首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Red clover (Trifolium pratense L.) is a forage legume and an allogamous diploid plant (2n = 14; 440 Mb). Here, we examine the 7 prometaphase chromosomes of red clover using fluorescence in situ hybridization (FISH) with ribosomal RNA sequences, pericentromeric and telomeric repeats, as well as bacterial artificial chromosome (BAC) clones. Position of hybridization signals and chromosome condensation patterns were quantified by the help of the chromosome image analysis system ver. 4.0 (CHIAS IV). Fourteen BAC clones belonging to linkage groups (LG) 1-7 hybridized to individual chromosomes 4, 2, 6, 5, 1, 7, and 3, respectively. Quantitative analysis of FISH mapping and chromosome analysis using CHIAS IV allowed us to construct a quantitative idiogram that constitutes the comprehensive chromosome map of red clover. Chromosomal positions of the 26S rDNA locus were detected at a heterozygous locus on chromosome 6 in the variety HR, and polymorphisms of rDNA loci were observed in other varieties, although chromosomal positions of some BAC clones did not vary among HR and other varieties. These results demonstrate chromosomal collinearity among allogamous red clover varieties. This integration of genetic linkage and quantitative chromosome maps should provide valuable insight into allogamous legume genetics.  相似文献   

2.
With the aim of establishing the basic knowledge and resourcesneeded for applied genetics, we investigated the genome structureof red clover Trifolium pratense L. by a combination of cytological,genomic and genetic approaches. The deduced genome size was440 Mb, as estimated by measuring the nuclear DNA content byflow cytometry. Seven chromosomes could be distinguished bymicroscopic observation of DAPI stained prometaphase chromosomesand fluorescence in situ hybridization using 28S and 5S rDNAprobes and bacterial artificial chromosome probes containingmicrosatellite markers with known positions on a genetic linkagemap. The average GC content of the genomes of chloroplast, mitochondrionand nucleus were shown to be 33.8, 42.9 and 34.2%, respectively,by the analysis of 1.4 Mb of random genomic sequences. A totalof 26 356 expressed sequence tags (ESTs) that were grouped into9339 non-redundant sequences were collected, and 78% of theESTs showed sequence similarity to registered genes, mainlyof Arabidopsis thaliana and rice. To facilitate basic and appliedgenetics in red clover, we generated a high-density geneticlinkage map with gene-associated microsatellite markers. A totalof 7159 primer pairs were designed to amplify simple sequencerepeats (SSRs) identified in four different types of libraries.Based on sequence similarity, 82% of the SSRs were likely tobe associated with genes. Polymorphism was examined using twoparent plants, HR and R130, and 10 F1 progeny by agarose gelelectrophoresis, followed by genotyping for the primer pairsshowing polymorphisms using 188 F1 plants from the mapping population.The selected 1305 microsatellite markers as well as the previouslydeveloped 167 restriction fragment length polymorphism markerswere subjected to linkage analysis. A total of 1434 loci detectedby 1399 markers were successfully mapped onto seven linkagegroups totaling 868.7 cM in length; 405 loci (28%) were bi-parental,611 (43%) were specific to HR and 418 (29%) were specific toR130. Each genetic linkage group was linked to a correspondingchromosome by FISH analysis using seven microsatellite markersspecific to each of the linkage groups as probes. Transferabilityof the developed microsatellite markers to other germplasmswas confirmed by testing 268 selected markers on 88 red clovergermplasms. Macrosynteny at the segmental level was observedbetween the genomes of red clover and two model legumes, Lotusjaponicus and Medicago truncatula, strongly suggesting thatthe genome information for the model legumes is transferableto red clover for genetic investigations and experimental breeding.  相似文献   

3.
Five strains of Rhizobium trifolii were evaluated in competition with indigenous populations in nodulating red clover (Trifolium pratense L.) cv. Kenland in two different soils in Mississippi. Double antibiotic resistance acquisition was used to measure the proportion of nodules occupied by the introduced mutant strains. In vertisol soil, strains RP113-7, 162BB1, LM1, and 162P17 were recovered in at least 94% of the assayed nodules, whereas TA1 was found in 83.8% of the nodules. At an ultisol location, significant differences were detected within the introduced rhizobia. Strain RP113-7 was recovered at very high rates (99.2% of the assayed nodules), whereas strains 162BB1, LM1, 162P17, and TA1 were all found in 84.9 to 96.0% of the nodules sampled. Forage yield and percent crude protein levels were lower with the less effective but competitive strain (TA1) at both locations. Results indicated that more effective strains of R. trifolii can increase red clover production and symbiotic nitrogen fixation under different environmental conditions in Mississippi.  相似文献   

4.
White clover (Trifolium repens L.) stolons become buried inthe field. It was observed that this also occurred in the greenhousewhere the accepted mechanisms of burial, treading by livestockand earthworm casting, did not occur. It was also observed thatthe crown of seedling T. repens plants become closely appressedto the soil. Experiments showed that, regardless of varietyof T. repens or depth of planting, all seedling hypocotyls firstlift the cotyledons clear of the soil, then ‘ contract’towards the soil until the cotyledons are in contact with orbelow the soil surface. Auxanometers were used to measure therate and extent of this contraction and were also attached tostolon nodes in experiments which showed that stolons move downwardsrelative to the soil surface and that the speed and extent ofthis duration varied with soil type. A further experiment showedthat only rooted nodes show this behaviour. The force exertedby the contraction of nodal roots was estimated experimentallyas 0.21 N g-1fresh root. A mechanism for the root contraction,based on examination of root anatomy of seedling tap-roots andnodal roots, is suggested. These experiments provide evidencefor root contraction in T. repens which may lead to stolon burial.The importance of this to T. repens as a pasture species andas a means of further improving T. repens varieties is discussed.Copyright 1999 Annals of Botany Company White clover, Trifolium repens, L., stolon, seedling, burial, root, nodes, nodal, force, contractile, soil resistance, pasture, phloem, fibres.  相似文献   

5.
Changes caused by separate calcium and phosphorus deficienciesin the impedance locus and associated parameters of petioleswere investigated. In samples of mixed ages the deficiencieswhere characterized by a significant change in 17 out of the18 parameters studied. Almost invariably the change caused byphosphorus deficiency was significantly greater than that causedby calcium deficiency. In a more detailed study of phosphorus deficiency it was foundthat there is often a significant interaction between age andparameter change. From the phase angle data it is concludedthat the plasma membrane ages more rapidly in deficient thanin non-deficient plants; nevertheless the physico-chemical compositionof the plasma membrane in newly formed cells is the same indeficient and non-deficient petioles of similar ages. A mathematicalinference that phosphorus deficiency causes a lessened potassiumuptake is confirmed experimentally.  相似文献   

6.
7.
The seasonal dynamics of symbiotic fixation, distribution andfate of nitrogen (N) were studied on two successive crops ofred clover (Trifolium pratenseL.) grown outdoors in soil containersunder the Mediterranean climate of southern France. Nitrogenaseactivity was followed throughout the growing season using acetylene(C2H2) reduction assays. The distribution and transfer of symbioticallyfixed N were followed by periodic measurements of15N distributionin plants after exposure of the root systems to labelled dinitrogen(15N2). In both years there were two peaks of nitrogenase activity,one in spring and one in late summer, separated by a sharp decreaseduring the flowering period. Over the entire growth cycle, symbioticallyfixed N accounted for 61 to 96% of the total plant N. Once weekafter incorporation, 60 to 90% of N derived from the atmospherewas recovered in the aerial parts of the plants. More than 50%of this was in the leaves, but there were differences in distributionaccording to the stage of development. The maximum percentage(20–28%) recovered from nodulated roots occurred in May–June,during maximum growth of the vegetative organs, and in September.Above-ground symbiotically fixed N was highly mobile with time,moving from the rosette leaves to the leaves attached to theelongated stems and then to the seeds, where 25 to 50% of Nfixed in May and June was recovered in September. Because of:(1) the high turnover rate of leaves; and (2) the relativelyhigh N content of dead leaves, as much as 50% of the symbioticallyfixed N in a year was potentially available to the soil micro-organismsas litter. The maximum transfer was in spring and winter. Ofthe remainder, 20 to 35% was recovered in living plant partsduring regrowth in March of the second year. Transfers to andfrom the root system were less pronounced, but significant decreasesin N content of the roots occurred early in the second yearjust after foliage regrowth was initiated. It is concluded that,because of its high foliage productivity and turnover rate,and high yield of symbiotically fixed N, red clover is a goodcandidate to provide substantial amounts of N to the soil throughoutthe year and therefore restore N fertility. Red clover; Trifolium pratenseL.; forage legumes; labelled dinitrogen (15N2) reduction; acetylene reduction; nitrogen fixation; nitrogen distribution; nitrogen transfer  相似文献   

8.
We have developed a rapid and reproducible transformation system for subterranean clover (Trifolium subterraneum L.) using Agrobacterium tumefaciens-mediated gene delivery. Hypocotyl segments from seeds that had been allowed to imbibe were used as explants, and regeneration was achieved via organogenesis. Glucose and acetosyringone were required in the co-cultivation medium for efficient gene transfer. DNA constructs containing four genes encoding the enzymes phosphinothricin acetyl transferase, [beta]-glucuronidase (GUS), neomycin phosphotransferase, and an [alpha]-amylase inhibitor were used to transform subterranean clover. Transgenic shoots were selected on a medium containing 50 mg/L of phosphinothricin. Four commercial cultivars of subterranean clover (representing all three subspecies) have been successfully transformed. Southern analysis revealed the integration of T-DNA into the subterranean clover genome. The expression of the introduced genes has been confirmed by enzyme assays and northern blot analyses. Transformed plants grown in the glasshouse showed resistance to the herbicide Basta at applications equal to or higher than rates recommended for killing subterranean clover in field conditions. In plants grown from the selfed seeds of the primary transformants, the newly acquired gene encoding GUS segregated as a dominant Mendelian trait.  相似文献   

9.
Selenium-independent glutathione peroxidase was purified from a cell-free extract of Mucor hiemalis by ammonium sulfate fractionation, column chromatographies on DEAE-Sephadex and hydroxylapatite, and gel filtration on Bio-Gel P-100. The purified enzyme was homogeneous on ultracentrifugation. The enzyme had a molecular weight of 45,000 and an isoelectric point of 5.2. The enzyme could reduce cumene hydroperoxide and t-butyl hydroperoxide, but could not reduce hydrogen peroxide. The enzyme was highly specific for glutathione as a hydrogen donor. Mucor glutathione peroxidase was proved to be different from mammalian selenium-dependent glutathione peroxidase I and selenium-independent glutathione peroxidase II in some physicochemical and enzymatic properties.  相似文献   

10.
11.
Root rot, caused by Fusarium solani f. sp. phaseoli, is one of the main root diseases impacting production of common beans throughout the world. Because resistance of common beans to root rot is a quantitative trait that is strongly influenced by environmental factors, reproducible methods to screen bean plants for resistance to root rot are critical to the selection process. In this study, we adapted the inoculum layer method (ILM) developed for screening soybeans for resistance to Phytophthora rot and compared it with the traditional liquid inoculum method (LIM) for screening common beans for resistance to Fusarium root rot. In addition, two methods of evaluating resistance using the ILM were compared. The most significant Pearson correlation coefficient between trials involving 80 recombinant inbred lines was achieved with the ILM and counting discoloured vascular bundles in the lower stem (rp = 0.7113***) compared to rating the discoloration on root and hypocotyl (rp = 0.5555***). The traditional (LIM) screening method and rating the discolouration on roots resulted in a non‐significant correlation between trials (rp = 0.1084).  相似文献   

12.
Calcium and Nodulation in Subterranean Clover (Trifolium subterraneum L.)   总被引:2,自引:0,他引:2  
From a study of the effects of Ca ions on the nodulation of subterranean clover in flowing culture solutions it is concluded that root infection or nodule initiation has a higher Ca requirement than either nodule development or host plant growth in the presence of fixed nitrogen.  相似文献   

13.
14.
 Red clover genotypes capable of regenerating plantlets in vitro from non-meristematic tissue-derived callus are rare. Selection for genotypes capable of somatic embryogenesis identified a clone comprised of a group of plantlets regenerated from a hypocotyl-derived callus culture on L2-based media and another group of plantlets originating from crown divisions of the epicotyl-derived plant. The callus-derived plants of this clone were highly regenerative when reintroduced to callus culture, but the epicotyl-derived plants produced nonregenerative callus cultures. F1, F2 and BC1 populations were evaluated to determine the mode of inheritance of the regeneration trait. Reciprocal crosses did not differ, indicating a lack of maternal effects. Results were compatible with genetic control of regeneration by two complementary genes. We propose the genotype Rn1-Rn2- for regenerative plants. Three petiole segment explants were sufficient to evaluate regenerative ability in seedlings. Regenerative ability was often associated with abnormal leaf morphology in a few to several leaves. Received: 17 February 1998 / Accepted: 7 April 1998  相似文献   

15.
16.
Relationships between gibberellins and floral initiation were investigated in a conditional non-flowering mutant of red clover, Trifolium pratense. Untreated mutant plants will not flower under long-days, but will do so when certain GAs are applied. Gibberellins, A3, A1, A7, and A5 all resulted in both stem elongation and flowering whilst GA4 produced the elongation only. Applications of GA20, GA8 and GA13 under long-days had no detectable effect. Thus, by combining the use of the mutant with the application of different GAs, the correlation between the processes of stem elongation and floral initiation, which is normally strongly expressed in this species, was broken. Endogenous gibberellins shown to be present in normal plants were also found in the mutant genotype. Gibberellins alone were not sufficient to initiate floral development in the mutant, there being an essential element of interaction with long-days. These results are discussed in relation to the nature of the lesion in the mutant and the signal provided by the applied gibberellin.  相似文献   

17.
Cultivars of red clover (Trifolium pratense L.), an important forage crop in temperate regions, are often characterised by an unsatisfactory level of seed yield, leading to high production costs. This complex trait is influenced by many components and negatively correlated with other important traits, such as forage yield or persistence. Therefore, seed yield has proven to be difficult to improve. Thus, the objectives of this study were to assess association among seed yield components and to provide the basis for identifying molecular markers linked to QTLs for seed yield components to assist breeding for improved red clover cultivars. A total of 42 SSR and 216 AFLP loci were used to construct a molecular linkage map with a total map length of 444.2 cM and an average distance between loci of 1.7 cM. A total of 38 QTLs were identified for eight seed yield components. The traits seed number per plant, seed yield per head, seed number per head, head number per plant and percent seed set were highly correlated with seed yield per plant, and QTLs for several of these traits were often detected in the same genome region. Head number per plant may present a particularly useful character for the improvement of seed yield since it can easily be determined before seed maturity. In addition, two genome regions containing four or five QTLs for different seed yield components, respectively, were identified representing candidate regions for further characterisation of QTLs. This study revealed several key components which may facilitate further improvement of seed yield. The QTLs identified represent an important first step towards marker-assisted breeding in red clover.  相似文献   

18.
Soil microorganisms may play an important role in plant Fe uptake from soils with low Fe bioavailability, but there is little direct experimental evidence to date. We grew red clover, an Fe-efficient leguminous plant, in a calcareous soil to investigate the role of soil microbial activity in plant Fe uptake. Compared with plants grown in non-sterlie (NS) grown plants, growth and Fe content of the sterile(s) grown plants was significantly inhibited, but was improved by foliar application of Fe EDTA, indicating that soil microbial activity should play an important role in plant Fe acquisition. When soil solution was incubated with phenolic root exudates from Fe-deficient red clover, a few microbial species thrived while growth of the rest was inhibited, suggesting that the Fe-deficient (-Fe) root exudates selectively influenced the rhizosphere's microbial community. Eighty six per cent of the phenolic-tolerant microbes could produce siderophore [the Fe(III) chelator] under -Fe conditions, and 71% could secrete auxin-like compounds. Interestingly, the synthetic and microbial auxins (MAs) significantly enhanced the Ferric reduction system, suggesting that MAs, in addition to siderophores, are important to plant Fe uptake. Finally, plant growth and Fe uptake in sterilized soil were significantly increased by rhizobia inoculation. Root Fe-EDTA reductase activity in the -Fe plant was significantly enhanced by rhizobia infection, and the rhizobia could produce auxin but not siderophore under Fe-limiting conditions, suggesting that the contribution of nodulating rhizobia to plant Fe uptake can be at least partially attributed to stimulation of turbo reductase activity through nodule formation and auxin production in the rhizosphere. Based on these observations, we propose as a model that root exudates from -Fe plants selectively influence the rhizosphere microbial community, and the microbes in turn favour plant Fe acquisition by producing siderophores and auxins.  相似文献   

19.
NORRIS  I. B. 《Annals of botany》1987,59(2):197-202
The response to different combinations of daylength (14, 15and 16 h) and day/night temperature (20/10°C, 30/15°C)of four white clover (Trifolium repens) varieties in terms offloral initiation and development was studied. More plants flowered under long days (16 h) at 30°C thanin any other combination. Varietal differences in response todaylength were large but temperature was the factor controllinginitiation. Daylength was more important in regulating peduncle length,floret and ovule numbers than was temperature. The amount ofnectar produced was lowest at the higher temperature althoughnectar concentration was unaffected by temperature. Nectar concentrationwas lowest in the shortest daylength (14 h). White clover, floral initiation, temperature, daylength  相似文献   

20.
Clover rot, an important disease in European red clover crops, is caused by Sclerotinia trifoliorum or Sclerotinia sclerotiorum. Until today, little is known about the variation in aggressiveness among Sclerotinia isolates from red clover. Aggressiveness has never been correlated with morphological characteristics. Rapidly growing isolates may be more aggressive, but this was never investigated in S. trifoliorum before. Also nothing is known about the link between sclerotia production and aggressiveness. Oxalic acid is an important pathogenicity factor in Sclerotinia species, but its effect on aggressiveness is unknown in S. trifoliorum isolates. For this study, we selected 30 Sclerotinia isolates from 25 locations Europe: 26 S. trifoliorum isolates and 4 S. sclerotiorum isolates from two locations in France (Fr.A and Fr.B). For each isolate, the in vitro growth speed, sclerotia production, oxalate production and aggressiveness were analysed and correlations were estimated between aggressiveness and the other characteristics. Aggressiveness was assessed in vitro on detached leaves and in a greenhouse on young plants. Our isolates differed significantly in growth speed, sclerotia production, oxalate production and aggressiveness. The infections on detached leaves and young plants revealed interaction between isolates and plant genotypes and between isolates and cultivars, but there was no indication that pathotypes exist. In vitro growth speed and in vitro aggressiveness on detached leaves were positively correlated with aggressiveness on young plants, while sclerotia production was negatively correlated with aggressiveness on young plants. These factors can be used as predictors of aggressiveness of Sclerotinia isolates from red clover crops.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号