首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
M Pring  A Weber  M R Bubb 《Biochemistry》1992,31(6):1827-1836
We demonstrate that the profilin-G-actin complex can elongate actin filaments directly at the barbed end but cannot bind to the pointed end. During elongation, the profilin-actin complex binds to the barbed filament end, whereupon profilin is released, leaving the actin molecule behind. This was first proposed by Tilney [Tilney, L. G., et al. (1983) J. Cell Biol. 97, 112-124] and demonstrated by Pollard and Cooper [(1984) Biochemistry 23, 6631-6641] by electron microscopy. We show that a model without any outside energy supply, in contrast to the mechanism proposed by Pollard and Cooper, can be fitted to our and their [Kaiser et al. (1986) J. Cell Biol. 102, 221-226] findings. Input of outside energy is necessary only if profilin-mediated elongation continues after free G-actin has been lowered to or below the critical concentration observed at the barbed end in the absence of profilin.  相似文献   

2.
We have quantitated the in vitro interactions of profilin and the profilin-actin complex (PA) with the actin filament barbed end using profilin and nonmuscle beta,gamma-actin prepared from bovine spleen. Actin filament barbed end elongation was initiated from spectrin seeds in the presence of varying profilin concentrations and followed by light scattering. We find that profilin inhibits actin polymerization and that this effect is much more pronounced for beta,gamma-actin than for alpha-skeletal muscle actin. Profilin binds to beta,gamma-actin filament barbed ends with an equilibrium constant of 20 microM, decreases the filament elongation rate by blocking addition of actin monomers, and increases the dissociation rate of actin monomers from the filament end. PA containing bound MgADP supports elongation of the actin filament barbed end, indicating that ATP hydrolysis is not necessary for PA elongation of filaments. Initial analysis of the energetics for these reactions suggested an apparent greater negative free energy change for actin filament elongation from PA than elongation from monomeric actin. However, we calculate that the free energy changes for the two elongation pathways are equal if the profilin-induced weakening of nucleotide binding to actin is taken into consideration.  相似文献   

3.
Cells sustain high rates of actin filament elongation by maintaining a large pool of actin monomers above the critical concentration for polymerization. Profilin-actin complexes constitute the largest fraction of polymerization-competent actin monomers. Filament elongation factors such as Ena/VASP and formin catalyze the transition of profilin-actin from the cellular pool onto the barbed end of growing filaments. The molecular bases of this process are poorly understood. Here we present structural and energetic evidence for two consecutive steps of the elongation mechanism: the recruitment of profilin-actin by the last poly-Pro segment of vasodilator-stimulated phosphoprotein (VASP) and the binding of profilin-actin simultaneously to this poly-Pro and to the G-actin-binding (GAB) domain of VASP. The actin monomer bound at the GAB domain is proposed to be in position to join the barbed end of the growing filament concurrently with the release of profilin.  相似文献   

4.
Formins catalyze rapid filament growth from profilin-actin, by remaining processively bound to the elongating barbed end. The sequence of elementary reactions that describe filament assembly from profilin-actin at either free or formin-bound barbed ends is not fully understood. Specifically, the identity of the transitory complexes between profilin and actin terminal subunits is not known; and whether ATP hydrolysis is directly or indirectly coupled to profilin-actin assembly is not clear. We have analyzed the effect of profilin on actin assembly at free and FH1-FH2-bound barbed ends in the presence of ADP and non-hydrolyzable CrATP. Profilin blocked filament growth by capping the barbed ends in ADP and CrATP/ADP-Pi states, with a higher affinity when formin is bound. We confirm that, in contrast, profilin accelerates depolymerization of ADP-F-actin, more efficiently when FH1-FH2 is bound to barbed ends. To reconcile these data with effective barbed end assembly from profilin-MgATP-actin, the nature of nucleotide bound to both terminal and subterminal subunits must be considered. All data are accounted for quantitatively by a model in which a barbed end whose two terminal subunits consist of profilin-ATP-actin cannot grow until ATP has been hydrolyzed and Pi released from the penultimate subunit, thus promoting the release of profilin and allowing further elongation. Formin does not change the activity of profilin but simply uses it for its processive walk at barbed ends. Finally, if profilin release from actin is prevented by a chemical cross-link, formin processivity is abolished.  相似文献   

5.
Acanthamoebe profilin has a native molecular weight of 11,700 as measured by sedimentation equilibrium ultracentrifugation and an extinction coefficient at 280 nm of 1.4 X 10(4) M-1cm-1. Rabbit antibodies against Acanthamoeba profilin react only with the 11,700 Mr polypeptide among all other ameba polypeptides separated by electrophoresis. These antibodies react with a 11,700 Mr polypeptide in Physarum but not with any proteins of Dictyostelium or Naeglaria. Antibody-binding assays indicate that approximately 2% of the ameba protein is profilin and that the concentration of profilin is approximately 100 mumol/liter cells. During ion exchange chromatography of soluble extracts of Acanthamoeba on DEAE-cellulose, the immunoreactive profilin splits into two fractions: an unbound fraction previously identified by Reichstein and Korn (1979, J. Biol. Chem., 254:6174-6179) and a tightly bound fraction. Purified profilin from the two fractions is identical by all criteria tested. The tightly bound fraction is likely to be attached indirectly to the DEAE, perhaps by association with actin. By fluorescent antibody staining, profilin is distributed uniformly throughout the cytoplasmic matrix of Acanthamoeba. In 50 mM KCl, high concentrations of Acanthamoeba profilin inhibit the elongation rate of muscle actin filaments measured directly by electron microscopy, but the effect is minimal in KCl with 2 MgCl2. By using the fluorescence change of pyrene-labeled Acanthamoeba actin to assay for polymerization, we confirmed our earlier observation (Tseng, P. C.-H., and T. D. Pollard, 1982, J. Cell Biol. 94:213-218) that Acanthamoeba profilin inhibits nucleation much more strongly than elongation under physiological conditions.  相似文献   

6.
BACKGROUND: Formin proteins nucleate actin filaments de novo and stay associated with the growing barbed end. Whereas the formin-homology (FH) 2 domains mediate processive association, the FH1 domains-in concert with the actin-monomer-binding protein profilin-increase the rate of barbed-end elongation. The mechanism by which this effect is achieved is not well understood. RESULTS: We used total internal reflection fluorescence microscopy to measure the effect of profilin on the elongation of single actin filaments associated with FH1FH2 constructs (derived from the formin Bni1p from S. cerevisiae) with FH1 domains containing one to eight profilin-binding polyproline tracks. Over a large range of profilin concentrations (0.5-25 microM), the rate of barbed-end elongation increases with the number of polyproline tracks in the FH1 domain. The binding of profilin-actin to the FH1 domain is the rate-limiting step (up to rates of at least 88 s(-1)) in FH1-mediated transfer of actin subunits to the barbed end. Dissociation of formins from barbed ends growing in the presence of profilin is proportional to the elongation rate. Profilin profoundly inhibits nucleation by FH2 and FH1FH2 constructs, but profilin-actin bound to FH1 might contribute weakly to nucleation. CONCLUSIONS: To achieve fast elongation, formin FH1 domains bind profilin-actin complexes and deliver them rapidly to the barbed end associated with the FH2 domain. Because subunit addition promotes dissociation of FH2 domains from growing barbed ends, FH2 domains must pass through a state that is prone to dissociation during each cycle of actin subunit addition coupled to formin translocation.  相似文献   

7.
Profilin inhibits the rate of nucleation of actin polymerization and the rate of filament elongation and also reduces the concentration of F-actin at steady state. Addition of profilin to solutions of F-actin causes depolymerization. The same steady state concentrations of polymerized and nonpolymerized actin are reached whether profilin is added before initiation of polymerization or after polymerization is complete. The KD for formation of the 1:1 complex between Acanthamoeba profilin and Acanthamoeba actin is in the range of 4 to 11 microM; the KD for the reaction between Acanthamoeba profilin and rabbit skeletal muscle actin is about 60 to 80 microM, irrespective of the concentrations of KCl or MgCl2. The critical concentration of actin for polymerization and the KD for the actin-profilin interaction are independent of each other; therefore, a change in the critical concentration of actin alters the amount of actin bound to profilin at steady state. As a consequence, the presence of profilin greatly amplifies the effects of small changes in the actin critical concentration on the concentration of F-actin. Profilin also inhibits the ATPase activity of monomeric actin, the profilin-actin complex being entirely inactive.  相似文献   

8.
The high actin-based motility rates observed in nonmuscle cells require the per-second addition of 400-500 monomers to the barbed ends of growing actin filaments. The chief polymerization-competent species is profilin.actin.ATP (present at 5-40 microM intracellular concentrations), whereas G-actin.ATP is much less abundant ( approximately 0.1-1 microM). While earlier studies unambiguously demonstrated that profilin.actin is highly concentrated within the polymerization zone, profilin-actin localization on the motile surface cannot increase the local solution-phase concentration of polymerizable actin. To explain these high rates of actin polymerization, we present and analyze a novel polymerization model in which monomers are directly transferred to growing filament ends in the actoclampin motor. This direct-transfer polymerization mechanism endows the polymerization zone with properties unavailable to bulk-phase actin monomers, and our model also indicates why profilin is the ideal mobile carrier for actin monomers.  相似文献   

9.
Thyone sperm were demembranated with Triton X-100 and, after washing, extracted with 30 mM Tris at pH 8.0 and 1 mM MgCl2. After the insoluble contaminants were removed by centrifugation, the sperm extract was warmed to 22 degrees C. Actin filaments rapidly assembled and aggregated into bundles when KCl was added to the extract. When we added preformed actin filaments, i.e., the acrosomal filament bundles of Limulus sperm, to the extract, the actin monomers rapidly assembled on these filaments. What was unexpected was that assembly took place on only one end of the bundle--the end corresponding to the preferred end for monomer addition. We showed that the absence of growth on the nonpreferred end was not due to the presence of a capper because exogenously added actin readily assembled on both ends. We also analyzed the sperm extract by SDS gel electrophoresis. Two major proteins were present in a 1:1 molar ratio: actin and a 12,500-dalton protein whose apparent isoelectric point was 8.4. The 12,500-dalton protein was purified by DEAE chromatography. We concluded that it is profilin because of its size, isoelectric point, molar ratio to actin, inability to bind to DEAE, and its effect on actin assembly. When profilin was added to actin in the presence of Limulus bundles, addition of monomers on the nonpreferred end of the bundle was inhibited, even though actin by itself assembled on both ends. Using the Limulus bundles as nuclei, we determined the critical concentration for assembly off each end of the filament and estimated the Kd for the profilin-actin complex (approximately 10 microM). We present a model to explain how profilin may regulate the extension of the Thyone acrosomal process in vivo: The profilin-actin complex can add to only the preferred end of the filament bundle. Once the actin monomer is bound to the filament, the profilin is released, and is available to bind to additional actin monomers. This mechanism accounts for the rapid rate of filament elongation in the acrosomal process in vivo.  相似文献   

10.
Effect of capping protein on the kinetics of actin polymerization   总被引:11,自引:0,他引:11  
Acanthamoeba capping protein increased the rate of actin polymerization from monomers with and without calcium. In the absence of calcium, capping protein also increased the critical concentration for polymerization. Various models were evaluated for their ability to predict the effect of capping protein on kinetic curves for actin polymerization under conditions where the critical concentration was not changed. Several models, which might explain the increased rate of polymerization from monomers, were tested. Two models which predicted the experimental data poorly were (1) capping protein was similar to an actin filament, bypassing nucleation, and (2) capping protein fragmented filaments. Three models in which capping protein accelerated, but did not bypass, nucleation predicted the data well. In the best one, capping protein resembled a nondissociable actin dimer. Several lines of evidence have supported the idea that capping protein blocks the barbed end of actin filaments, preventing the addition and loss of monomers [Cooper, J. A., Blum, J. D., & Pollard, T. D. (1984) J. Cell Biol. 99, 217-225; Isenberg, G. A., Aebi, U., & Pollard, T. D. (1980) Nature (London) 288, 455-459]. This mechanism was also supported here by the effect of capping protein on the kinetics of actin polymerization which was nucleated by preformed actin filaments. Low capping protein concentrations slowed nucleated polymerization, presumably because capping protein blocked elongation at barbed ends of filaments. High capping protein concentrations accelerated nucleated polymerization because of capping protein's ability to interact with monomers and accelerate nucleation.  相似文献   

11.
Growing evidence suggests that the nucleotide bound to actin filaments serves as a timer to control actin filament turnover during cell motility (Pollard, T. D., Blanchoin, L., and Mullins, R. D. (2000) Annu. Rev. Biophys. Biomol. Struct. 29, 545-576). We re-examined the hydrolysis of ATP by polymerized actin using mechanical quenched-flow methods to improve temporal resolution. The rate constant for ATP hydrolysis by polymerized Mg actin is 0.3 s(-1), 3-fold faster than that measured manually. The ATP hydrolysis rate is similar when Mg ATP actin elongates either the pointed end or the barbed end of filaments. Polymerized Ca actin hydrolyzes ATP at 0.05 s(-1). Mg ATP actin saturated with profilin can elongate barbed ends at >60 s(-1), 2 orders of magnitude faster than ATP hydrolysis (0.3 s(-1)). Given that profilin binds to a surface on actin that is buried in the Holmes model of the actin filament, we expect that profilin will block subunit addition at the barbed end of a filament. Profilin must move from this site at rates much faster than it dissociates from monomers (4 s(-1)). ATP hydrolysis is not required for this movement.  相似文献   

12.
G-actin freed from exogenous ATP was added to the pieces of isolated acrosomal actin bundles from horseshoe crab sperm to form filaments as reported earlier (Tilney, L.G., Bonder, E.M., & DeRosier, D.J. (1981) J. Cell Biol. 90, 485-494). The growth of a filament was far more rapid at one end (the preferred end) than the other end. These ends were shown to correspond to the barbed and pointed ends, respectively, by decoration of the filaments with myosin subfragment 1. Cytochalasin B inhibited the monomer addition at the preferred end. This technique is useful in determining the ends to which actin filament end-binding proteins from nonmuscle cells bind, which are considered to regulate the actin polymerization in the cells.  相似文献   

13.
Actophorin is an abundant 15-kD actinbinding protein from Acanthamoeba that is thought to form a nonpolymerizable complex with actin monomers and also to reduce the viscosity of polymerized actin by severing filaments (Cooper et al., 1986. J. Biol. Chem. 261:477-485). Homologous proteins have been identified in sea urchin, chicken, and mammalian tissues. Chemical crosslinking produces a 1:1 covalent complex of actin and actophorin. Actophorin and profilin compete for crosslinking to actin monomers. The influence of actophorin on the steady-state actin polymer concentration gave a Kd of 0.2 microM for the complex of actophorin with actin monomers. Several new lines of evidence, including assays for actin filament ends by elongation rate and depolymerization rate, show that actophorin severs actin filaments both at steady state and during spontaneous polymerization. This is confirmed by direct observation in the light microscope and by showing that the effects of actophorin on the low shear viscosity of polymerized actin cannot be explained by monomer sequestration. The severing activity of actophorin is strongly inhibited by stoichiometric concentrations of phalloidin or millimolar concentrations of inorganic phosphate.  相似文献   

14.
Using vertebrate cytoplasmic actin consisting of a mixture of beta and gamma isoforms, we previously characterized profilin and nucleotide binding to monomeric actin (Kinosian, H. J., et al. (2000) Biochemistry 39, 13176-13188) and F-actin barbed end elongation from profilin-actin (PA) (Kinosian, H. J., et al. (2002) Biochemistry 41, 6734-6743). Our initial calculations indicated that elongation of F-actin from PA was more energetically favorable than elongation of F-actin from monomeric actin; therefore, the overall actin elongation reaction scheme described by these two linked reactions appeared to be thermodynamically unbalanced. However, we hypothesized that the profilin-induced weakening of MgATP binding by actin reduces the negative free energy change for the formation of profilin-MgATP-actin from MgATP-actin. When this was taken into account, the overall reaction scheme was calculated to be thermodynamically balanced. In our present work, we test this hypothesis by measuring actin filament barbed end elongation of nucleotide-free actin (NF-A) and nucleotide-free profilin-actin (NF-PA). We find that the free energy change for elongation of F-actin by NF-PA is equal to that for elongation of F-actin from NF-A, indicating energetic balance of the linked reactions. In the absence of actin-bound divalent cation, profilin has very little effect on ATP binding to actin; analysis of elongation experiments with divalent cation-free ATP-actin and profilin yielded an approximately energetically balanced reaction scheme. Thus, the data in this present report support our earlier hypothesis.  相似文献   

15.
P Sampath  T D Pollard 《Biochemistry》1991,30(7):1973-1980
We used electron microscopy to measure the effects of cytochalasins, phalloidin, and pH on the rates of elongation at the barbed and pointed ends of actin filaments. In the case of the cytochalasins, we compared the effects on ATP- and ADP-actin monomers. Micromolar concentrations of either cytochalasin B (CB) or cytochalasin D (CD) inhibit elongation at both ends of the filament, about 95% at the barbed end and 50% at the pointed end, so that the two ends contribute about equally to the rate of growth. Half-maximal inhibition of elongation at the barbed end is at 0.1 microM CB and 0.02 microM CD for ATP-actin and at 0.1 microM CD for ADP-actin. At the pointed end, CD inhibits elongation by ATP-actin and ADP-actin about equally. At high (2 microM) concentrations, the cytochalasins reduce the association and dissociation rate constants in parallel for both ADP- and ATP-actin, so their effects on the critical concentrations are minimal. These observations confirm and extend those of Bonder and Mooseker [Bonder, E. M., & Mooseker, M. S. (1986) J. Cell Biol. 102, 282-288]. The dependence of the elongation rate on the concentration of both cytochalasin and actin can be explained quantitatively by a mechanism that includes the effects of cytochalasin binding to actin monomers [Godette, D. W., & Frieden, C. (1986) J. Biol. Chem. 261, 5974-5980] and a partial cap of the barbed end of the filament by the complex of ADP-actin and cytochalasin.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
Filament assembly from profilin-actin   总被引:2,自引:0,他引:2  
Profilin plays a major role in the assembly of actin filament at the barbed ends. The thermodynamic and kinetic parameters for barbed end assembly from profilin-actin have been measured turbidimetrically. Filament growth from profilin-actin requires MgATP to be bound to actin. No assembly is observed from profilin-CaATP-actin. The rate constant for association of profilin-actin to barbed ends is 30% lower than that of actin, and the critical concentration for F-actin assembly from profilin-actin units is 0.3 microM under physiological ionic conditions. Barbed ends grow from profilin-actin with an ADP-Pi cap. Profilin does not cap the barbed ends and is not detectably incorporated into filaments. The EDC-cross-linked profilin-actin complex (PAcov) both copolymerizes with F-actin and undergoes spontaneous self-assembly, following a nucleation-growth process characterized by a critical concentration of 0.2 microM under physiological conditions. The PAcov polymer is a helical filament that displays the same diffraction pattern as F-actin, with layer lines at 6 and 36 nm. The PAcov filaments bound phalloidin with the same kinetics as F-actin, bound myosin subfragment-1, and supported actin-activated ATPase of myosin subfragment-1, but they did not translocate in vitro along myosin-coated glass surfaces. These results are discussed in light of the current models of actin structure.  相似文献   

17.
The Arp2/3 complex was first purified from Acanthamoeba castellanii by profilin affinity chromatography. The mechanism of interaction with profilin was unknown but was hypothesized to be mediated by either Arp2 or Arp3. Here we show that the Arp2 subunit of the complex can be chemically cross-linked to the actin-binding site of profilin. By analytical ultracentrifugation, rhodamine-labeled profilin binds Arp2/3 complex with a Kd of 7 μM, an affinity intermediate between the low affinity of profilin for barbed ends of actin filaments and its high affinity for actin monomers. These data suggest the barbed end of Arp2 is exposed, but Arp2 and Arp3 are not packed together in the complex exactly like two actin monomers in a filament. Arp2/3 complex also cross-links actin filaments into small bundles and isotropic networks, which are mechanically stiffer than solutions of actin filaments alone. Arp2/3 complex is concentrated at the leading edge of motile Acanthamoeba, and its localization is distinct from that of α-actinin, another filament cross-linking protein. Based on localization and actin filament nucleation and cross-linking activities, we propose a role for Arp2/3 in determining the structure of the actin filament network at the leading edge of motile cells.  相似文献   

18.
The Spire protein, together with the formin Cappuccino and profilin, plays an important role in actin-based processes that establish oocyte polarity. Spire contains a cluster of four actin-binding WH2 domains. It has been shown to nucleate actin filaments and was proposed to remain bound to their pointed ends. Here we show that the multifunctional character of the WH2 domains allows Spire to sequester four G-actin subunits binding cooperatively in a tight SA(4) complex and to nucleate, sever, and cap filaments at their barbed ends. Binding of Spire to barbed ends does not affect the thermodynamics of actin assembly at barbed ends but blocks barbed end growth from profilin-actin. The resulting Spire-induced increase in profilin-actin concentration enhances processive filament assembly by formin. The synergy between Spire and formin is reconstituted in an in vitro motility assay, which provides a functional basis for the genetic interplay between Spire, formin, and profilin in oogenesis.  相似文献   

19.
The cytoskeleton is a key regulator of plant morphogenesis, sexual reproduction, and cellular responses to extracellular stimuli. During the self-incompatibility response of Papaver rhoeas L. (field poppy) pollen, the actin filament network is rapidly depolymerized by a flood of cytosolic free Ca2+ that results in cessation of tip growth and prevention of fertilization. Attempts to model this dramatic cytoskeletal response with known pollen actin-binding proteins (ABPs) revealed that the major G-actin-binding protein profilin can account for only a small percentage of the measured depolymerization. We have identified an 80-kDa, Ca(2+)-regulated ABP from poppy pollen (PrABP80) and characterized its biochemical properties in vitro. Sequence determination by mass spectrometry revealed that PrABP80 is related to gelsolin and villin. The molecular weight, lack of filament cross-linking activity, and a potent severing activity are all consistent with PrABP80 being a plant gelsolin. Kinetic analysis of actin assembly/disassembly reactions revealed that substoichiometric amounts of PrABP80 can nucleate actin polymerization from monomers, block the assembly of profilin-actin complex onto actin filament ends, and enhance profilin-mediated actin depolymerization. Fluorescence microscopy of individual actin filaments provided compelling, direct evidence for filament severing and confirmed the actin nucleation and barbed end capping properties. This is the first direct evidence for a plant gelsolin and the first example of efficient severing by a plant ABP. We propose that PrABP80 functions at the center of the self-incompatibility response by creating new filament pointed ends for disassembly and by blocking barbed ends from profilin-actin assembly.  相似文献   

20.
The binding constants of Acanthamoeba profilin to fluorescein-labeled actin from Acanthamoeba and from rabbit skeletal muscle have been determined by measuring the reduction in the actin tracer diffusion coefficients, determined by fluorescence photobleaching recovery, as a function of added profilin concentration. Data were analyzed using a two-parameter nonlinear regression analysis to determine the profilin-actin dissociation constant Kd and the profilactin diffusion coefficient, DPA. For fluorescein-labeled Acanthamoeba actin, the least-squares estimates for Kd and DPA, along with approximate single standard deviation confidence intervals, are Kd = 48 (36, 63) microM and DPA = 6.72 (6.62, 6.81) X 10(-7) cm2s-1. For fluorescein-labeled skeletal muscle actin, the corresponding values are Kd = 147 (94, 225) microM and DPA = 6.7 (6.3, 7.0) X 10(-7) cm2s-1. These dissociation constants are the first to be determined from direct physical measurement; they are in agreement with values inferred from earlier studies on the effect of profilin on the assembly of actin that had been fluorescently labeled or otherwise modified at Cys 374. These results place important restrictions on the interpretation of experiments in which fluorescently labeled actin is used as a probe of living cytoplasm or cytoplasmic extracts that include profilin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号