首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Integral membrane proteins pose a major challenge for protein-structure prediction because only approximately 100 high-resolution structures are available currently, thereby impeding the development of rules or empirical potentials to predict the packing of transmembrane alpha-helices. However, when an intermediate-resolution electron microscopy (EM) map is available, it can be used to provide restraints which, in combination with a suitable computational protocol, make structure prediction feasible. In this work we present such a protocol, which proceeds in three stages: 1), generation of an ensemble of alpha-helices by flexible fitting into each of the density rods in the low-resolution EM map, spanning a range of rotational angles around the main helical axes and translational shifts along the density rods; 2), fast optimization of side chains and scoring of the resulting conformations; and 3), refinement of the lowest-scoring conformations with internal coordinate mechanics, by optimizing the van der Waals, electrostatics, hydrogen bonding, torsional, and solvation energy contributions. In addition, our method implements a penalty term through a so-called tethering map, derived from the EM map, which restrains the positions of the alpha-helices. The protocol was validated on three test cases: GpA, KcsA, and MscL.  相似文献   

3.
Mottamal M  Zhang J  Lazaridis T 《Proteins》2006,62(4):996-1009
Using an implicit membrane model (IMM1), we examine whether the structure of the transmembrane domain of Glycophorin A (GpA) could be predicted based on energetic considerations alone. The energetics of native GpA shows that van der Waals interactions make the largest contribution to stability. Although specific electrostatic interactions are stabilizing, the overall electrostatic contribution is close to zero. The GXXXG motif contributes significantly to stability, but residues outside this motif contribute almost twice as much. To generate non-native states a global conformational search was done on two segments of GpA: an 18-residue peptide (GpA74-91) that is embedded in the membrane and a 29-residue peptide (GpA70-98) that has additional polar residues flanking the transmembrane region. Simulated annealing was done on a large number of conformations generated from parallel, antiparallel, left- and right-handed starting structures by rotating each helix at 20 degrees intervals around its helical axis. Several crossing points along the helix dimer were considered. For 18-residue parallel topology, an ensemble of native-like structures was found at the lowest effective energy region; the effective energy is lowest for a right-handed structure with an RMSD of 1.0 A from the solid-state NMR structure with correct orientation of the helices. For the 29-residue peptide, the effective energies of several left-handed structures were lower than that of the native, right-handed structure. This could be due to deficiencies in modeling the interactions between charged sidechains and/or omission of the sidechain entropy contribution to the free energy. For 18-residue antiparallel topology, both IMM1 and a Generalized Born model give effective energies that are lower than that of the native structure. In contrast, the Poisson-Boltzmann solvation model gives lower effective energy for the parallel topology, largely because the electrostatic solvation energy is more favorable for the parallel structure. IMM1 seems to underestimate the solvation free energy advantage when the CO and NH dipoles just outside the membrane are parallel. This highlights the importance of electrostatic interactions even when these are not obvious by looking at the structures.  相似文献   

4.
Amphidinols (AMs) are a group of dinoflagellate metabolites with potent antifungal activity. As is the case with polyene macrolide antibiotics, the mode of action of AMs is accounted for by direct interaction with lipid bilayers, which leads to formation of pores or lesions in biomembranes. However, it was revealed that AMs induce hemolysis with significantly lower concentrations than those necessary to permeabilize artificial liposomes, suggesting that a certain factor(s) in erythrocyte membrane potentiates AM activity. Glycophorin A (GpA), a major erythrocyte protein, was chosen as a model protein to investigate interaction between peptides and AMs such as AM2, AM3 and AM6 by using SDS-PAGE, surface plasmon resonance, and fluorescent-dye leakages from GpA-reconstituted liposomes. The results unambiguously demonstrated that AMs have an affinity to the transmembrane domain of GpA, and their membrane-permeabilizing activity is significantly potentiated by GpA. Surface plasmon resonance experiments revealed that their interaction has a dissociation constant of the order of 10 μM, which is significantly larger than efficacious concentrations of hemolysis by AMs. These results imply that the potentiation action by GpA or membrane integral peptides may be due to a higher affinity of AMs to protein-containing membranes than that to pure lipid bilayers.  相似文献   

5.
The linear interaction energy (LIE) approach has been applied to estimate the binding free energies of representative sets of HIV-1 RT and β-Secretase inhibitors, using both molecular dynamics (MD) and tethered energy minimization sampling protocols with the OPLS-AA potential, using a range of solvation methodologies. Generalized Born (GB), ‘shell’ and periodic boundary condition (PBC) solvation were used, the latter with reaction field (RF) electrostatics. Poisson-Boltzmann (PB) and GB continuum electrostatics schemes were applied to the simulation trajectories for each solvation type to estimate the electrostatic ligand-water interaction energy in both the free and bound states. Reasonable agreement of the LIE predictions was obtained with respect to experimental binding free energy estimates for both systems: for instance, ‘PB’ fits on MD trajectories carried out with PBC solvation and RF electrostatics led to models with standard errors of 1.11 and 1.03 kcal mol−1 and coefficients of determination, r 2 of 0.76 and 0.75 for the HIV-1 RT and β-Secretase sets. However, it was also found that results from MD sampling using PBC solvation provided only slightly better fits than from simulations using shell or Born solvation or tethered energy minimization sampling. Figure Evolution of the running averages for compound H11 (binding to HIV-1RT) of the bound state ligand-water and ligand-protein interaction energies. The ligand-water electrostatic terms are twice the corresponding GB and PB electrostatic solvation free energies. The ligand-receptor van der Waals and Coulombic interaction energies are also shown, in addition to the ligand-water van der Waals interaction term. The terms were calculated (without application of a cut-off) from a trajectory sampled under PBC solvation with reaction field electrostatics Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

6.
Integral membrane proteins often contain proline residues in their alpha-helical transmembrane (TM) fragments, which may strongly influence their folding and association. Pro-scanning mutagenesis of the helical domain of glycophorin A (GpA) showed that replacement of the residues located at the center abrogates helix packing while substitution of the residues forming the ending helical turns allows dimer formation. Synthetic TM peptides revealed that a point mutation of one of the residues of the dimerization motif (L75P) located at the N-terminal helical turn of the GpA TM fragment, adopts a secondary structure and oligomeric state similar to the wild-type sequence in detergents. In addition, both glycosylation mapping in biological membranes and molecular dynamics showed that the presence of a proline residue at the lipid/water interface has as an effect the extension of the helical end. Thus, helix packing can be an important factor that determines appearance of proline in TM helices. Membrane proteins might accumulate proline residues at the two ends of their TM segments in order to modulate the exposition of key amino acid residues at the interface for molecular recognition events while allowing stable association and native folding.  相似文献   

7.
The molecular mechanisms underlying the various effects of melittin on membranes have not been completely defined and much of the evidence described indicates that different molecular mechanisms may underlie different actions of the peptide. Ideas about the formation of transbilayer aggregates of melittin under the influence of a transbilayer potential, and for bilayer structural perturbation arising from the location of the peptide helix within the head group region of the membrane have been made based on the crystal structure of the peptide, the kinetics and concentration dependence of melittins membrane actions, together with simple ideas about the conformational properties of amphipathic helical peptides and their interactions with membranes. Physical studies of the interaction of melittin with model membranes have been useful in determining the potential of the peptide to adopt different locations, orientations and association states within membranes under different conditions, but the relationship of the results obtained to the actions of melittin in cell membranes or under the influence of a membrane potential are unclear. Experimental definition of the interaction of melittin with more complex membranes, including the erythrocyte membrane or in bilayers under the influence of a transmembrane potential, will require direct study in these membranes. Experiments employing labeled melittins for ESR, NMR or fluorescence experiments are promising both for their sensitivity (ESR and fluorescence) and the ability to focus on the peptide within the background of endogenous proteins within cell membranes. The study of melittin in model membranes has been useful for the development of methodology for determination of membrane protein structures. Despite the structural complexity of integral membrane proteins, it is interesting that in some respects their study be more straightforward, lacking as they do the elusive properties of melittin (and other structurally labile membrane peptides) which limit the possibility of defining their interaction with membranes in terms of a single conformation, location, orientation and association state within the membrane.  相似文献   

8.
Amphidinols (AMs) are a group of dinoflagellate metabolites with potent antifungal activity. As is the case with polyene macrolide antibiotics, the mode of action of AMs is accounted for by direct interaction with lipid bilayers, which leads to formation of pores or lesions in biomembranes. However, it was revealed that AMs induce hemolysis with significantly lower concentrations than those necessary to permeabilize artificial liposomes, suggesting that a certain factor(s) in erythrocyte membrane potentiates AM activity. Glycophorin A (GpA), a major erythrocyte protein, was chosen as a model protein to investigate interaction between peptides and AMs such as AM2, AM3 and AM6 by using SDS-PAGE, surface plasmon resonance, and fluorescent-dye leakages from GpA-reconstituted liposomes. The results unambiguously demonstrated that AMs have an affinity to the transmembrane domain of GpA, and their membrane-permeabilizing activity is significantly potentiated by GpA. Surface plasmon resonance experiments revealed that their interaction has a dissociation constant of the order of 10 microM, which is significantly larger than efficacious concentrations of hemolysis by AMs. These results imply that the potentiation action by GpA or membrane integral peptides may be due to a higher affinity of AMs to protein-containing membranes than that to pure lipid bilayers.  相似文献   

9.
A computational procedure for predicting the arrangement of an isolated helical fragment across a membrane was developed. The procedure places the transmembrane helical segment into a model triple-phase system 'water-octanol-water'; pulls the segment through the membrane, varying its 'global' position as a rigid body; optimizes the intrahelical and solvation energies in each global position by 'local' coordinates (dihedral angles of side chains); and selects the lowest energy global position for the segment. The procedure was applied to 45 transmembrane helices from the photosynthetic reaction center from Rhodopseudomonas viridis, cytochrome c oxidase from Paracoccus denitrificans and bacteriorhodopsin. In two thirds of the helical fragments considered, the procedure has predicted the vertical shifts of the fragments across the membrane with an accuracy of -0.15 +/- 3.12 residues compared with the experimental data. The accuracy for the remaining 15 fragments was 2.17 +/- 3.07 residues, which is about half of a helix turn. The procedure predicts the actual membrane boundaries of transmembrane helical fragments with greater accuracy than existing statistical methods. At the same time, the procedure overestimates the tilt values for the helical fragments.  相似文献   

10.
Lipopolysaccharide (LPS), the major constituent of the outer membrane of Gram-negative bacteria, is the very first site of interactions with the antimicrobial peptides. In this work, we have determined a solution conformation of melittin, a well-known membrane active amphiphilic peptide from honey bee venom, by transferred nuclear Overhauser effect (Tr-NOE) spectroscopy in its bound state with lipopolysaccharide. The LPS bound conformation of melittin is characterized by a helical structure restricted only to the C-terminus region (residues A15-R24) of the molecule. Saturation transfer difference (STD) NMR studies reveal that several C-terminal residues of melittin including Trp19 are in close proximity with LPS. Isothermal titration calorimetry (ITC) data demonstrates that melittin binding to LPS or lipid A is an endothermic process. The interaction between melittin and lipid A is further characterized by an equilibrium association constant (Ka) of 2.85 x 10(6) M(-1) and a stoichiometry of 0.80, melittin/lipid A. The estimated free energy of binding (delta G0), -8.8 kcal mol(-1), obtained from ITC experiments correlates well with a partial helical structure of melittin in complex with LPS. Moreover, a synthetic peptide fragment, residues L13-Q26 or mel-C, derived from the C-terminus of melittin has been found to contain comparable outer membrane permeabilizing activity against Escherichia coli cells. Intrinsic tryptophan fluorescence experiments of melittin and mel-C demonstrate very similar emission maxima and quenching in presence of LPS micelles. The Red Edge Excitation Shift (REES) studies of tryptophan residue indicate that both peptides are located in very similar environment in complex with LPS. Collectively, these results suggest that a helical conformation of melittin, at its C-terminus, could be an important element in recognition of LPS in the outer membrane.  相似文献   

11.
Cell-signaling peptides have been extensively used to transport functional molecules across the plasma membrane into living cells. These peptides consist of a hydrophobic sequence and a cationic nuclear localization sequence (NLS). It has been assumed that the hydrophobic region penetrates the hydrophobic lipid bilayer and delivers the NLS inside the cell. To better understand the transport mechanism of these peptides, in this study, we investigated the structure, orientation, tilt of the peptide relative to the bilayer normal, and the membrane interaction of two cell-signaling peptides, SA and SKP. Results from CD and solid-state NMR experiments combined with molecular dynamics simulations suggest that the hydrophobic region is helical and has a transmembrane orientation with the helical axis tilted away from the bilayer normal. The influence of the hydrophobic mismatch, between the hydrophobic length of the peptide and the hydrophobic thickness of the bilayer, on the tilt angle of the peptides was investigated using thicker POPC and thinner DMPC bilayers. NMR experiments showed that the hydrophobic domain of each peptide has a tilt angle of 15 +/- 3 degrees in POPC, whereas in DMPC, 25 +/- 3 degree and 30 +/- 3 degree tilts were observed for SA and SKP peptides, respectively. These results are in good agreement with molecular dynamics simulations, which predict a tilt angle of 13.3 degrees (SA in POPC), 16.4 degrees (SKP in POPC), 22.3 degrees (SA in DMPC), and 31.7 degrees (SKP in DMPC). These results and simulations on the hydrophobic fragment of SA or SKP suggest that the tilt of helices increases with a decrease in bilayer thickness without changing the phase, order, and structure of the lipid bilayers.  相似文献   

12.
The binding of melittin and the C-terminally truncated analogue of melittin (21Q) to a range of phospholipid bilayers was studied using surface plasmon resonance (SPR). The phospholipid model membranes included zwitterionic dimyristylphosphatidylcholine (DMPC) and dimyristylphosphatidylethanolamine (DMPE), together with mixtures DMPC/dimyristylphosphatidylglycerol (DMPG), DMPC/DMPG/cholesterol and DMPE/DMPG. Melittin bound rapidly to all membrane mixtures, whereas 21Q, which has a reduced charge, bound much more slowly on the DMPC and DMPC/DMPG mixtures reflecting the role of the initial electrostatic interaction. The loss of the cationic residues also significantly decreased the binding of 21Q with DMPC/DMPG/Cholesterol, DMPE and DMPE/DMPG. The role of electrostatics was also highlighted with NaCl in the buffer, which affected the way melittin bound to the different membranes, causing a more uniform, concentration dependant increase in response. The biosensor results were correlated with the conformation of the peptides determined by circular dichroism analysis, which indicated that high α-helicity was associated with high binding affinity. Overall, the results demonstrate that the positively charged residues at the C-terminus of melittin play an essential role in membrane binding, that modulation of peptide charge influences selectivity of binding to different phospholipids and that manipulation of the cationic regions of antimicrobial peptides can be used to modulate membrane selectivity.  相似文献   

13.
EmrE, a multidrug resistance protein from Escherichia coli, renders the bacterium resistant to a variety of cytotoxic drugs by active translocation out of the cell. The 110-residue sequence of EmrE limits the number of structural possibilities that can be envisioned for this membrane protein. Four helix bundle models have been considered [Yerushalmi, H., Lebendiker, M., and Schuldiner, S. (1996) J. Biol. Chem. 271, 31044-31048]. The validity of EmrE structural models has been probed experimentally by investigations on overlapping peptides (ranging in length from 19 to 27 residues), derived from the sequence of EmrE. The choice of peptides was made to provide sequences of two complete, predicted transmembrane helices (peptides H1 and H3) and two helix-loop-helix motifs (peptides A and B). Peptide (B) also corresponds to a putative hairpin in a speculative beta-barrel model, with the "Pro-Thr-Gly" segment forming a turn. Structure determination in SDS micelles using NMR indicates peptide H1 to be predominantly helical, with helix boundaries in the micellar environment corroborating predicted helical limits. Peptide A adopts a helix-loop-helix structure in SDS micelles, and peptide B was also largely helical in micellar environments. An analogue peptide, C, in which the central "Pro-Thr-Gly" was replaced by "(D)Pro-Gly" displays local turn conformation at the (D)Pro-Gly segment, but neither a continuous helical stretch nor beta-hairpin formation was observed. This study implies that the constraints of membrane and micellar environments largely direct the structure of transmembrane peptides and proteins and study of judiciously selected peptide fragments can prove useful in the structural elucidation of membrane proteins.  相似文献   

14.
Antimicrobial peptides (AMPs) provide a promising solution to the serious threat of multidrug-resistant bacteria or superbugs to public healthcare, due to their unique disruption to bacterial membrane such as perforation. Unfortunately, the underlying action mechanism of AMPs, especially the possible transition between the membrane binding and perforation states of peptides (i.e., the classical two-state model), is still largely unknown. Herein, by combining experimental techniques with pertinent membrane models and molecular dynamic (MD) simulations, new insights into the intermediate states of the AMP melittin-membrane interaction process are obtained. Specifically, it is demonstrated that, after the initial binding, the accumulated melittin on the bilayer triggers vigorous fluctuation of the membrane and even extracts some lipid molecules exclusively from the deformed outer leaflet of the bilayer. Such a distinctive mass removal manner and the resultant local asymmetry in lipid number between the two leaflets change the mechanical status of the membrane and in turn reduce the free energy barrier for the melittin insertion. Finally, the formation of the transmembrane pores is facilitated significantly. These findings provide new insights into the complicated antimicrobial mechanisms of AMPs.  相似文献   

15.
Papo N  Shai Y 《Biochemistry》2003,42(2):458-466
Lytic peptides comprise a large group of membrane-active peptides used in the defensive and offensive systems of all organisms. Differentiating between their modes of interaction with membranes is crucial for understanding how these peptides select their target cells. Here we utilized SPR to study the interaction between lytic peptides and lipid bilayers (L1 sensor chip). Using studies also on hybrid monolayers (HPA sensor chip) revealed that SPR is a powerful tool for obtaining a real-time monitoring of the steps involved in the mode of action of membrane-active peptides, some of which previously could not be detected directly by other techniques and reported here for the first time. We investigated the mode of action of peptides that represent two major families: (i) the bee venom, melittin, as a model of a non-cell-selective peptide that forms transmembrane pores and (ii) magainin and a diastereomer of melittin (four amino acids were replaced by their D enantiomers), as models of bacteria-selective non-pore-forming peptides. Fitting the SPR data to different interaction models allows differentiating between two major steps: membrane binding and membrane insertion. Melittin binds to PC/cholesterol approximately 450-fold better than its diastereomer and magainin, mainly because it is inserted into the inner leaflet (2/3 of the binding energy), whereas the other two are not. In contrast, there is only a slight difference in the binding of all the peptides to negatively charged PE/PG mono- and bilayer membranes (in the first and second steps), indicating that the inner leaflet contributes only slightly to their binding to PE/PG bilayers. Furthermore, the 100-fold stronger binding of the cell-selective peptides to PE/PG as compared with PC/cholesterol resulted only from electrostatic attraction to the negatively charged headgroups of the outer leaflet. These results clearly differentiate between the two general mechanisms: pore formation by melittin only in zwitterionic membranes and a detergent-like effect (carpet mechanism) for all the peptides in negatively charged membranes, in agreement with their biological function.  相似文献   

16.
Structure determination of proteins by NMR is unique in its ability to measure restraints, very accurately, in environments and under conditions that closely mimic those encountered in vivo. For example, advances in solid-state NMR methods enable structure determination of membrane proteins in detergent-free lipid bilayers, and of large soluble proteins prepared by sedimentation, while parallel advances in solution NMR methods and optimization of detergent-free lipid nanodiscs are rapidly pushing the envelope of the size limit for both soluble and membrane proteins. These experimental advantages, however, are partially squandered during structure calculation, because the commonly used force fields are purely repulsive and neglect solvation, Van der Waals forces and electrostatic energy. Here we describe a new force field, and updated energy functions, for protein structure calculations with EEFx implicit solvation, electrostatics, and Van der Waals Lennard-Jones forces, in the widely used program Xplor-NIH. The new force field is based primarily on CHARMM22, facilitating calculations with a wider range of biomolecules. The new EEFx energy function has been rewritten to enable OpenMP parallelism, and optimized to enhance computation efficiency. It implements solvation, electrostatics, and Van der Waals energy terms together, thus ensuring more consistent and efficient computation of the complete nonbonded energy lists. Updates in the related python module allow detailed analysis of the interaction energies and associated parameters. The new force field and energy function work with both soluble proteins and membrane proteins, including those with cofactors or engineered tags, and are very effective in situations where there are sparse experimental restraints. Results obtained for NMR-restrained calculations with a set of five soluble proteins and five membrane proteins show that structures calculated with EEFx have significant improvements in accuracy, precision, and conformation, and that structure refinement can be obtained by short relaxation with EEFx to obtain improvements in these key metrics. These developments broaden the range of biomolecular structures that can be calculated with high fidelity from NMR restraints.  相似文献   

17.
Transmembrane peptide helices play key roles in signal transduction across cell membranes, yet little is known about their high-resolution structure or the role membrane composition plays in their association, structure, dynamics and ultimately their performance. Using magic angle spinning (MAS) homonuclear dipolar recoupling experiments, the backbone structure at positions L10, L11, and A12 of the M2 ion channel peptide was determined in two lipid systems. Their measurements are in agreement with M2 forming transmembrane helices, but the torsion angles vary considerably from common α−helical values. These measurements show remarkable agreement with a previous computational model of M2 peptides forming a pore domain in which their helices are kinked near the central leucine, L11 [R. Sankararamakrishnan, C. Adcock, M.S.P. Sansom, The pore domain of the nicotinic acetylcholine receptor: Molecular modeling, pore dimensions, and electrostatics, Biophys. J. 71 (1996) 1659-1671]. The generation of high resolution data for transmembrane helices is of critical importance in refining structures for membrane protein and developing models of helix packing interactions.  相似文献   

18.
A new method is proposed for calculating aqueous solvation free energy based on atom-weighted solvent accessible surface areas. The method, SAWSA v2.0, gives the aqueous solvation free energy by summing the contributions of component atoms and a correction factor. We applied two different sets of atom typing rules and fitting processes for small organic molecules and proteins, respectively. For small organic molecules, the model classified the atoms in organic molecules into 65 basic types and additionally. For small organic molecules we proposed a correction factor of hydrophobic carbon to account for the aggregation of hydrocarbons and compounds with long hydrophobic aliphatic chains. The contributions for each atom type and correction factor were derived by multivariate regression analysis of 379 neutral molecules and 39 ions with known experimental aqueous solvation free energies. Based on the new atom typing rules, the correlation coefficient (r) for fitting the whole neutral organic molecules is 0.984, and the absolute mean error is 0.40 kcal mol–1, which is much better than those of the model proposed by Wang et al. and the SAWSA model previously proposed by us. Furthermore, the SAWSA v2.0 model was compared with the simple atom-additive model based on the number of atom types (NA). The calculated results show that for small organic molecules, the predictions from the SAWSA v2.0 model are slightly better than those from the atom-additive model based on NA. However, for macromolecules such as proteins, due to the connection between their molecular conformation and their molecular surface area, the atom-additive model based on the number of atom types has little predictive power. In order to investigate the predictive power of our model, a systematic comparison was performed on seven solvation models including SAWSA v2.0, GB/SA_1, GB/SA_2, PB/SA_1, PB/SA_2, AM1/SM5.2R and SM5.0R. The results showed that for organic molecules the SAWSA v2.0 model is better than the other six solvation models. For proteins, the model classified the atoms into 20 basic types and the predicted aqueous free energies of solvation by PB/SA were used for fitting. The solvation model based on the new parameters was employed to predict the solvation free energies of 38 proteins. The predicted values from our model were in good agreement with those from the PB/SA model and were much better than those given by the other four models developed for proteins.Figure The definition of hydrophobic carbons. Here CA, CB and CD are three carbon atoms; X represents a heteroatom. According to our definition, CB is a hydrophobic carbon, CA is not a hydrophobic carbon because a heteroatom is within four atoms and CD is not a hydrophobic carbon because CD is sp2- hydridized and in a six-member ring.Electronic Supplementary Material Supplementary material is available for this article at  相似文献   

19.
Melittin has been reported to form toroidal pores under certain conditions, but the atomic-resolution structure of these pores is unknown. A 9-μs all-atom molecular-dynamics simulation starting from a closely packed transmembrane melittin tetramer in DMPC shows formation of a toroidal pore after 1 μs. The pore remains stable with a roughly constant radius for the rest of the simulation. Surprisingly, one or two melittin monomers frequently transition between transmembrane and surface states. All four peptides are largely helical. A simulation in a DMPC/DMPG membrane did not lead to a stable pore, consistent with the experimentally observed lower activity of melittin on anionic membranes. The picture that emerges from this work is rather close to the classical toroidal pore, but more dynamic with respect to the configuration of the peptides.  相似文献   

20.
Unger T  Oren Z  Shai Y 《Biochemistry》2001,40(21):6388-6397
The amphipathic alpha-helical structure is a common motif found in membrane binding polypeptides including cell lytic peptides, antimicrobial peptides, hormones, and signal sequences. Numerous studies have been undertaken to understand the driving forces for partitioning of amphipathic alpha-helical peptides into membranes, many of them based on the antimicrobial peptide magainin 2 and the non-cell-selective cytolytic peptide melittin, as paradigms. These studies emphasized the role of linearity in their mode of action. Here we synthesized and compared the structure, biological function, and interaction with model membranes of linear and cyclic analogues of these peptides. Cyclization altered the binding of melittin and magainin analogues to phospholipid membranes. However, at similar bound peptide:lipid molar ratios, both linear and cyclic analogues preserved their high potency to permeate membranes. Furthermore, the cyclic analogues preserved approximately 75% of the helical structure of the linear peptides when bound to membranes. Biological activity studies revealed that the cyclic melittin analogue had increased antibacterial activity but decreased hemolytic activity, whereas the cyclic magainin 2 analogue had a marked decrease in both antibacterial and hemolytic activities. The results indicate that the linearity of the peptides is not essential for the disruption of the target phospholipid membrane, but rather provides the means to reach it. In addition, interfering with the coil-helix transition by cyclization, while maintaining the same sequence of hydrophobic and positively charged amino acids, allows a separated evaluation of the hydrophobic and electrostatic contributions to binding of peptides to membranes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号