首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cupriavidus sp. USMAA1020 was isolated from Malaysian environment and able to synthesize poly(3-hydroxybutyrate-co-4-hydroxybutyrate), [P(3HB-co-4HB)] when grown on gamma-butyrolactone as the sole carbon source. The polyester was purified from freeze-dried cells and analyzed by nuclear magnetic resonance (NMR) spectroscopy. 1H and 13C NMR results confirmed the presence of 3HB and 4HB monomers. In a one-step cultivation process, P(3HB-co-4HB) accumulation by Cupriavidus sp. USMAA1020 was affected by carbon to nitrogen ratio (C/N). A two-step cultivation process accumulated P(3HB-co-4HB) copolyester with a higher 4HB fraction (53 mol%) in nitrogen-free mineral medium containing gamma-butyrolactone. The biosynthesis of P(3HB-co-4HB) was also achieved by using 4-hydroxybutyric acid and alkanediol as 1,4-butanediol. The composition of copolyesters varied from 32 to 51 mol% 4HB, depending on the carbon sources supplied. The copolyester produced by Cupriavidus sp. USMAA1020 has a random sequence distribution of 3-hydroxybutyrate (3HB) and 4-hydroxybutyrate (4HB) units when analyzed by nuclear magnetic resonance (NMR) spectroscopy. When gamma-butyrolactone was used as the sole carbon source, the 4HB fraction in copolyester increased from 25 to 60 mol% as the concentration of gamma-butyrolactone in the culture medium increased from 2.5 g/L to 20.0 g/L.  相似文献   

2.
Summary Copolyesters of 3-hydroxybutyrate (3HB) and 3-hydroxyvalerate (3HV) have been produced by Alcaligenes eutrophus in nitrogenfree culture solutions of butyric and pentanoic acids. When pentanoic acid was used as the sole carbon source, a copolyester with an unusually high 3HV fraction of 90 mol% was produced. Copolyesters with a wide range of compositions (0–90 mol% 3HV) were obtained by using butyric and pentanoic acids together as carbon sources. The biosynthetic pathways of poly(3-hydroxybutyrate) were investigated using [1-13C]acetate and [1-13C]butyrate. It is suggested that butyric and pentanoic acids are incorporated into the copolyester as 3HB and 3HV units respectively without decomposition of the carbon skeletons in the cell.  相似文献   

3.
A Hydrogenophaga pseudoflava strain was able to synthesize poly(3-hydroxybutyric acid-co-4-hydroxybutyric acid) [P(3HB-co-4HB)] having a high level of 4-hydroxybutyric acid monomer unit (4HB) from gamma-butyrolactone. In a two-step process in which the first step involved production of cells containing a minimum amount of poly(3-hydroxybutyric acid) [P(3HB)] and the second step involved polyester accumulation from the lactone, approximately 5 to 10 mol% of the 3-hydroxybutyric acid (3HB) derived from the first-step culture was unavoidably reincorporated into the polymer in the second cultivation step. Reincorporation of the 3HB units produced from degradation of the first-step residual P(3HB) was confirmed by high-resolution 13C nuclear magnetic resonance spectroscopy. In order to synthesize 3HB-free poly(4-hydroxybutyric acid) [P(4HB)] homopolymer, a three-stage cultivation technique was developed by adding a nitrogen addition step, which completely removed the residual P(3HB). The resulting polymer was free of 3HB. However, when the strain was grown on gamma-butyrolactone as the sole carbon source in a synthesis medium, a copolyester of P(3HB-co-4HB) containing 45 mol% 3HB was produced. One-step cultivation on gamma-butyrolactone required a rather long induction time (3 to 4 days). On the basis of the results of an enzymatic study performed with crude extracts, we suggest that the inability of cells to produce 3HB in the multistep culture was due to a low level of 4-hydroxybutyric acid (4HBA) dehydrogenase activity, which resulted in a low level of acetyl coenzyme A. Thus, 3HB formation from gamma-butyrolactone is driven by a high level of 4HBA dehydrogenase activity induced by long exposure to gamma-butyrolactone, as is the case for a one-step culture. In addition, intracellular degradation kinetics studies showed that P(3HB) in cells was completely degraded within 30 h of cultivation after being transferred to a carbon-free mineral medium containing additional ammonium sulfate, while P(3HB-co-4HB) containing 5 mol% 3HB and 95 mol% 4HB was totally inert in interactions with the intracellular depolymerases. Intracellular inertness could be a useful factor for efficient synthesis of the P(4HB) homopolymer and of 4HB-rich P(3HB-co-4HB) by the strain used in this study.  相似文献   

4.
Summary Methylobacterium sp. KCTC 0048 isolated from soil, could synthesize a variety of copolyesters when secondary carbon substrates were added to nitrogen-limited cultures containing methanol as a major carbon and energy source. The copolyester of 3-hydroxy-butyrate and 3-hydroxyvalerate, P(3HB-co-3HV) accumulated when valeric acid, pentanol or heptanoic acid was added to the nitrogen-limited medium containing methanol. The copolyester of 3-hydroxybutyrate and 4-hydroxybutyrate, P(3HB-co-4HB) was synthesized from 4-hydroxybutyrate, 1,4-butanediol, or -butyrolactone, and the copolyester of 3-hydroxybutyrate and 3-hydroxypropionate (P(3HB-co-3HP)), from 3-hydroxypropionate as the secondary carbon substrates, respectively.  相似文献   

5.
Enzymatic degradation processes of microbial copolyesters, poly(3-hydroxybutyrate-co-3-hydroxyvalerate): P(3HB-co-3HV) and poly(3-hydroxybutyrate-co-4-hydroxybutyrate): P(3HB-co-4HB), were studied by the weight loss (erosion) of copolyester films. These studies employed three extracellular depolymerases which degrade poly(3-hydroxybutyrate): P(3HB). Two enzymes were purified from the culture supernatant of Pseudomonas lemoignei and one from Alcaligenes faecalis T1. The rate of enzymatic degradation of microbial copolyester films with various compositions showed an almost similar tendency to three different P(3HB) depolymerases, and decreased in the following order: P(3HB-co-4HB) greater than P(3HB) greater than P(3HB-co-3HV). An inhibitory protein of P(3HB) depolymerases in the succinate culture medium of P. lemoignei was isolated and characterized. The molecular weight of P(3HB) depolymerase inhibitor was 35,000 as determined by polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulphate. This inhibitor of a single polypeptide chain may reversibly bind the serine residues at the active site of P(3HB) depolymerase. This inhibitory protein was not induced in the culture medium when P. lemoignei was grown on P(3HB) as the sole carbon source.  相似文献   

6.
Fukui T  Abe H  Doi Y 《Biomacromolecules》2002,3(3):618-624
Recombinant Ralstonia eutropha capable of producing poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) copolymer [P(3HB-co-3HHx)] from fructose was engineered by introduction of genes for crotonyl-CoA reductase (CCR) from Streptomyces cinnamonensis (ccrSc) and for PHA synthase and (R)-specific enoyl-CoA hydratase from Aeromonas caviae (phaC-JAc). In this recombinant strain, C6-acyl-CoA intermediates were provided via beta-ketothiolase-mediated elongation of butyryl-CoA, which was generated from crotonyl-CoA by the function of CCR. The recombinant strain could accumulate the copolyester up to 48 wt % of dry cell weight with 1.5 mol % of 3HHx fraction from fructose, when the expression of ccrSc under the control of the PBAD promoter was induced with 0.01% L-arabinose. The absence of L-arabinose or the deletion of ccrSc from the plasmid resulted in accumulation of poly(3-hydroxybutyrate) homopolymer, indicating the critical role of CCR in the formation of the 3-hydroxyhexanoate unit. Higher CCR activity obtained by the addition of a larger amount of L-arabinose did not affect the composition but reduced the intracellular content of the copolyester. The P(3HB-co-1.5 mol % 3HHx) copolyester produced from fructose by the recombinant R. eutropha showed relatively lower melting temperatures (150 degrees C and 161 degrees C) and lower crystallinity (48 +/- 5%) compared to those (175 degrees C and 60 +/- 5%) of P(3HB) homopolymer. It has been found that the incorporation of a small amount (1.5 mol %) of 3HHx units into P(3HB) sequences leads to a remarkable change in the solid-state properties of P(3HB) crystals. The present study demonstrates the potential of the engineered pathway for the production of copolyesters having favorable characteristics from inexpensive carbon resources.  相似文献   

7.
Summary New copolyesters of 3-hydroxybutyrate (3HB) and 4-hydroxybutyrate (4HB) were produced by Alcaligenes eutrophus from various carbon sources of 4-hydroxybutyric acid, 4-chlorobutyric acid, 1,4-butanediol, and -butyrolactone. The composition of copolyesters varied from 0 to 37 mol% 4HB, depending on the carbon sources supplied. The biosynthetic pathway of copolyesters has been discussed. The copolyester film was biodegradable in soil and activated sludge. The rate of biodegradation was enhanced by the presence of 4HB units.  相似文献   

8.
Park DH  Kim BS 《New biotechnology》2011,28(6):719-724
High-yield production of polyhydroxyalkanoates (PHAs) by Ralstonia eutropha KCTC 2662 was investigated using soybean oil and γ-butyrolactone as carbon sources. In flask culture, it was shown that R. eutropha KCTC 2662 accumulated PHAs during the growth phase. The optimum carbon to nitrogen ratio (C/N ratio) giving the highest cell and PHA yield was 20 g-soybean oil/g-(NH(4))(2)SO(4). The 4-hydroxybutyrate (4HB) fraction in the copolymer was not strongly affected by the C/N ratio. In a 2.5-L fermentor, a homopolymer of poly(3-hydroxybutyrate) [P(3HB)] was produced from soybean oil as the sole carbon source by batch and fed-batch cultures of R. eutropha with dry cell weights of 15-32 g/L, PHA contents of 78-83 wt% and yields of 0.80-0.82 g-PHA/g-soybean oil used. By co-feeding soybean oil and γ-butyrolactone as carbon sources, a copolymer of poly(3-hydroxybutyrate-co-4-hydroxybutyrate) [P(3HB-co-4HB)] could be produced with dry cell weights of 10-21 g/L, yields of 0.45-0.56 g-PHA/g-soybean oil used (0.39-0.50g-PHA/g-carbon sources used) and 4HB fractions of 6-10 mol%. Higher supplementation of γ-butyrolactone increased the 4HB fraction in the copolymer, but decreased cell and PHA yield.  相似文献   

9.
Copolyesters of 3-hydroxybutyrate (3HB) and 3-hydroxyvalerate (3HV) were produced by Burkholderia cepacia D1 at 30°C in nitrogen-free culture solutions containing n-butyric acid and/or n-valeric acid. When n-valeric acid was used as the sole carbon source, the 3HV fraction in copolyester increased from 36 to 90 mol% as the concentration of n-valeric acid in the culture solution increased from 1 to 20 g/l. The addition of n-butyric acid to the culture solution resulted in a decrease in the 3HV fraction in copolyester. The copolymers biosynthesized by this method were mixtures of random copolymers having a wide variety of composition of the 3HV component. The melting points of the fractionated copolymers show a concave curve with the minimum at the 3HV content of ≈40 mol%. The a-parameter of lattice indices of the P(3HB) crystal for the fractionated copolymers largely increased as the 3HV composition increased. Biodegradability of the copolymer increased with the lower content of 3HV composition and/or the lower crystallinity.  相似文献   

10.
A new pathway to synthesize poly(hydroxyalkanoic acids) (PHA) was constructed by simultaneously expressing butyrate kinase (Buk) and phosphotransbutyrylase (Ptb) genes of Clostridium acetobutylicum and the two PHA synthase genes (phaE and phaC) of Thiocapsa pfennigii in Escherichia coli. The four genes were cloned into the BamHI and EcoRI sites of pBR322, and the resulting hybrid plasmid, pBPP1, conferred activities of all three enzymes to E. coli JM109. Cells of this recombinant strain accumulated PHAs when hydroxyfatty acids were provided as carbon sources. Homopolyesters of 3-hydroxybutyrate (3HB), 4-hydroxybutyrate (4HB), or 4-hydroxyvalerate (4HV) were obtained from each of the corresponding hydroxyfatty acids. Various copolyesters of those hydroxyfatty acids were also obtained when two of these hydroxyfatty acids were fed at equal amounts: cells fed with 3HB and 4HB accumulated a copolyester consisting of 88 mol% 3HB and 12 mol% 4HB and contributing to 68.7% of the cell dry weight. Cells fed with 3HB and 4HV accumulated a copolyester consisting of 94 mol% 3HB and 6 mol% 4HV and contributing to 64.0% of the cell dry weight. Cells fed with 3HB, 4HB, and 4HV accumulated a terpolyester consisting of 85 mol% 3HB, 13 mol% 4HB, and 2 mol% 4HV and contributing to 68.4% of the cell dry weight.  相似文献   

11.
The newly screened Aeromonas hydrophila produces copolymer consisting of 3-hydroxybutyrate (3HB) and 3-hydroxyhexanoate (3HHx). The characteristics of cell growth and polymer accumulation were examined using various carbon sources. P(3HB-co-3HHx) was produced from lauric acid and oleic acid only. P(3HB-co-3HHx) content can be increased by limitation of phosphorus. A maximal P(3HB-co-3HHx) content of 28.8 wt% could be obtained in flask culture. By applying the optimally designed nutrient feeding strategy, cell dry weight, P(3HB-co-3HHx) content, and 3HHx fraction obtained over the course of 43 h were 95.7 g/L, 45.2 wt%, and 17 mol%, respectively, resulting in a productivity of 1.01 g polyhydroxyalkanoate (PHA)/L. h.  相似文献   

12.
Poly(3-hydroxybutyrate-co-3-hydroxyvalerate), poly(3HB-co-3HV), copolyesters with a variety of 3HV contents (ranging from 17 to 60 mol%) were produced by Alcaligenes sp. MT-16 grown on a medium containing glucose and levulinic acid in various ratios, and the effects of hydrophilicity and crystallinity on the degradability of the copolyesters were evaluated. Measurements of thermo-mechanical properties and Fourier-transform infrared spectroscopy in the attenuated total reflectance revealed that the hydrophilicity and crystallinity of poly(3HB-co-3HV) copolyesters decreased as 3HV content in the copolyester increased. When the prepared copolyester film samples were non-enzymatically hydrolysed in 0.01 N NaOH solution, the weights of all samples were found to have undergone no changes over a period of 20 weeks. In contrast, the copolyester film samples were degraded by the action of extracellular polyhydroxybutyrate depolymerase from Emericellopsis minima W2. The overall rate of weight loss was higher in the films containing higher amounts of 3HV, suggesting that the enzymatic degradation of the copolyester is more dependent on the crystallinity of the copolyester than on its hydrophilicity. Our results suggest that the degradability characteristics of poly(3HB-co-3HV) copolyesters, as well as their thermo-mechanical properties, are greatly influenced by the 3HV content in the copolyesters.  相似文献   

13.
Copolyesters of 3-hydroxybutyrate (3HB) and 3-hydroxyvalerate (3HV) were produced by Burkholderia cepacia D1 at 30°C in nitrogen-free culture solutions containing n-butyric acid and/or n-valeric acid. When n-valeric acid was used as the sole carbon source, the 3HV fraction in copolyester increased from 36 to 90 mol% as the concentration of n-valeric acid in the culture solution increased from 1 to 20 g/l. The addition of n-butyric acid to the culture solution resulted in a decrease in the 3HV fraction in copolyester. The copolymers biosynthesized by this method were mixtures of random copolymers having a wide variety of composition of the 3HV component. The melting points of the fractionated copolymers show a concave curve with the minimum at the 3HV content of ≈40 mol%. The a-parameter of lattice indices of the P(3HB) crystal for the fractionated copolymers largely increased as the 3HV composition increased. Biodegradability of the copolymer increased with the lower content of 3HV composition and/or the lower crystallinity.  相似文献   

14.
A number of taxonomically-related bacteria have been identified which accumulate poly(hydroxyalkanoate) (PHA) copolymers containing primarily 3-hydroxyvalerate (3HV) monomer units from a range of unrelated single carbon sources. One of these, Rhodococcus sp. NCIMB 40126, was further investigated and shown to produce a copolymer containing 75 mol% 3HV and 25 mol% 3-hydroxybutyrate (3HB) from glucose as sole carbon source. Polyesters containing both 3HV and 3HB monomer units, together with 4-hydroxybutyrate (4HB), 5-hydroxyvalerate (5HV) or 3-hydroxyhexanoate (3HHx), were also produced by this organism from certain accumulation substrates. With valeric acid as substrate, almost pure (99 mol% 3HV) poly(3-hydroxyvalerate) was produced. N.m.r. analysis confirmed the composition of these polyesters. The thermal properties and molecular weight of the copolymer produced from glucose were comparable to those of PHB produced by Alcaligenes eutrophus.  相似文献   

15.
Summary Terpolyesters of 3-hydroxybutyrate (3HB), 4-hydroxybutyrate (4HB) and 3-hydroxyvarelate (3HV) were produced byPseudomonas acidovorans in nitrogen-free culture solutions of 1,4-butanediol and pentanol. When 1,4-butanediol was used as the sole carbon source, a polyester with an unusually high 4HB fraction of 99 mol% was produced.  相似文献   

16.
Lamellar thickening behavior of microbial polyesters, poly(3-hydroxybutyrate) [P(3HB)], poly(3-hydroxybutyrate-co-3-hydroxyvalerate) [P(3HB-co-3HV)] and poly(3-hydroxybutyrate-co-4-hydroxybutyrate) [P(3HB-co-4HB)] annealed at various temperatures was investigated to make sure of the occurrence of cocrystallization of both components. All the copolymers showed steep increases in melting points accompanied by partial melting as the annealing temperature increased up to just below the melting points. In contrast, long periods of P(3HB-co-7mol% 3HV) increased to twice, similar to those of P(3HB), with increasing annealing temperature up to just below the melting point, while long periods of P(3HB-co-7mol% 4HB) and P(3HB-co-92mol% 3HV) only increased up to one and a half times. Lattice indices of unit cell of the former crystal were increased slightly, while those of the latter crystal remained unchanged. These results imply that the P(3HB) crystal can occlude the 3HV component to some extent, but hardly includes the 4HB component, and P(3HV) crystal also excludes the 3HB component.  相似文献   

17.
In support of programs to identify polyhydroxyalkanoates with improved materials properties, we report on our efforts to characterize the mechanical and thermal properties of copolyesters of 3-hydroxybutyrate (3HB) and 3-hydroxyhexanoate (3HHx). The copolyesters, having molar fraction of 3HHx ranging from 2.5 to 35 mol % and average molecular weights ranging from 1.15 x 10(5) to 6.65 x 10(5), were produced by fermentation using Aeromonas hydrophila and a recombinant strain of Pseudomonas putida GPp104. The polymers were chloroform extracted and characterized by solution-state and solid-state nuclear magnetic resonance (NMR) spectroscopy and a variety of mechanical and thermal tests. Solution-state (1)H NMR data were used to determine polymer composition-of-matter, while solution-state (13)C NMR data provided polymer-sequence information. Solvent fractionation and NMR spectroscopic characterization of these polymers showed that polymers containing up to 9.5 mol % 3HHx had a Bernoullian compositional distribution. By contrast, polymers containing more than 9.5 mol % 3HHx had a bimodal polymer composition. Solvent fractionation of these 3HHx-rich polyesters produced two polymer fractions, each of which was again consistent with Bernoullian polymerization statistics. Solid-state NMR relaxation experiments provided insight into aging in poly(3HB-co-3HHx) copolymers, demonstrating increased polymer-chain motion with increasing 3HHx content. The elongation-to-break ratio in the polyesters increased with increasing molar fraction of 3HHx monomers. Aging properties of the poly(3HB-co-3HHx) copolymers were very similar to copolymers of 3HB and 3-hydroxyvalerate (3HV). However, poly(3HB-co-3HHx) exhibited increased activation energy to thermal degradation with increasing 3HHx content.  相似文献   

18.
Pseudomonas sp. 61-3 (isolated from soil) produced a polyester consisting of 3-hydroxybutyric acid (3HB) and of medium-chain-length 3-hydroxyalkanoic acids (3HA) of C6, C8, C10 and C12, when sugars of glucose, fructose and mannose were fed as the sole carbon source. The polyester produced was a blend of homopolymer and copolymer, which could be fractionated with boiling acetone. The acetone-insoluble fraction of the polyester was a homopolymer of 3-hydroxybutyrate units [poly (3HB)], while the acetone-soluble fraction was a copolymer [poly(3HB-co-3HA)] containing both short- and medium-chain-length 3-hydroxyalkanoate units ranging from C4 to C12:44 mol% 3-hydroxybutyrate, 5 mol% 3-hydroxyhexanoate, 21 mol% 3-hydroxyoctanoate, 25 mol% 3-hydroxydecanoate, 2 mol% 3-hydroxydodecanoate and 3 mol% 3-hydroxy-5-cis-dodecenoate. The copolyester was shown to be a random copolymer of 3-hydroxybutyrate and medium-chain-length 3-hydroxyalkanoate units by analysis of the 13C-NMR spectrum. The poly(3HB) homopolymer and poly (3HB-co-3HA) copolymer were produced simultaneously within cells from glucose in the absence of any nitrogen source, which suggests that Pseudomonas sp. 61-3 has two types of polyhydroxy-alkanoate syntheses with different substrate specificities. Received: 9 June 1995/Received last revision: 30 October 1995/Accepted: 6 November 1995  相似文献   

19.
3-Hydroxybutyrate-3-hydroxyvalerate (3HB-3HV) as well as 3-hydroxybutyrate-4-hydroxybutyrate (3HB-4HB) copolyesters have been investigated by differential scanning calorimetry, thermogravimetric analysis and dynamic mechanical spectroscopy, over a wide range of compositions (0-95 mol% 3HV; 0-82 mol% 4HB). Both series of isolated copolyesters are partially crystalline at all compositions. Quenched samples show a glass transition that decreases linearly with increasing co-monomer molar fraction, more markedly when the co-monomer is 4HB. Above Tg, all copolyesters, rich in 3HB units, show a cold crystallization phenomenon followed by melting, while at the other end crystallization on heating is observed only in 3HB-3HV copolymers. The viscoelastic spectrum, strongly affected by thermal history, shows two relaxation regions: the glass transition, whose location depends on copolymer type and composition, and a secondary dispersion region at low temperatures (-130/-80 degrees C). The latter results from a water-related relaxation analogous to that of P(3HB) and, in 3HB-4HB copolymers, from another overlapping absorption peak centered at -130 degrees C, attributed to local motion of the methylene groups in the linear 4HB units.  相似文献   

20.
A novel copolymer that consisted of 3-hydroxyvalerate and 4-hydroxybutyrate, P(3HV-co-4HB), was synthesized in Hydrogenophaga pseudoflava by growing it in media containing gamma-valerolactone and gamma-butyrolactone as a carbon source. The monomer ratio in the copolymer was changed by altering the feed ratio of the two lactones. The cultivation technique was composed of three steps: the first-step for high cell production in Luria-Bertani medium, the second-step for intracellular degrading removal of poly(3-hydroxybutyrate) (P(3HB)), which was formed in the first step, by culturing the cells in carbon-source-free medium, and the final step for accumulation of P(3HV-co-4HB) in a mixed lactone medium. All the P(3HV-co-4HB) copolymers contained less than 1 mol % of 3HB unit. These copolymers were characterized by NMR spectroscopy, differential scanning calorimetry, wide-angle X-ray diffraction, and first-order kinetic analysis of intracellular degradation. The copolymer with an approximately equal ratio of the comonomers was found amorphous. The NMR microstructural analysis showed that the copolymers contained appreciable amounts of 3HV-rich or 4HB-rich chains. The (13)C NMR splitting patterns associated with the four carbons in the 4HB unit of P(3HV-co-4HB) bear close resemblance to those observed in the 4HB unit of P(3HB-co-4HB). The signals arising from the carbons in the 3HV unit of P(3HV-co-4HB) split in a manner similar to those in the 3HB unit of P(3HB-co-4HB). Thus the sequences were assigned by comparing the NMR splittings for P(3HV-co-4HB) with those for P(3HB-co-4HB) and P(3HB-co-3HV). The sequence assignment was further checked by comparing the signal intensities before and after degradation of the copolymers. This was considered reasonable because the H. pseudoflava intracellular PHA depolymerase is more specific to the 3HV unit than to the 4HB unit, which was also confirmed by the higher degradation rate constant for the 3HV unit in the first-order kinetic analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号