - BA best amplitude for facilitation - BD best delay for facilitation - PST peri-stimulus-time - PSTC peri-stimulus-time-cumulative - dB SPL dB re 20 Pa  相似文献   

19.
At first sight, echolocating bats face a difficult trade-off. As flying animals, they would benefit from a streamlined geometric shape to reduce aerodynamic drag and increase flight efficiency. However, as echolocating animals, their pinnae generate the acoustic cues necessary for navigation and foraging. Moreover, species emitting sound through their nostrils often feature elaborate noseleaves that help in focussing the emitted echolocation pulses. Both pinnae and noseleaves reduce the streamlined character of a bat’s morphology. It is generally assumed that by compromising the streamlined charactered of the geometry, the head morphology generates substantial drag, thereby reducing flight efficiency. In contrast, it has also been suggested that the pinnae of bats generate lift forces counteracting the detrimental effect of the increased drag. However, very little data exist on the aerodynamic properties of bat pinnae and noseleaves. In this work, the aerodynamic forces generated by the heads of seven species of bats, including noseleaved bats, are measured by testing detailed 3D models in a wind tunnel. Models of Myotis daubentonii, Macrophyllum macrophyllum, Micronycteris microtis, Eptesicus fuscus, Rhinolophus formosae, Rhinolophus rouxi and Phyllostomus discolor are tested. The results confirm that non-streamlined facial morphologies yield considerable drag forces but also generate substantial lift. The net effect is a slight increase in the lift-to-drag ratio. Therefore, there is no evidence of high aerodynamic costs associated with the morphology of bat heads.  相似文献   

20.
Summary The echolocation of bats in the genusTadarida is highly adaptive to different acoustic conditions. These bats use different types of sonar signals with a diversity usually observed in comparisons across families of bats.Tadarida brasiliensis andT. macrotis search for airborne prey in open, uncluttered spaces using narrow-band, short CF signals with no FM components. They add broadband FM components while dropping the CF components when approaching or capturing prey. Only one harmonic is present in these insect-pursuit signals. When flying in cluttered situations or echolocating in a laboratory room,T. brasiliensis uses multiple-harmonic FM signals. Stationary bats tend to use linear frequency sweeps and moving bats tend to use curvilinear frequency sweeps or linear period sweeps. When emerging from a roost they initially use a short-CF/FM signal, changing to an FM signal as they fly away. The acuity of perception of target range inT. brasiliensis is about 1.0 to 1.5 cm and is determined by the bandwidth of the target-ranging sonar signals as represented by their autocorrelation functions. Many less adaptable species of bats use signals corresponding to part of the sonar repertoire ofTadarida. The functions of short CF or narrowband signals for detection and FM or broadband signals for resolution and acoustic imaging identified from comparisons among such species are confirmed by observations of echolocation byTadarida. The differences observed in echolocation among many species and families of bats appear to be evolutionary adaptations to some of the same features of the acoustic environment to whichTadarida responds behaviorally.Abbreviations CF frequency modulated - FM constant frequency - LPM linear period modulation - LFM linear-frequency modulation We thank Prof. T.T. Sandel, Prof. D.R. Griffin, Dr. George Pollak, and P.H. Dolkart for their advice and assistance. This research was supported by Grant No. BMS 72-02351-A01 from the National Science Foundation and by Biomedical Research Support Grant No. RR-07054 from the Division of Research Resources, National Institutes of Health.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号