首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
Summary The formation of a complex between individual 30S ribosomal proteins and 16S ribosomal RNA was studied by three techniques: zone centrifugation, molecular-sieve chromatography and electrophoresis in polyacrylamide gels. Five 30S proteins form a stable complex with the RNA under the conditions used to assemble ribosomes. Specific and nonspecific complex formation can be distinguished by an analysis of the concentration-dependence for complex formation. Similarly, competition experiments between heterologous proteins that bind to RNA can also be used to establish the uniquness of the RNA binding sites for ribosomal proteins. The data show that four of the five proteins bind to unique sites on the RNA. The fifth protein binds nonspecifically to the RNA. In addition, cooperative interactions between several proteins were observed; these enhance the interaction of proteins with the 16S RNA. A partial assembly sequence for the 30S ribosomal subunit is presented.  相似文献   

2.
The effect of 30S subunit attachment on the accessibility of specific sites in 5 S and 23 S RNA in 50 S ribosomal subunits was studied by means of the guanine-specific reagent kethoxal. Oligonucleotides surrounding the sites of kethoxal substitution were resolved and quantitated by diagonal electrophoresis. In contrast to the extensive protection of sites in 16 S RNA in 70 S ribosomes (Chapman &; Noller, 1977), only two strongly (approx. 90%) protected sites were detected in 23 S RNA. The nucleotide sequences at these sites are
in which the indicated kethoxal-reactive guanines (with K above them) are strongly protected by association of 30 S and 50 S subunits. The latter sequence has the potential to base-pair with nucleotides 816 to 821 of the 16 S RNA, a site which has been shown to be protected from kethoxal by 50 S subunits and essential for subunit association. Six additional sites in 23 S RNA are partially (30 to 50%) protected by 30 S subunits. One of these sequences,
is complementary to nucleotides 787 to 792 of 16 S RNA. a site which is also 50 S-protected and essential for association. Of the two kethoxal-reactive 5 S RNA sites in 50 S subunits, G13 is partially protected in 70 S ribosomes. while G41 remains unaffected by subunit association.The relatively small number of kethoxal-reactive sites in 23 S RNA that is strongly protected in 70 S ribosomes suggests that subunit association may involve contacts between single-stranded sites in 16 S RNA and 50 S subunit proteins or non-Watson-Crick interactions with 23 S RNA. in addition to the two suggested base-paired contacts.  相似文献   

3.
Ribosomal proteins   总被引:1,自引:0,他引:1  
Summary The number of specific binding sites for homogenous single ribosomal proteins on 16S E. coli ribosomal RNA was investigated. The capacity of each of the twenty-one 30S subunit proteins to bind to the RNA was estimated by two newly developed methods, namely immunoprecipitation and a polyacrylamide gel method. Five proteins, namely S4, S7, S8, S15 and S20 bound specifically. One, S17, bound nonspecifically. No binding of the other proteins was detected. The binding proteins bound simultaneously to the RNA, with stimulated binding of proteins S7 and S8. Evidence is provided for the similarity of the chemistry of the binding sites of the binding proteins in Escherichia coli and in Bacillus stearothermophilus ribosomes.  相似文献   

4.
Specific fragments of the 16 S ribosomal RNA of Escherichia coli have been isolated and tested for their ability to interact with proteins of the 30 S ribosomal subunit. The 12 S RNA, a 900-nucleotide fragment derived from the 5′-terminal portion of the 16 S RNA, was shown to form specific complexes with proteins S4, S8, S15, and S20. The stoichiometry of binding at saturation was determined in each case. Interaction between the 12 S RNA and protein fraction S16S17 was detected in the presence of S4, S8, S15 and S20; only these proteins were able to bind to this fragment, even when all 21 proteins of the 30 S subunit were added to the reaction mixture. Protein S4 also interacted specifically with the 9 S RNA, a fragment of 500 nucleotides that corresponds to the 5′-terminal third of the 16 S RNA, and protein S15 bound independently to the 4 S RNA, a fragment containing 140 nucleotides situated toward the middle of the RNA molecule. None of the proteins interacted with the 600-nucleotide 8 S fragment that arose from the 3′-end of the 16 S RNA.When the 16 S RNA was incubated with an unfractionated mixture of 30 S subunit proteins at 0 °C, 10 to 12 of the proteins interacted with the ribosomal RNA to form the reconstitution intermediate (RI) particle. Limited hydrolysis of this particle with T1 ribonuclease yielded 14 S and 8 S subparticles whose RNA components were indistinguishable from the 12 S and 8 S RNAs isolated from digests of free 16 S RNA. The 14 S subparticle contained proteins S6 and S18 in addition to the RNA-binding proteins S4, S8, S15, S20 and S16S17. The 8 S subparticle contained proteins S7, S9, S13 and S19. These findings serve to localize the sites at which proteins incapable of independent interaction with 16 S RNA are fixed during the early stages of 30 S subunit assembly.  相似文献   

5.
6.
A fragment of the 16 S ribosomal RNA of Escherichia coli that contains the binding sites for proteins S8 and S15 of the 30 S ribosomal subunit has been isolated and characterized. The RNA fragment, which sediments as 5 S, was partially protected from pancreatic RNAase digestion when S15 alone, or S8 and S15 together, were bound to the 16 S RNA. Purified 5 S RNA was shown to reassociate specifically with protein S15 by analysis of binding stoichiometry. Although interaction between the fragment and protein S8 alone could not be detected, the 5 S RNA selectively bound both S8 and S15 when incubated with an unfractionated mixture of 30-S subunit proteins. Nucleotide sequence analysis demonstrated that the 5 S RNA arises from the middle of the 16 S RNA molecule and encompasses approximately 150 residues from Sections C, C'1 and C'2. Section C consists of a long hairpin loop with an extensively hydrogen-bonded stem and is contiguous with Section C'1. Sections C'1 and C'2, although not contiguous, are highly complementary and it is likely that together they comprise the base-paired stem of an adjacent loop.  相似文献   

7.
Following dialysis against distilled water, the 16 S ribosomal RNA of Escherichia coli is unable to interact with 30 S subunit protein S4 at 0 °C. The dialysed RNA recovered this capacity, however, when heated at 40 °C in the presence of 0.02m-MgCl2 prior to addition of the protein. Furthermore, its sensitivity to ribo-nuclease markedly declined and its sedimentation rate increased as a consequence of this treatment. Although no concomitant changes in secondary structure were detected by absorbance and fluorescence techniques, the rearrangement of a small number of base-pairs was not excluded. Kinetic measurements revealed that binding site reactivation satisfies the first-order rate law and that the process is highly temperature-dependent, exhibiting an Arrhenius activation energy of 40,800 cal/mol. Together, these data suggest that dialysed RNA undergoes a unimolecular conformational transition upon pre-incubation in Mg2+-containing buffers and that this transition leads to renaturation of the binding site for protein S4.Similar results were obtained for several other proteins of the 30 S subunit. In particular, S7, S16/S17 and S20 all failed to interact efficiently with dialysed 16 S RNA at 0 °C. These proteins bound normally to the RNA, however, after it had been incubated at 40 °C in the presence of Mg2+ ions. By contrast, prior dialysis of the 16 S RNA did not affect its ability to associate with S8 and S15 at 0 °C. These two proteins interacted equally well with dialysed and pre-incubated 16 S RNA, indicating that their binding sites are not susceptible to the reversible alterations in conformation which influence the attachment of the other RNA-binding proteins to the nucleic acid molecule. The effects of dialysis and pre-incubation on the interaction of 16 S RNA with an unfractionated mixture of 30 S subunit proteins were also investigated. The dialysed RNA bound only S6, S8, S15 and S18 at 0 °C whereas, after heating at. high Mg2+ concentrations, the RNA associated with S4, S7, S9, S13, S16/S17, S19 and S20 as well. These results leave little doubt that the protein-binding capacities of the 16 S RNA are intimately related to its three-dimensional configuration, although individual binding sites appear to differ significantly in their stability to small changes in structure.  相似文献   

8.
9.
A large body of intra-RNA and RNA-protein crosslinking data, obtained in this laboratory, was used to fold the phylogenetically and experimentally established secondary structure of Escherichia coli 16 S RNA into a three-dimensional model. All the crosslinks were induced in intact 30 S subunits (or in some cases in growing E. coli cells), and the sites of crosslinking were precisely localized on the RNA by oligonucleotide analysis. The RNA-protein crosslinking data (including 28 sites, and involving 13 of the 21 30S ribosomal were used to relate the RNA structure to the distribution of the proteins as determined by neutron scattering. The three-dimensional model of the 16 S RNA has overall dimensions of 220 A x 140 A x 90 A, in good agreement with electron microscopic estimates for the 30 S subunit. The shape of the model is also recognizably the same as that seen in electron micrographs, and the positions in the model of bases localized on the 30 S subunit by immunoelectron microscopy (the 5' and 3' termini, the m7G and m6(2)A residues, and C-1400) correspond closely to their experimentally observed positions. The distances between the RNA-protein crosslink sites in the model correlate well with the distances between protein centres of mass obtained by neutron scattering, only two out of 66 distances falling outside the expected tolerance limits. These two distances both involve protein S13, a protein noted for its anomalous behaviour. A comparison with other experimental information not specifically used in deriving the model shows that it fits well with published data on RNA-protein binding sites, mutation sites on the RNA causing resistance to antibiotics, tertiary interactions in the RNA, and a potential secondary structural "switch". Of the sites on 16 S RNA that have been found to be accessible to chemical modification in the 30 S subunit, 87% are at obviously exposed positions in the model. In contrast, 70% of the sites corresponding to positions that have ribose 2'-O-methylations in the eukaryotic 18 S RNA from Xenopus laevis are at non-exposed (i.e. internal) positions in the model. All nine of the modified bases in the E. coli 16 S RNA itself show a remarkable distribution, in that they form a "necklace" in one plane around the "throat" of the subunit. Insertions in eukaryotic 18 S RNA, and corresponding deletions in chloroplast or mammalian mitochondrial ribosomal RNA relative to E. coli 16 S RNA represent distinct sub-domains in the structure.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

10.
When E. coli ribosomal subunits are reacted with 2-iminothiolane and then subjected to a mild ultraviolet irradiation, an RNA-protein cross-linking reaction occurs. About 5% of the total protein in each subunit becomes cross-linked to the RNA, and a specific sub-set of proteins is involved in the reaction. In the case of the 50S subunit, the sites of cross-linking to the 23S RNA have been determined for six of these proteins: protein L4 is cross-linked within an oligonucleotide comprising positions 613-617 in the 23S sequence, L6 within positions 2473-2481, L21 within positions 540-548, L23 within positions 137-141, L27 within positions 2332-2337 and L29 within positions 99-107.  相似文献   

11.
Treatment of E. coli ribosomal subunits with 2-iminothiolane coupled with mild ultraviolet irradiation leads to the formation of a large number of RNA-protein cross-links. In the case of the 30S subunit, a number of sites on 16S RNA that are cross-linked to proteins S7 and S8 by this procedure have already been identified (see ref. 6). Here, by using new or modified techniques for the partial digestion of the RNA and the subsequent isolation of the cross-linked RNA-protein complexes, three new iminothiolane cross-links have been localized: Protein S17 is cross-linked to the 16S RNA within an oligonucleotide encompassing positions 629-633, and protein S21 is cross-linked to two sites within oligonucleotides encompassing positions 723-724 and positions 1531-1542 (the 3'-end of the 16S RNA).  相似文献   

12.
The order in which proteins bind to 16S rRNA, the assembly map, was determined by Nomura and co-workers in the early 1970s. The assembly map shows the dependencies of binding of successive proteins but fails to address the relationship of these dependencies to the three-dimensional folding of the ribosome. Here, using molecular mechanics techniques, we rationalize the order of protein binding in terms of ribosomal folding. We determined the specific contacts between the ribosomal proteins and 16S rRNA from a crystal structure of the 30S subunit (1FJG). We then used these contacts as restraints in a rigid body Monte-Carlo simulation with reduced-representation models of the RNA and proteins. Proteins were added sequentially to the RNA in the order that they appear in the assembly map. Our results show that proteins nucleate the folding of the head, platform, and body domains, but they do not strongly restrict the orientations of the domains relative to one another. We also examined the contributions of individual proteins to the formation of binding sites for sequential proteins in the assembly process. Binding sites for the primary binding proteins are generally more ordered in the naked RNA than those for other proteins. Furthermore, we examined one pathway in the assembly map and found that the addition of early binding proteins helps to organize the RNA around the binding sites of proteins that bind later. It appears that the order of assembly depends on the degree of pre-organization of each protein's binding site at a given stage of assembly, and the impact that the binding of each protein has on the organization of the remaining unoccupied binding sites.  相似文献   

13.
A stable homogeneous ribonucleoprotein fragment of the 30 S ribosomal subunit of E. coli has been prepared by mild nuclease digestion and heating in a constant ionic environment. The fragment contains about half of the 16 S ribosomal RNa and six proteins: S4, S7, S9, S13, S16 and S19. The RNA moiety contains the reported binding sites of all six proteins. After deproteinization, 80% of the RNA migrated as two major electrophoretic bands, which were isolated and sequenced. Each band contained sequences from the 5' and 3' thirds of the 16 S RNA but none from the central third. That these two noncontiguous RNA domains migrated together electrophoretically in Mg++-containing gels after deproteinization constitutes direct evidence that the 16 S RNA is folded in the intact ribosome so as to bring the two domains close together and that there are RNA-RNA interactions between them in the presence of Mg++.  相似文献   

14.
15.
Ribosomal protein S15 binds specifically to the central domain of 16 S ribosomal RNA (16 S rRNA) and directs the assembly of four additional proteins to this domain. The central domain of 16 S rRNA along with these five proteins form the platform of the 30 S subunit. Previously, directed hydroxyl radical probing from Fe(II)-S15 in small ribonucleoprotein complexes was used to study assembly of the central domain of 16 S rRNA. Here, this same approach was used to understand the 16 S rRNA environment of Fe(II)-S15 in 30 S subunits and to determine the ribosomal proteins that are involved in forming the mature S15-16 S rRNA environment. We have identified additional sites of Fe(II)-S15-directed cleavage in 30S subunits compared to the binary complex of Fe(II)-S15/16 S rRNA. Along with novel targets in the central domain, sites within the 5' and 3' minor domains are also cleaved. This suggests that during the course of 30S subunit assembly these elements are positioned in the vicinity of S15. Besides the previously determined role for S8, roles for S5, S6+S18, and S16 in altering the 16 S rRNA environment of S15 were established. These studies reveal that ribosomal proteins can alter the assembly of regions of the 30 S subunit from a considerable distance and influence the overall conformation of this ribonucleoprotein particle.  相似文献   

16.
The binding sites of ribosomal proteins L18 and L25 on 5S RNA from Escherichia coli were probed with ribonucleases A, T1, and T2 and a double helix specific cobra venom endonuclease. The results for the protein-RNA complexes, which were compared with those for the free RNA [Douthwaite, S., & Garrett, R. A. (1981) Biochemistry 20, 7301--7307], reveal an extensive interaction site for protein L18 and a more localized one for L25. Generally comparable results, with a few important differences, were obtained in a study of the binding sites of the two E. coli proteins on Bacillus stearothermophilus 5S RNA. Several protein-induced changes in the RNA structures were identified; some are possibly allosteric in nature. The two prokaryotic 5S RNAs were also incubated with total 50S subunit proteins from E. coli and B. stearothermophilus ribosomes. Homologous and heterologous reconstitution experiments were performed for both RNAs. The effects of the bound proteins on the ribonuclease digestion of the RNAs could generally be correlated with the results obtained with the E. coli proteins L18 and L25, although there was evidence for an additional protein-induced conformational change in the B. stearothermophilus 5S RNA, which may have been due to a third ribosomal protein L5.  相似文献   

17.
Beginning with the framework that has been developed for the assembly of the 30 S ribosomal subunit, we have identified a series of RNAs that are minimal binding sites for proteins S15, S6, S18, and S11 in the central domain from Thermus thermophilus. The minimal binding RNA for proteins S15, S6, and S18 consists of helix 22 and three-way junctions at both ends composed of portions of helices 20, 21, and 23. Addition of the remaining portion of helix 23 to this construct results in the minimal site for S11. Surprisingly, almost half of the central domain (helices 24, 25, and 26) is dispensable for binding the central domain proteins. Thus, at least two classes of RNA elements can be identified in ribosomal RNA. A protein-binding core element (such as helices 20, 21, 22, and 23) is required for the association of ribosomal proteins, whereas secondary binding elements (such as helices 24, 25, and 26) associate only with the preformed core RNP complex. Apparently, there may be a hierarchy of ribosomal RNA elements similar to the hierarchy of primary, secondary, and tertiary binding ribosomal proteins.  相似文献   

18.
A large number of intra-RNA and RNA-protein cross-link sites have been localized within the 23S RNA from E. coli 50 S ribosomal subunits. These sites, together with other data, are sufficient to constrain the secondary structure of the 23 S molecule into a compact three-dimensional shape. Some of the features of this structure are discussed, in particular, those relating to the orientation of tRNA on the 50 S subunit as studied by site-directed cross-linking techniques. A corresponding model for the 16S RNA within the 30 S subunit has already been described, and here a site-directed cross-linking approach is being used to determine the path followed through the subunit by messenger RNA.  相似文献   

19.
We present a detailed analysis of the protein structures in the 30 S ribosomal subunit from Thermus thermophilus, and their interactions with 16 S RNA based on a crystal structure at 3.05 A resolution. With 20 different polypeptide chains, the 30 S subunit adds significantly to our data base of RNA structure and protein-RNA interactions. In addition to globular domains, many of the proteins have long, extended regions, either in the termini or in internal loops, which make extensive contact to the RNA component and are involved in stabilizing RNA tertiary structure. Many ribosomal proteins share similar alpha+beta sandwich folds, but we show that the topology of this domain varies considerably, as do the ways in which the proteins interact with RNA. Analysis of the protein-RNA interactions in the context of ribosomal assembly shows that the primary binders are globular proteins that bind at RNA multihelix junctions, whereas proteins with long extensions assemble later. We attempt to correlate the structure with a large body of biochemical and genetic data on the 30 S subunit.  相似文献   

20.
Previously we described an in vitro selection variant abbreviated SERF (in vitro selection from random rRNA fragments) that identifies protein binding sites within large RNAs. With this method, a small rRNA fragment derived from the 23S rRNA was isolated that binds simultaneously and independently the ribosomal proteins L4 and L24 from Escherichia coli. Until now the rRNA structure within the ternary complex L24-rRNA-L4 could not be studied due to the lack of an appropriate experimental strategy. Here we tackle the issue by separating the various complexes via native gel-electrophoresis and analyzing the rRNA structure by in-gel iodine cleavage of phosphorothioated RNA. The results demonstrate that during the transition from either the L4 or L24 binary complex to the ternary complex the structure of the rRNA fragment changes significantly. The identified protein binding sites are in excellent agreement with the recently reported crystal structure of the 50S subunit. Because both proteins play a prominent role in early assembly of the large subunit, the results suggest that the identified rRNA fragment is a key element for the folding of the 23S RNA during early assembly. The introduced in-gel cleavage method should be useful when an RNA structure within mixed populations of different but related complexes should be studied.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号