首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A Lux  TL Rost 《Annals of botany》2012,110(2):201-204
This special issue is dedicated to root biologists past and present who have been exploring all aspects of root structure and function with an extensive publication record going over 100 years. The content of the Special Issue on Root Biology covers a wide scale of contributions, spanning interactions of roots with microorganisms in the rhizosphere, the anatomy of root cells and tissues, the subcellular components of root cells, and aspects of metal accumulation and stresses on root function and structure. We have organized the papers into three topic categories: (1) root ecology, interactions with microbes, root architecture and the rhizosphere; (2) experimental root biology, root structure and physiology; and (3) applications of new technology to study root biology. Finally, we will speculate on root research for the future.  相似文献   

2.
RNA interference (RNAi) is a powerful reverse genetic tool to study gene function. The data presented here show that Agrobacterium rhizogenes-mediated RNAi is a fast and effective tool to study genes involved in root biology. The Arabidopsis gene KOJAK, involved in root hair development, was efficiently knocked down. A. rhizogenes-mediated root transformation is a fast method to generate adventitious, genetically transformed roots. In order to select for co-transformed roots a binary vector was developed that enables selection based on DsRED1 expression, with the additional benefit that chimaeric roots can be discriminated. The identification of chimaeric roots provided the opportunity to examine the extent of systemic spread of the silencing signal in the composite plants of both Arabidopsis and Medicago truncatula. It is shown that RNA silencing does not spread systemically to non-co-transformed (lateral) roots and only inefficiently to the non-transgenic shoot. Furthermore, evidence is presented which shows that RNAi is cell autonomous in the root epidermis.  相似文献   

3.
4.
Developmental systems theory (DST) is a general theoretical perspective on development, heredity and evolution. It is intended to facilitate the study of interactions between the many factors that influence development without reviving `dichotomous' debates over nature or nurture, gene or environment, biology or culture. Several recent papers have addressed the relationship between DST and the thriving new discipline of evolutionary developmental biology (EDB). The contributions to this literature by evolutionary developmental biologists contain three important misunderstandings of DST.  相似文献   

5.
Developmental biology and evolutionary studies have merged into evolutionary developmental biology (“evo-devo”). This synthesis already influenced and still continues to change the conceptual framework of structural biology. One of the cornerstones of structural biology is the concept of homology. But the search for homology (“sameness”) of biological structures depends on our favourite perspectives (axioms, paradigms). Five levels of homology (“sameness”) can be identified in the literature, although they overlap to some degree: (i) serial homology (homonomy) within modular organisms, (ii) historical homology (synapomorphy), which is taken as the only acceptable homology by many biologists, (iii) underlying homology (i.e., parallelism) in closely related taxa, (iv) deep evolutionary homology due to the “same” master genes in distantly related phyla, and (v) molecular homology exclusively at gene level. The following essay gives emphasis on the heuristic advantages of seemingly opposing perspectives in structural biology, with examples mainly from comparative plant morphology. The organization of the plant body in the majority of angiosperms led to the recognition of the classical root–shoot model. In some lineages bauplan rules were transcended during evolution and development. This resulted in morphological misfits such as the Podostemaceae, peculiar eudicots adapted to submerged river rocks. Their transformed “roots” and “shoots” fit only to a limited degree into the classical model which is based on either–or thinking. It has to be widened into a continuum model by taking over elements of fuzzy logic and fractal geometry to accommodate for lineages such as the Podostemaceae.  相似文献   

6.
This transformation procedure generates, with high efficiency (70-90%), hairy roots in cultivars, landraces and accessions of Phaseolus vulgaris (common bean) and other Phaseolus spp. Hairy roots rapidly develop after wounding young plantlets with Agrobacterium rhizogenes, at the cotyledon node, and keeping the plants in high-humidity conditions. Callogenesis always precedes hairy-root formation, and after 15 days, when roots develop at wounded sites, the stem with the normal root is cleaved below the hairy root zone. Transgenic roots and nodules co-transformed with a binary vector can be easily identified using a reporter gene. This procedure, in addition to inducing robust transgenic hairy roots that are susceptible to being nodulated by rhizobia and to fixing nitrogen efficiently, sets the foundation for a high-throughput functional genomics approach on the study of root biology and root-microbe interactions. This protocol can be completed within 30 days.  相似文献   

7.
Life history evolution and comparative developmental biology of echinoderms   总被引:3,自引:1,他引:2  
Evolutionary biologists studying life history variation have used echinoderms in experimental, laboratory, and field studies of life history evolution. This focus on echinoderms grew originally from the tradition of comparative embryology, in which echinoderms were central. The tools for obtaining and manipulating echinoderm gametes and larvae were taken directly from comparative embryological research. In addition, the comparative embryologists employed a diverse array of echinoderms, not a few model species, and this diversity has led to a broad understanding of the development, function, and evolution of echinoderm larvae. As a result, this branch of life history evolution has deep roots in comparative developmental biology of echinoderms. Here two main aspects of this relationship are reviewed. The first is a broad range of studies of fertilization biology, dispersal, population genetics, functional morphology, and asexual reproduction in which developmental biologists might take a keen interest because of the historical origins of this research in echinoderm comparative embryology. The second is a similarly broad variety of topics in life history research in which evolutionary biologists require techniques or data from developmental biology in order to make progress on understanding patterns of life history variation among echinoderm species and higher taxa. Both sets of topics provide opportunities for interaction and collaboration.  相似文献   

8.
Auxin transport and gravitational research: perspectives   总被引:1,自引:0,他引:1  
Palme K  Dovzhenko A  Ditengou FA 《Protoplasma》2006,229(2-4):175-181
Gravity is a fundamental factor which affects all living organisms. Plant development is well adapted to gravity by directing roots downward and shoots upwards. For more than a century, plant biologists have been fascinated to describe the molecular mechanisms underlying the gravitropic response of plants. Important progress towards signal perception, transduction, and response has been made, but new tools are beginning to uncover the regulatory networks for gravitropic control. We summarise recent progress in study of gravitropism and discuss strategies to identify the molecular basis of the gravity response in Arabidopsis thaliana. This will put us on a road towards the molecular systems biology of the Arabidopsis gravitropic response.  相似文献   

9.
Biologists in search of answers to real-world issues such as the ecological consequences of global warming, the design of species'' conservation plans, understanding landscape dynamics and understanding gene expression make decisions constantly that are based on a ‘philosophical’ stance as to how to create and test explanations of an observed phenomenon. For better or for worse, some kind of philosophy is an integral part of the doing of biology. Given this, it is more important than ever to undertake a practical assessment of what philosophy does mean and should mean to biologists. Here, I address three questions: should biologists pay any attention to ‘philosophy’; should biologists pay any attention to ‘philosophy of biology’; and should biologists pay any attention to the philosophy of biology literature on modelling? I describe why the last question is easily answered affirmatively, with the proviso that the practical benefits to be gained by biologists from this literature will be directly proportional to the extent to which biologists understand ‘philosophy’ to be a part of biology, not apart from biology.  相似文献   

10.
Plant root development is strongly affected by nutrient availability. Despite the importance of structure and function of roots in nutrient acquisition,statistical modeling approaches to evaluate dynamic and temporal modulations of root system architecture in response to nutrient availability have remained as widely open and exploratory areas in root biology. In this study,we developed a statistical modeling approach to investigate modulations of root system architecture in response to nitrogen availability. Mathematical models were designed for quantitative assessment of root growth and root branching phenotypes and their dynamic relationships based on hierarchical con figuration of primary and lateral roots formulating the fishbone-shaped root system architecture in Arabidopsis thaliana. Time-series datasets reporting dynamic changes in root developmental traits on different nitrate or ammonium concentrations were generated for statistical analyses. Regression analyses unraveled key parameters associated with:(i) inhibition of primary root growth under nitrogen limitation or on ammonium;(ii) rapid progression of lateral root emergence in response to ammonium; and(iii) inhibition of lateral root elongation in the presence of excess nitrate or ammonium. This study provides a statistical framework for interpreting dynamic modulation of root system architecture,supported by metaanalysis of datasets displaying morphological responses of roots to diverse nitrogen supplies.  相似文献   

11.
12.
合成生物学作为一门新兴学科,其目标主要有两点:一是利用非天然的分子使其出现生命的现象,也就是―人造生命‖;二是―改造生命‖,比如利用一种生命体的元件(或经过人工改造),组装到另一个生命体中,使其产生特定功能。无论是哪种目的,对生命遗传物质DNA的操作都非常关键,其具体包括DNA的从头合成、组装和编辑等。同时,这些使能技术的进步也促进了合成生物学其他领域的发展。本文介绍了DNA操作相关的合成生物学使能技术的最新进展。  相似文献   

13.
Root dynamics and global change: seeking an ecosystem perspective   总被引:22,自引:3,他引:22  
Changes in the production and turnover of roots in forests and grasslands in response to rising atmospheric CO2 concentrations, elevated temperatures, altered precipitation, or nitrogen deposition could be a key link between plant responses and longer-term changes in soil organic matter and ecosystem carbon balance. Here we summarize the experimental observations, ideas, and new hypotheses developed in this area in the rest of this volume. Three central questions are posed. Do elevated atmospheric CO2, nitrogen deposition, and climatic change alter the dynamics of root production and mortality? What are the consequences of root responses to plant physiological processes? What are the implications of root dynamics to soil microbial communities and the fate of carbon in soil? Ecosystem-level observations of root production and mortality in response to global change parameters are just starting to emerge. The challenge to root biologists is to overcome the profound methodological and analytical problems and assemble a more comprehensive data set with sufficient ancillary data that differences between ecosystems can be explained. The assemblage of information reported herein on global patterns of root turnover, basic root biology that controls responses to environmental variables, and new observations of root and associated microbial responses to atmospheric and climatic change helps to sharpen our questions and stimulate new research approaches. New hypotheses have been developed to explain why responses of root turnover might differ in contrasting systems, how carbon allocation to roots is controlled, and how species differences in root chemistry might explain the ultimate fate of carbon in soil. These hypotheses and the enthusiasm for pursuing them are based on the firm belief that a deeper understanding of root dynamics is critical to describing the integrated response of ecosystems to global change.  相似文献   

14.
Developmental biology, like many other areas of biology, has undergone a dramatic shift in the perspective from which developmental processes are viewed. Instead of focusing on the actions of a handful of genes or functional RNAs, we now consider the interactions of large functional gene networks and study how these complex systems orchestrate the unfolding of an organism, from gametes to adult. Developmental biologists are beginning to realize that understanding ontogeny on this scale requires the utilization of computational methods to capture, store and represent the knowledge we have about the underlying processes. Here we review the use of the Gene Ontology (GO) to study developmental biology. We describe the organization and structure of the GO and illustrate some of the ways we use it to capture the current understanding of many common developmental processes. We also discuss ways in which gene product annotations using the GO have been used to ask and answer developmental questions in a variety of model developmental systems. We provide suggestions as to how the GO might be used in more powerful ways to address questions about development. Our goal is to provide developmental biologists with enough background about the GO that they can begin to think about how they might use the ontology efficiently and in the most powerful ways possible. Mol. Reprod. Dev. 77: 314–329, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

15.
We describe a gene that is expressed in lateral and adventitious root primordia of Arabidopsis. The gene was identified by expression of a transposon-borne promoterless beta-glucuronidase gene in lateral root primordia. The gene, designated LRP1 for lateral root primordium 1, and its corresponding cDNA were cloned and sequenced. The expression pattern of the gene in lateral root primordia was confirmed by in situ hybridization with LRP1 cDNA probes. The LRP1 gene encodes a novel protein. LRP1 expression is activated during the early stages of root primordium development and is turned off prior to the emergence of lateral roots from the parent root. Insertion of the transposon in the LRP1 gene disrupted its expression. To evaluate the homozygous insertion line for a mutant phenotype, several aspects of wild-type lateral root development were analyzed. A mutant phenotype has not yet been identified in the insertion line; however, there is evidence that the gene belongs to a small gene family. LRP1 provides a molecular marker to study the early stages of lateral and adventitious root primordium development.  相似文献   

16.
The limited value most French biologists attributed to Darwinism and Mendelism in the first half of the twentieth century, and their conviction that these theories were at best insufficient to explain evolution and development, probably created conditions propitious to the development of Evo-devo at the end of the century. The separation between embryology and evolution did not exist in French biology as it did in American genetics: explanations for these two phenomena were sought equally in the “organization” of the egg. The major contribution of French biologists to Evo-devo was clearly the invention of the notion of the regulatory gene by Jacob and Monod; not the operon model per se, but the introduction of a hierarchy between two different kinds of genes. The consequence, the rise of the developmental gene concept, was not immediate, and required the active role of other biologists such as Antonio Garcia-Bellido, Allan Wilson and Stephen Jay Gould. Various obstacles had to be overcome for this concept of developmental gene to be fully accepted.  相似文献   

17.
Ex vitro composite plants: an inexpensive, rapid method for root biology   总被引:1,自引:0,他引:1  
Plant transformation technology is frequently the rate-limiting step in gene function analysis in non-model plants. An important tool for root biologists is the Agrobacterium rhizogenes-derived composite plant, which has made possible genetic analyses in a wide variety of transformation recalcitrant dicotyledonous plants. The novel, rapid and inexpensive ex vitro method for producing composite plants described in this report represents a significant advance over existing composite plant induction protocols, which rely on expensive and time-consuming in vitro conditions. The utility of the new system is validated by expression and RNAi silencing of GFP in transgenic roots of composite plants, and is bolstered further by experimental disruption, via RNAi silencing, of endogenous plant resistance to the plant parasitic nematode Meloidogyne incognita in transgenic roots of Lycopersicon esculentum cv. Motelle composite plants. Critical parameters of the method are described and discussed herein.  相似文献   

18.
19.
Strigolactones (SLs) and their derivatives were recently defined as novel phytohormones that orchestrate shoot and root growth. Levels of SLs, which are produced mainly by plant roots, increase under low nitrogen and phosphate levels to regulate plant responses. Here, we summarize recent work on SL biology by describing their role in the regulation of root development and hormonal crosstalk during root deve-lopment. SLs promote the elongation of seminal/primary roots and adventitious roots (ARs) and they repress lateral root formation. In addition, auxin signaling acts downstream of SLs. AR formation is positively or negatively regulated by SLs depending largely on the plant species and experimental conditions. The relationship between SLs and auxin during AR formation appears to be complex. Most notably, this hormonal response is a key adaption that radically alters rice root architecture in response to nitrogen- and phosphate-deficient conditions.  相似文献   

20.
Medicago truncatula, a diploid autogamous legume, is currently being developed as a model plant for the study of root endosymbiotic associations, including nodulation and mycorrhizal colonization. An important requirement for such a plant is the possibility of rapidly introducing and analyzing chimeric gene constructs in root tissues. For this reason, we developed and optimized a convenient protocol for Agrobacterium rhizogenes-mediated transformation of M. truncatula. This unusual protocol, which involves the inoculation of sectioned seedling radicles, results in rapid and efficient hairy root organogenesis and the subsequent development of vigorous "composite plants." In addition, we found that kanamycin can be used to select for the cotransformation of hairy roots directly with gene constructs of interest. M. truncatula composite plant hairy roots have a similar morphology to normal roots and can be nodulated successfully by their nitrogen-fixing symbiotic partner, Sinorhizobium meliloti. Furthermore, spatiotemporal expression of the Nod factor-responsive reporter pMtENOD11-gusA in hairy root epidermal tissues is indistinguishable from that observed in Agrobacterium tumefaciens-transformed lines. M. truncatula hairy root explants can be propagated in vitro, and we demonstrate that these clonal lines can be colonized by endomycorrhizal fungi such as Glomus intraradices with the formation of arbuscules within cortical cells. Our results suggest that M. truncatula hairy roots represent a particularly attractive system with which to study endosymbiotic associations in transgenically modified roots.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号