首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Shoots of two species of moss, Plagiomnium undulatum (Hedw.) Kop. and Plagiomnium affine (Funck) Kop., were subjected to freezing at various temperatures. After thawing, the activities of different photosynthetic reactions were determined in relation to the ages of the leaves. Analysis of the fast kinetics of chlorophyll-a fluorescence of individual leaves showed that young and old tissues were considerably less frost tolerant than mature ones. In principle, the pattern of freeze inactivation of photosynthetic reactions resembles that observed in higher plants. The decreases in the amplitude of Fv (variable fluorescence) and the ratio of Fv to Fm (maximum fluorescence) with increasing freezing stress reflect a progressive inactivation of photosystem II (PSII)-mediated electron transport, i.e. inhibition of photoreaction to photochemistry and-or electron donation to the photochemical reaction, and thus a decline in the potential photochemical efficiency of PSII. The insignificant change in the F0 (constant fluorescence) level during progressive decline of Fv indicates that the excitation-energy transfer between antenna pigments and from those to reaction centres of PSII was little impaired by lethal freezing stress. Sugar analyses of various stem sections showed that ontogenetic variation in the frost tolerance of leaves cannot be attributed to differences in the cellular levels of sucrose, glucose and fructose.Abbreviations and Symbols DCMU 3-(3,4-dichlorophenyl)-1,1-dimethylurea - Fm maximum fluorescence - F0 constant (initial) fluorescence - Fv variable fluorescence  相似文献   

2.
Mesophyll protoplasts were isolated from unhardened and cold-acclimated leaves of Valerianella locusta L. and subjected to freeze-thaw treatment. To evaluate the extent and course of freezing injury, photosynthetic reactions of whole protoplasts and of free thylakoid membranes, liberated from protoplasts by osmotic lysis, were measured. In addition, the integrity of the protoplasts was determined by microscopy. The results reveal an increased frost tolerance of protoplasts isolated from acclimated leaves with respect to all parameters measured. CO2-dependent O2 evolution (representing net photosynthetic CO2 fixation of protoplasts) was the most freezing-sensitive reaction; its inhibition due to freeze-thaw treatment of protoplasts was neither correlated with disintegration of the plasma membrane, nor was it initiated by inactivation of the thylakoid membranes. The frost-induced decline of protoplast integrity was not closely correlated to thylakoid damage either. Freezing injury of the thylakoid membranes was manifested by inhibition of photosynthetic electron transport and photophosphorylation. Both photosystems were affected by freezing and thawing with strongest inhibition occurring in the water-oxidation system or at the oxidizing site of photosystem II. Photophosphorylation responded more sensitively to freezing stress than electron transport, although uncoupling (increased permeability of the thylakoid membranes to protons) was not a conspicuous effect. The data are discussed in relation to freezing injury in leaves and seem to indicate that frost damage in vivo is initiated at multiple sites.Abbreviations Chl chlorphyll - DCMU 3-(3,4-dichlorophenyl)-1,1-dimethylurea - DCIP 2,6-dichlorophenolindophenol - DPC 1,5-diphenylcarbazide - Hepes 2-[4-(2-hydroxyethyl)-1-piperazinyl]-ethanesulfonic acid - MES 2-(N-morpholino)-ethanesulfonic acid - PS I photosystem I - PS II photosystem II  相似文献   

3.
Spinach plants (Spinacia oleracea L.) were frost-hardened by cold-acclimation to 1° C or kept in an unhardy state at 20°/14° C in phytotrons. Detached leaves were exposed to temperatures below 0°C. Rates of photosynthetic CO2 uptake by the leaves, recorded after frost treatment, served as a measure of freezing injury. Thylakoid membranes were isolated from frost-injured leaves and their photosynthetic activities tested. Ice formation occurred at about-4° to-5° C, both in unhardened and cold-acclimated leaves. After thawing, unhardened leaves appeared severely damaged when they had been exposed to-5° to-8° C. Acclimated leaves were damaged by freezing at temperatures between-10° to-14° C. The pattern of freezing damage was complex and appeared to be identical in hardened and unhardened leaves: 1. Inactivation of photosynthesis and respiration of the leaves occurred almost simultaneously. 2. When the leaves were partly damaged, the rates of photosynthetic electron transport and noncyclic photophosphorylation and the extent of light-induced H+ uptake by the isolated thylakoids were lowered at about the same degree. The dark decay of the proton gradient was, however, not stimulated, indicating that the permeability of the membrane to-ward protons and metal cations had not increased. 3. As shown by partial reactions of the electron transport system, freezing of leaves predominantly inhibited the oxygen evolution, but photosystem II and photosystem I-dependent electron transport were also impaired. 4. Damage of the chloroplast envelope was indicated by a decline in the percentage of intact chloroplasts found in preparations from injured leaves. The results are discussed in relation to earlier studies on freezing damage of thylakoid membranes occurring in vitro.Abbreviations Chl chlorophyll - DCPIP 2,6-dichlorophenol indophenol - HEPES N-2-hydroxyethylpiperazine-N-2-ethane sulfonic acid - MES 2(N-morpholino) ethane sulfonic acid  相似文献   

4.
This investigation determined whether thylakoid proteins would be degraded more rapidly or not in senescing wheat (Triticum aestivum L. em. Thell.) leaves concurrently exposed to high temperatures. Excised leaves were pulse-labelled with [35S]-methionine for a 12 h period, and then incubated at 22,32 or 42°C for 0, 1, 2, or 3 d, before extracting a thylakoid enriched membrane sample. After electrophoretic separation, two prominent [35S]-labelled protein bands were chosen for further analyses. Band A contained the D-1 thylakoid protein and band B contained thylakoid proteins of the light harvesting complex (LHCII) associated with photosystem II (PSII). Total protein, [35S]-labelled protein, band A protein, and band B protein within the thylakoid enriched membrane samples were measured. Unlabelled thylakoid enriched membrane samples, extracted from leaves given similar treatments, were used to measure uncoupled whole-chain and photosystem II (PSII) electron transport and chlorophyll fluorescence. Accentuated decline in whole-chain and PSII electron transport, increasing Fo values, and decreasing Fmax values were a result of high temperature injury in leaves treated at 42°C. None of the thylakoid enriched membrane protein fractions were degraded more rapidly in high-temperature treated leaves. Degradation of the total [35S]-labelled membrane proteins and band B was inhibited by the 42°C treatment. The results indicate that high temperature stress may disrupt some aspects of normal senescence.  相似文献   

5.
When chloroplast thylakoid membranes isolated from spinach leaves (Spinacia oleracea L. cv. Monatol) were frozen in media containing the predominant inorganic electrolytes of the chloroplast stroma, linear photosynthetic electron transport became progressively inhibited. After onset of freezing, both PSII- and PSI-mediated electron flow were inactivated almost to the same extent. Prolonged storage of the membranes in the frozen state increased damage to PSII relative to PSI activity. Under these conditions, a preferential injury of the water oxidation system was not observed. In thylakoids stored at 0 °C, PSI activity remained fairly unimpaired but inactivation of PSII occurred with strongest inhibition at the oxidizing side.The addition of low-molecular-weight cryoprotectants such as glycerol, sugars, certain amino acids and carbonic acids to thylakoid suspensions prior to freezing provided almost complete preservation of PSI activity and considerable but incomplete stabilization of PSII.Abbreviations BQ 1,4-benzoquinone - Chl chlorophyll - DAD 1,4-diamino-2,3,5,6-tetramethylbenzene - DCMU 3-(3,4-dichlorophenyl)-1,1-dimethylurea - DCPIP 2,6-dichlorophenolindophenol - DMBQ 2,5-dimethyl-p-benzoquinone - DPC 1,5-diphenylcarbazide - Hepes 4-(2-hydroxyethyl)-1-piperazineeth-anesulfonic acid - MV methylviologen - PD 1,4-diaminobenzene - SOD superoxide dismutase (EC 1.15.1.1) - TMHQ tetramethyl-p-hydroquinone - TMPD N,N,N,N-tetramethyl-1,4-diaminobenzene - Tris 2-amino-2-(hydroxymethyl)-1,3-propandiol Dedicated to Professor Dr. Wilhelm Simonis, Würzburg, on the occasion of his 80th birthday  相似文献   

6.
Most plants growing in temperate desert zone exhibit brief temperature-induced inhibition of photosynthesis at midday in the summer. Heat stress has been suggested to restrain the photosynthesis of desert plants like Alhagi sparsifolia S. It is therefore possible that high midday temperatures damage photosynthetic tissues, leading to the observed inhibition of photosynthesis. In this study, we investigated the mechanisms underlying heat-induced inhibition of photosynthesis in A. sparsifolia, a dominant species found at the transition zone between oasis and sandy desert on the southern fringe of the Taklamakan desert. The chlorophyll (Chl) a fluorescence induction kinetics and CO2 response curves were used to analyze the thermodynamic characters of both photosystem II (PSII) and Rubisco after leaves were exposed to heat stress. When the leaves were heated to temperatures below 43°C, the initial fluorescence of the dark-adapted state (Fo), and the maximum photochemical efficiency of PSII (Fv/Fm), the number of active reaction centers per cross section (RCs) and the leaf vitality index (PI) increased or declined moderately. These responses were reversed, however, upon cooling. Moreover, the energy allocation in PSII remained stable. The gradual appearance of a K point in the fluorescence curve at 48°C indicated that higher temperatures strongly impaired PSII and caused irreversible damage. As the leaf temperature increased, the activity of Rubisco first increased to a maximum at 34°C and then decreased as the temperature rose higher. Under high-temperature stress, cell began to accumulate oxidative species, including ammoniacal nitrogen, hydrogen peroxide (H2O2), and superoxide (O2 ·−), suggesting that disruption of photosynthesis may result from oxidative damage to photosynthetic proteins and thylakoid membranes. Under heat stress, the biosynthesis of nonenzyme radical scavenging carotenoids (Cars) increased. We suggest that although elevated temperature affects the heat-sensitive components comprising of PSII and Rubisco, under moderately high temperature the decrease in photosynthesis is mostly due to inactivation of dark reactions.  相似文献   

7.
S. Grafflage  G. H. Krause 《Planta》1986,168(1):67-76
Chloroplast thylakoid membranes were isolated from leaves of unhardened and cold-acclimated spinach (Spinacia oleracea L.). For freezethaw treatment, the membranes were suspended in complex media composed to simulate the solute concentrations in the chloroplast stroma in the unhardened and hardened states of the leaves. In particular, high concentrations of amino acids were applied for simulating the hardened state. After frost treatment, photosynthetic activities and chlorophyll fluorescence parameters of the thylakoids were tested to determine the degree of freezing damage. The results revealed a pattern of freezing injury similar to that observed upon frost treatment of thylakoids in situ. A major manifestation of damage was the inhibition of photosynthetic electron transport. Uncoupling of photophosphorylation, which is the dominating effect of freezing of thylakoids suspended in binary solutions (e.g., containing one sugar and one inorganic salt), was also visible but less pronounced in the complex media. Thylakoids obtained from cold-acclimated leaves did not exhibit an increased frost tolerance in vitro, as compared with thylakoids from unhardened plants. The results, furthermore, indicated a strong protective effect of free amino acids at the concentrations and composition found in chloroplasts of hardened leaves. The presence of inorganic salts in the complex media slightly stabilized rather than damaged the membranes during freezing. It is concluded that inactivation of thylakoids in situ may be understood as the destabilizing action of the combined solutes surrounding the thylakoids, occurring when solute concentration is raised due to freezing of water.Abbreviations Chl chlorophyll - DCMU 3-(3,4-dichlorophenyl)-1,1-dimethylurea - Hepes 4-(2-hydroxyethyl)-1-piper-azineethanesulfonic acid - PSI photosystem I - PSII photosystem II  相似文献   

8.
Plants can avoid freezing damage by preventing extracellular ice formation below the equilibrium freezing temperature (supercooling). We used Olea europaea cultivars to assess which traits contribute to avoid ice nucleation at sub‐zero temperatures. Seasonal leaf water relations, non‐structural carbohydrates, nitrogen and tissue damage and ice nucleation temperatures in different plant parts were determined in five cultivars growing in the Patagonian cold desert. Ice seeding in roots occurred at higher temperatures than in stems and leaves. Leaves of cold acclimated cultivars supercooled down to ?13 °C, substantially lower than the minimum air temperatures observed in the study site. During winter, leaf ice nucleation and leaf freezing damage (LT50) occurred at similar temperatures, typical of plant tissues that supercool. Higher leaf density and cell wall rigidity were observed during winter, consistent with a substantial acclimation to sub‐zero temperatures. Larger supercooling capacity and lower LT50 were observed in cold‐acclimated cultivars with higher osmotically active solute content, higher tissue elastic adjustments and lower apoplastic water. Irreversible leaf damage was only observed in laboratory experiments at very low temperatures, but not in the field. A comparative analysis of closely related plants avoids phylogenetic independence bias in a comparative study of adaptations to survive low temperatures.  相似文献   

9.
The photosynthetic apparatus, especially the electron transport chain imbedded in the thylakoid membrane, is one of the main targets of cold and heat stress in plants. Prompt and delayed fluorescence emission originating from photosystem II have been used, most often separately, to monitor the changes induced in the photosynthetic membranes during progressive warming or cooling of a leaf sample. Thermofluorescence of F 0 and F M informs on the effects of heat on the chlorophyll antennae and the photochemical centers, thermoluminescence on the stabilization and movements of charges and Delayed Light Emission on the permeability of the thylakoid membranes to protons and ions. Considered together and operated simultaneously, these techniques constitute a powerful tool to characterize the effect of thermal stress on intact photosynthetic systems and to understand the mechanisms of constitutive or induced tolerance to temperature stresses.  相似文献   

10.
Exposure of leaves to SO2 or bisulfite is known to induce peroxidation of thylakoid lipids and to inhibit photosynthetic electron transport. In the present study, we have examined the temporal relationship between bisulfite-induced thylakoid lipid peroxidation and inhibition of electron transport in an attempt to clarify the primary mechanism of SO2 phytotoxicity. Primary leaves of bean (Phaseolus vulgaris L. cv Kinghorn) were floated on a solution of NaHSO3, and the effects of this treatment on photosynthetic electron transport were determined in vivo by measurements of chlorophyll a fluorescence induction and in vitro by biochemical measurements of the light reactions using isolated thylakoids. Lipid peroxidation in treated leaves was followed by monitoring ethane emission from leaf segments and by measuring changes in fatty acid composition and lipid fluidity in isolated thylakoids. A 1 hour treatment with bisulfite inhibited photosystem II (PSII) activity by 70% without modifying Photosystem I, and this inhibitory effect was not light-dependent. By contrast, lipid peroxidation was not detectable until after the inhibition of PSII and was strongly light dependent. This temporal separation of events together with the differential effect of light suggests that bisulfite-induced inhibition of PSII is not a secondary effect of lipid peroxidation and that bisulfite acts directly on one or more components of PSII.  相似文献   

11.
The interaction between photosynthetic electron transport and the activities of the thylakoid associated carbonic anhydrase (tCA), estimated as combined tCA activity in pea plants (Pisum sativum L. Borek cv., WT) and mutant form (costata 2/125) that differ in chlorophyll content have been compared. Chlorophyll a fluorescence changes after the inhibition of tCA by ethoxyzolamide (EZ), estimating possible role of tCA in PSII downregulation were investigated. Costata expresses higher tCA activity and higher O2 evolution in comparison to WT. Inhibition of tCA by EZ decreased effective PSII photochemistry that coincided with an enhancement in thermal dissipation, while maximal PSII quantum yield (Fv/Fm) did not significantly change. Ethoxyzolamide induced changes in fluorescence parameters that were more strongly expressed in costata 2/125. The results show that tCA is involved in the regulation of the proton gradient across thylakoid membranes and thus limits PSII downregulation.  相似文献   

12.
Thermal acclimation by Saxifraga cernua to low temperatures results in a change in the optimum temperature for gross photosynthetic activity and may directly involve the photosynthetic apparatus. In order to test this hypothesis photosynthetic electron transport activity of S. cernua thylakoids acclimated to growth temperatures of 20°C and 10°C was measured in vitro. Both populations exhibited optimum temperatures for whole chain and PSII electron transport activity at temperatures close to those at which the plants were grown. Chlorophyll a fluorescence transients from 10°C-acclimated leaves showed higher rates in the rise and subsequent quenching of variable fluorescence at low measuring temperatures; 20°C-acclimated leaves showed higher rates of fluorescence rise at higher measuring temperatures. At these higher temperatures, fluorescence quenching rates were similar in both populations. The kinetics of State 1-State 2 transitions in 20°C- and 10°C-acclimated leaf discs were measured as changes in the magnitude of the fluorescence emission maxima measured at 77K. Leaves acclimated at 10°C showed a larger F730/F695 ratio at low temperatures, while at higher temperatures, 20°C-acclimated leaves showed a higher F730/F695 ratio after the establishment of State 2. High incubation temperatures also resulted in a decrease in the F695/F685 ratio for 10°C-acclimated leaves, suggesting a reduction in the excitation transfer from the light-harvesting complex of photosystem II to photosystem II reaction centers. The relative amounts of chlorophyll-protein complexes and thylakoid polypeptides separated electro-phoretically were similar for both 20°C- and 10°C-acclimated leaves. Thus, photosynthetic acclimation to low temperatures by S. cernua is correlated with an increase in photosynthetic electron transport activity but does not appear to be accompanied by major structural changes or different relative amounts in thylakoid protein composition.  相似文献   

13.
Inhibition of the net photosynthetic CO2 assimilation rate (Pn) by high temperature was examined in oak (Quercus pubescens L.) leaves grown under natural conditions. Combined measurements of gas exchange and chlorophyll (Chl) a fluorescence were employed to differentiate between inhibition originating from heat effects on components of the thylakoid membranes and that resulting from effects on photosynthetic carbon metabolism. Regardless of whether temperature was increased rapidly or gradually, Pn decreased with increasing leaf temperature and was more than 90% reduced at 45 °C as compared to 25 °C. Inhibition of Pn by heat stress did not result from reduced stomatal conductance (gs), as heat‐induced reduction of gs was accompanied by an increase of the intercellular CO2 concentration (Ci). Chl a fluorescence measurements revealed that between 25 and 45 °C heat‐dependent alterations of thylakoid‐associated processes contributed only marginally, if at all, to the inhibition of Pn by heat stress, with photosystem II being remarkably well protected against thermal inactivation. The activation state of ribulose‐1,5‐bisphosphate carboxylase/oxygenase (Rubisco) decreased from about 90% at 25 °C to less than 30% at 45 °C. Heat stress did not affect Rubisco per se, since full activity could be restored by incubation with CO2 and Mg2+. Western‐blot analysis of leaf extracts disclosed the presence of two Rubisco activase polypeptides, but heat stress did not alter the profile of the activase bands. Inhibition of Pn at high leaf temperature could be markedly reduced by artificially increasing Ci. A high Ci also stimulated photosynthetic electron transport and resulted in reduced non‐photochemical fluorescence quenching. Recovery experiments showed that heat‐dependent inhibition of Pn was largely, if not fully, reversible. The present results demonstrate that in Q. pubescens leaves the thylakoid membranes in general and photosynthetic electron transport in particular were well protected against heat‐induced perturbations and that inhibition of Pn by high temperature closely correlated with a reversible heat‐dependent reduction of the Rubisco activation state.  相似文献   

14.
In leaves of an atrazine-resistant mutant ofSenecio vulgaris the quantum efficiency of CO2 assimilation was reduced by 21% compared to the atrazine-susceptible wild type, and at a light level twice that required to saturate photosynthesis in the wild type the CO2 fixation rate in the mutant was decreased by 15%. In leaves at steady-state photosynthesis there was a measurable increase in the reduction state of the photosystem II (PSII) primary quinone acceptor,Q A. Although this would lead to a decreased rate of PSII electron transport and may thus explain the decrease in quantum efficiency, this cannot account for the fall in the maximum rate of CO2 fixation. The atrazine-resistant mutant showed an appreciably longer photosynthetic induction time which indicates an effect on carbon metabolism; however, the response of CO2-fixation rate to intercellular CO2 concentration revealed no differences in carboxylation efficiency. There were also no differences in the ability to perform a State 1–State 2 transition between the atrazine-resistant and susceptible biotypes and no difference in the profiles of phosphorylated thylakoid polypeptides. It is concluded that the alteration of the redox equilibrium between PSII quinone electron acceptors in the atrazine-resistant biotype limits appreciably the photosynthetic efficiency in non-saturating light. Additionally, there is a further, as yet unidentified, limitation which decreases photosynthesis in the resistant mutant under light-saturating conditions.Abbreviations and symbols DCMU 3-(3,4-dichlorophenyl)-1,1-dimethylurea - F max maximum fluorescence emission - F o2 minimal fluorescence emission upon exposure to saturating light flash - F v variable fluorescence emission - F v2 variable fluorescence emission upon exposure to saturating light flash - kDa kilodalton - PSI, II photosystems I, II - Q A primary quinone acceptor of PSH - Q B secondary quinone acceptor of PSII - RuBP ribulose-1,5-bisphosphate  相似文献   

15.
Karlický  V.  Podolinská  J.  Nadkanská  L.  Štroch  M.  Čajánek  M.  Špunda  V. 《Photosynthetica》2010,48(3):475-480
The present study was conducted to examine changes in photosynthetic pigment composition and functional state of the thylakoid membranes during the individual steps of preparation of samples that are intended for a separation of pigmentprotein complexes by nondenaturing polyacrylamide gel electrophoresis. The thylakoid membranes were isolated from barley leaves (Hordeum vulgare L.) grown under low irradiance (50 μmol m−2 s−1). Functional state of the thylakoid membrane preparations was evaluated by determination of the maximal photochemical efficiency of photosystem (PS) II (FV/FM) and by analysis of excitation and emission spectra of chlorophyll a (Chl a) fluorescence at 77 K. All measurements were done at three phases of preparation of the samples: (1) in the suspensions of osmotically-shocked broken chloroplasts, (2) thylakoid membranes in extraction buffer containing Tris, glycine, and glycerol and (3) thylakoid membranes solubilized with a detergent decyl-β-D-maltosid. FV/FM was reduced from 0.815 in the first step to 0.723 in the second step and to values close to zero in solubilized membranes. Pigment composition was not pronouncedly changed during preparation of the thylakoid membrane samples. Isolation of thylakoid membranes affected the efficiency of excitation energy transfer within PSII complexes only slightly. Emission and excitation fluorescence spectra of the solubilized membranes resemble spectra of trimers of PSII light-harvesting complexes (LHCII). Despite a disrupted excitation energy transfer from LHCII to PSII antenna core in solubilized membranes, energy transfer from Chl b and carotenoids to emission forms of Chl a within LHCII trimers remained effective.  相似文献   

16.
Chloroplast ultrastructural and photochemical features were examined in 6-d-old barley (Hordeum vulgare L. cv. Sundance) plants which had developed in the presence of 4-chloro-5-(dimethylamino)-2-phenyl-3(2H)-pyridazinone (San 9785). In spite of a substantial modification of the fatty-acid composition of thylakoid lipids there were no gross abnormalities in chloroplast morphology, and normal amounts of membrane and chlorophyll were present. Fluorescence kinetics at 77K demonstrated considerable energetic interaction of photosystem (PS)I and PSII chlorophylls within the altered lipid environment. An interference with electron transport was indicated from altered room-temperature fluorescence kinetics at 20°C. Subtle changes in the arrangements of chloroplast membranes were consistently evident and the overall effects of these changes was to increase the proportion of appressed to nonappressed membranes. This correlated with a lower chlorophyll a/b ratio, an increase in the amount of light-harvesting chlorophylls as determined by gel electrophoresis and fluorescence emission spectra, and an increase in excitation-energy transfer from PSII to PSI, as predicted from current ideas on the organisation of photosystems in appressed and non-appressed thylakoid membranes.Abbreviations CP1 P700-chlorophyll a protein - Fo, Fm, Fv minimal, maximal and variable fluorescence yield - LHCP light-harvesting chlorophyll-protein complex - PSI, PSII photosystem I, II - San 9785 4-chloro-5(dimethylamino)-2-phenyl-3(2H)-pyridazinone  相似文献   

17.
Seasonal changes in chlorophyll fluorescence parameters of corticular chlorenchyma in the main trunk of Prunus cerasus were followed in the field under ambient temperature and light conditions during bright days. Concomitantly, measurements of periderm light transmittance also allowed the calculation of linear electron transport rates along PSII. Pre-dawn PSII photochemical efficiency was high during late spring, summer and early autumn, but low during winter in the North-facing, permanently shaded, side and extremely low in the South-facing, exposed side. Corresponding mid-day PSII effective yield and linear electron transport rates peaked at late spring and early summer with the exposed side always displaying lower values for effective yield, but higher values for electron transport rate. However, corticular electron transport rates were more than sixfold lower compared to leaves. Non-photochemical quenching was higher in the exposed side throughout the year while peak values appeared at early autumn. Although a photoinhibitory damage during winter can be claimed, we may note that Mediterranean winter temperatures are mild, while the light reaching the trunk photosynthetic tissues is very low (maximum at 30 and 280 μmol m−2 s−1 in the shaded and the exposed side, respectively) to be considered as photoinhibitory. Based on recent findings for the retention of PSI activity and a concomitant inhibition of PSII under low temperatures in leaves, together with an adequate cyclic electron flow found in bark chlorenchyma, we suggest a temperature-dependent adaptive adjustment in the relative rates of PSI over PSII activity, possibly linked to seasonally changing needs for metabolic energy supply.  相似文献   

18.
A method to determine photosynthetic electron transport in thylakoid membranes is described for Gossypium barbadense (cv. Pima S-7) and G. hirsutum (cv. DP 5415). These cultivars differed markedly in tolerance to prometryn, a PS II inhibitor. The rates of photosynthetic electron transport obtained were 245 mole oxygen mg–1 chl h1. Plant age and leaf size influenced the activity of the thylakoid preparations. Thylakoids from leaves of plants 24 to 37 d and 50–70 mm in diameter had the highest activities; thylakoids from cotyledons, fully expanded leaves and young leaves had low activity. Thylakoids from both species had similar photosynthetic activities and I50's for prometryn, atrazine and diuron. Thus, tolerance to prometryn was not due to differential binding at D1 protein.Abbreviations PSII photosystem II - DAP day after planting - DQ duroquinone - DBMIB dibromothymoquinone - DMBQ 2,5-dimethyl-p-benzoquinone - I50 concentration to inhibit reaction by 50% - QA quinone A - QB quinone B  相似文献   

19.
The photoinhibition of photosynthesis was investigated on intact attached leaves and isolated thylakoid membranes of Populus deltoides.Our studies demonstrate that in intact leaves photoinhibition takes place under high irradiance which is more pronounced at higher temperatures. No net loss of Dl and other proteins associated with photosystem II (PSII) were observed even after 64 % photoinhibition suggesting that the degradation of polypeptides associated with PSII is not the only key step responsible for photoinhibition as observed by other workers. Electron transport studies in isolated thylakoid membranes suggested water oxidation complex as one of the damaged site during high light exposure. The possible mechanisms of photoinhibition without net loss of D1 protein are discussed.  相似文献   

20.
The potential of the chlorophyll fluorescence technique in screening for frost sensitivity in a range of Trifolium species from different geographical origins was assessed by measuring the decrease in variable chlorophyll fluorescence (Fvar) of leaves after freezing at - 5°C for 60 min. The method was rapid and the results obtained agreed well with a visual assessment of freezing injury carried out after leaves were returned to optimal growth conditions for 72 h. Trifolium alexandrinum (Berseem clover) cv. Tabor originating from Israel was shown to be the most frost sensitive species studied and Trifolium subterraneum (subterranean clover) cv. Mt. Barker, from temperate regions of Australia, the most frost resistant. On extended periods of freezing, frost damage increased and this was associated with a further reduction in variable chlorophyll fluorescence and in quenching capacity of the thylakoid membranes. These results thus indicate that substantial thylakoid membrane dysfunction is induced at freezing temperatures. Furthermore, it was found that frost hardening of the frost sensitive species T. alexandrinum for 21 days at 5°C reduced the extent of damage sustained by the thylakoid membranes as shown by higher fluorescence quenching capacity, smaller reduction in variable fluorescence (Fvar) and higher initial fluorescence (Fo) when leaves of hardened plants were frozen at -5°C and -7°C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号