首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
By use of random-primed cDNA probes the expression of extracellular matrix molecules in cerebral microvascular endothelial cells (cEC) and in astrocytes from mouse brain was examined. Two phenotypically different batches of cloned cEC were used. Expression of major adhesive ECM molecules, constituting the endothelial basement membrane (i.e., fibronectin, laminin A, B and collagen IV) and of other attachment factors, such as SPARC (osteonectin), tenascin and thrombospondin 1, was examined. We have demonstrated that cEC of different morphology display variations in the expression of fibronectin (FN), thrombospondin 1 (TSP1) and collagen IV (C IV). Astrocytes were shown to contain FN, TSP1, TN and SPARC mRNA. Unexpectedly, SPARC mRNA could not be detected in any of the capillary endothelial cells examined. Therefore, we suggest that astrocytes are likely to be involved in endothelial differentiation and function in the central nervous system via ECM molecule secretion.  相似文献   

2.
SPARC, a counteradhesive matricellular protein, inhibits endothelial cell adhesion and proliferation, but the pathways through which these activities are blocked are not known. In this study, we used inhibitors of major signaling proteins to identify mediators through which SPARC exerts its counteradhesive and antiproliferative functions. Pretreatments with the general protein tyrosine kinase (PTK) inhibitors, herbimycin A and genistein, protected against the inhibitory effect of SPARC on bovine aortic endothelial (BAE) cell spreading by more than 60 %. Similar pretreatments with PTK inhibitors significantly blocked the diminishment of focal adhesions by SPARC in confluent BAE cell monolayers, as determined by the formation of actin stress-fibers and the distribution of vinculin in focal adhesion plaques. Inhibition of endothelial cell cycle progression by SPARC and a calcium-binding SPARC peptide, however, was not affected by PTK inhibitors. Inhibition of DNA synthesis by SPARC was not reversed by inhibitors of the activity of protein kinase C (PKC), or of cAMP-dependent protein kinase (PKA), but was sensitive to pertussis (and to a lesser extent, cholera) toxin. The counteradhesive effect of SPARC on endothelial cells is, therefore, mediated through a tyrosine phosphorylation-dependent pathway, whereas its antiproliferative function is dependent, in part, on signal transduction via a G protein-coupled receptor. J. Cell. Biochem. 70:543–552, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

3.
Thrombospondin modulates focal adhesions in endothelial cells   总被引:39,自引:15,他引:24       下载免费PDF全文
《The Journal of cell biology》1989,109(3):1309-1319
We examined the effects of thrombospondin (TSP) in the substrate adhesion of bovine aortic endothelial cells. The protein was tested both as a substrate for cell adhesion and as a modulator of the later stages of the cell adhesive process. TSP substrates supported the attachment of some BAE cells, but not cell spreading or the formation of focal adhesion plaques. In contrast, cells seeded on fibrinogen or fibronectin substrates were able to complete the adhesive process, as indicated by the formation of focal adhesion plaques. Incubation of cells in suspension with soluble TSP before or at the time of seeding onto fibronectin substrates resulted in an inhibition of focal adhesion formation. Furthermore, the addition of TSP to fully adherent cells in situ or prespread on fibronectin substrates caused a reduction in the number of cells, which were positive for focal adhesions, although there was no significant effect on cell spreading. In a dose-dependent manner, TSP reduced the number of cells with adhesion plaques to approximately 60% of control levels. The distribution of remaining adhesion plaques in TSP-treated cells was also altered: plaques were primarily limited to the periphery of cells and were not present in the central cell body, as in control cells treated with BSA. The observed effects were specific for TSP and were not observed with platelet factor 4, beta-thromboglobulin, or fibronectin. The TSP-mediated loss of adhesion plaques was neutralized by the addition of heparin, fucoidan, other heparin-binding proteins, and by a monoclonal antibody to the heparin binding domain of TSP, but not by antibodies to the core or carboxy-terminal regions of TSP. The interaction of the heparin- binding domain of TSP with cell-associated heparan sulfate appears to be an important mechanistic component for this activity of TSP. These data indicate that TSP may have a role in destabilizing cell adhesion through prevention of focal adhesion formation and by loss of preformed focal adhesions.  相似文献   

4.
SPARC and tumor growth: Where the seed meets the soil?   总被引:21,自引:0,他引:21  
Matricellular proteins mediate interactions between cells and their extracellular environment. This functional protein family includes several structurally unrelated members, such as SPARC, thrombospondin 1, tenascin C, and osteopontin, as well as some homologs of these proteins, such as thrombospondin 2 and tensascin X. SPARC, a prototypic matricellular protein, and its homolog hevin, have deadhesive effects on cultured cells and have been characterized as antiproliferative factors in some cellular contexts. Both proteins are produced at high levels in many types of cancers, especially by cells associated with tumor stroma and vasculature. In this Prospect article we summarize evidence for SPARC and hevin in the regulation of tumor cell growth, differentiation, and metastasis, and we propose that matricellular proteins such as these perform critical functions in desmoplastic responses of tumors that culminate in their dissemination and eventual colonization of other sites.  相似文献   

5.
SPARC is a secreted glycoprotein that has been shown to disrupt focal adhesions and to regulate the proliferation of endothelial cells in vitro. Moreover, peptides resulting from the proteolysis of SPARC exhibit angiogenic activity. Here we describe the temporal synthesis, turnover, and angiogenic potential of SPARC in the chicken chorioallantoic membrane. Confocal immunofluorescence microscopy revealed specific expression of SPARC protein in endothelial cells, and significantly higher levels of SPARC were observed in smaller newly formed blood vessels in comparison to larger, developmentally older vessels. SPARC mRNA was detected at the earliest stages of chorioallantoic membrane morphogenesis and reached maximal levels at day 13 of embryonic development. Interestingly, steady-state levels of SPARC mRNA did not correlate directly with protein accumulation; moreover, the protein appeared to undergo limited degradation during days 10-15. Incubation of [125I]-SPARC with chorioallantoic membranes of different developmental ages confirmed that extracellular proteolysis occurred during days 9-15, but not at later stages (e.g., days 17-21). Comparison of peptides produced by incubation with chorioallantoic membranes with those generated by plasmin showed an identical pattern of proteolysis. Plasmin activity was present throughout development, and in situ zymography identified sites of plasminogen activator activity that corresponded to areas exhibiting high levels of SPARC expression. Synthetic peptides from a plasmin-sensitive region of SPARC, between amino acids 113-130, stimulated angiogenesis in the chorioallantoic membrane in a dose-dependent manner; in contrast, intact SPARC was inactive in similar assays. We have shown that SPARC is expressed in endothelial cells of newly formed blood vessels in a manner that is both temporally and spatially restricted. Between days 9 and 15 of chorioallantoic membrane development, the protein undergoes proteolytic cleavage that is mediated, in part, by plasmin. SPARC peptides released specifically by plasmin induce angiogenesis in vivo. We therefore propose that SPARC acts as an intrinsic regulator of angiogenesis in vivo.  相似文献   

6.
Angiogenesis in vitro, the formation of capillary-like structures by cultured endothelial cells, is associated with changes in the expression of several extracellular matrix proteins. The expression of SPARC, a secreted collagen-binding glycoprotein, has been shown to increase significantly during this process. We now show that addition of purified SPARC protein, or an N-terminal synthetic peptide (SPARC4-23), to strains of bovine aortic endothelial cells undergoing angiogenesis in vitro resulted in a dose-dependent decrease in the synthesis of fibronectin and thrombospondin-1 and an increase in the synthesis of type 1-plasminogen activator inhibitor. SPARC decreased fibronectin mRNA by 75% over 48 h, an effect that was inhibited by anti-SPARC immunoglobulins. Levels of thrombospondin-1 mRNA were diminished by 80%. Over a similar time course, both mRNA and protein levels of type 1-plasminogen activator inhibitor (PAI-1) were enhanced by SPARC and the SPARC4-23 peptide. The effects were dose-dependent with concentrations of SPARC between 1 and 30 micrograms/ml. In contrast, no changes were observed in the levels of either type I collagen mRNA or secreted gelatinases. Half-maximal induction of PAI-1 mRNA or inhibition of fibronectin and thrombospondin mRNAs occurred with 2-5 micrograms/ml SPARC and approximately 0.05 mM SPARC4-23. Strains of endothelial cells that did not form cords and tubes in vitro had reduced or undetectable responses to SPARC under identical conditions. These results demonstrate that SPARC modulates the synthesis of a subset of secreted proteins and identify an N-terminal acidic sequence as a region of the protein that provides an active site. SPARC might therefore function, in part, to achieve an optimal ratio among different components of the extracellular matrix. This activity would be consistent with known effects of SPARC on cellular morphology and proliferation that might contribute to the regulation of angiogenesis in vivo.  相似文献   

7.
The matricellular protein SPARC (also known as osteonectin and BM-40) is expressed abundantly in lens epithelium. That SPARC-null mice exhibit early cataractogenesis, indicates a role for SPARC in the maintenance of lens transparency. Comparison of cultured wild-type and SPARC-null lens epithelial cells revealed significant changes in adhesion to different substrates. SPARC-null lens cells displayed enhanced attachment and spreading, focal adhesion formation, and resistance to trypsin detachment in comparison to wild-type cells. In the absence of SPARC, there was increased deposition of the ECM protein laminin-1 (LN-1). Proteins associated with focal adhesions were increased in SPARC-null versus wild-type lens cells: levels of alpha6-integrin heterodimers, talin, and paxillin phosphorylated on tyrosine were enhanced significantly, as was the association of beta1-integrin with talin and paxillin. Restoration of the wild-type phenotype in SPARC-null cultures was accomplished through genetic rescue by stable transfection of SPARC cDNA. Our findings indicate that SPARC is counter-adhesive for murine lens epithelial cells and demonstrate that multiple factors contribute to this activity. We also identify SPARC as a modulator of LN-1 secretion and deposition by these cells, an activity important in epithelial cell-ECM interactions in the ocular lens.  相似文献   

8.
In a previous study we demonstrated that the alternatively spliced region of tenascin-C, TNfnA-D, bound with high affinity to a cell surface receptor, annexin II. In the present study we demonstrate three changes in cellular activity that are produced by adding intact tenascin-C or TNfnA-D to cells, and we show that all three activities are blocked by antibodies against annexin II. 1) TNfnA-D added to confluent endothelial cells induced loss of focal adhesions. 2) TNfnA-D produced a mitogenic response of confluent, growth-arrested endothelial cells in 1% serum. TNfnA-D stimulated mitogenesis only when it was added to cells before or during exposure to other mitogens, such as basic fibroblast growth factor or serum. Thus the effect of TNfnA-D seems to be to facilitate the subsequent response to growth factors. 3) TNfnA-D enhanced cell migration in a cell culture wound assay. Antibodies to annexin II blocked all three cellular responses to TNfnA-D. These data show that annexin II receptors on endothelial cells mediate several cell regulatory functions attributed to tenascin-C, potentially through modulation of intracellular signalling pathways.  相似文献   

9.
Thrombospondin induces reorganization of the actin cytoskeleton and restructuring of focal adhesions. This activity is localized to amino acids 17-35 in the N-terminal heparin-binding domain of thrombospondin and can be replicated by a peptide (hep I) with this sequence. Thrombospondin/hep I stimulate focal adhesion disassembly through a mechanism involving phosphoinositide 3-kinase activation. However, the receptor for this thrombospondin sequence is unknown. We now report that calreticulin on the cell surface mediates focal adhesion disassembly by thrombospondin/hep I. A 60-kDa protein from endothelial cell detergent extracts has homology and immunoreactivity to calreticulin, binds a hep I affinity column, and neutralizes thrombospondin/hep I-mediated focal adhesion disassembly. Calreticulin on the cell surface was confirmed by biotinylation, confocal microscopy, and by fluorescence-activated cell sorting analyses. Thrombospondin and calreticulin potentially bind through the hep I sequence, since thrombospondin-calreticulin complex formation can be blocked specifically by hep I peptide. Antibodies to calreticulin and preincubation of thrombospondin/hep I with glutathione S-transferase-calreticulin block thrombospondin/hep I-mediated focal adhesion disassembly and phosphoinositide 3-kinase activation, suggesting that calreticulin is a component of the thrombospondin-induced signaling cascade that regulates cytoskeletal organization. These data identify both a novel receptor for the N terminus of thrombospondin and a distinct role for cell surface calreticulin in cell adhesion.  相似文献   

10.
SPARC (secreted protein acidic and rich in cysteine)/BM 40/osteonectin is a matricellular protein shown to function as a counteradhesive factor that induces cell rounding and as an inhibitor of cell proliferation. These activities have been defined in cell culture, in which interpretation has been complicated by the presence of endogenous SPARC. We therefore sought to determine whether cell shape and proliferation would be affected by the absence of SPARC. Mesangial cells, fibroblasts, and aortic smooth muscle cells were isolated from SPARC-null and age-matched, wild-type mice. In contrast to wild-type cells, SPARC-null mesangial cells exhibited a flat morphology and an altered actin cytoskeleton. In addition, vinculin-containing focal adhesions were distributed over the center of SPARC-null cells, whereas in wild-type cells, the number of focal adhesions was reduced, and these structures were restricted largely to the cell periphery. Although the SPARC-null fibroblasts did not display overt differences in cell morphology, the cells responded to exogenous recombinant SPARC by rounding up in a manner similar to that of wild-type fibroblasts. Thus, the expression of endogenous SPARC is not required for the response of cells to SPARC. Additionally, SPARC-null mesangial cells, fibroblasts, and smooth muscle cells proliferated faster than their respective wild-type counterparts. Null cells also showed a greater sensitivity to the inhibition of cell cycle progression by the addition of recombinant SPARC. The increased proliferation rate of SPARC-null cells appeared to be mediated, at least in part, by an increase in the cell cycle regulatory protein cyclin A. We conclude that the expression of SPARC influences the cellular architecture of mesangial cells and that SPARC plays a role in the regulation of cell cycle in mesangial cells, fibroblasts, and smooth muscle cells.  相似文献   

11.
SPARC (Secreted Protein Acidic and Rich in Cysteine) is a Ca+2-binding glycoprotein that is differentially associated with morphogenesis, remodeling, cellular migration, and proliferation. We show here that exogenous SPARC, added to cells in culture, was associated with profound changes in cell shape, caused rapid, partial detachment of a confluent monolayer, and inhibited spreading of newly plated cells. Bovine aortic endothelial cells, exposed to 2-40 micrograms SPARC/ml per 2 x 10(6) cells, exhibited a rounded morphology in a dose-dependent manner but remained attached to plastic or collagen-coated surfaces. These round cells synthesized protein, uniformly excluded trypan blue, and grew in aggregates after replating in media without SPARC. SPARC caused rounding of bovine endothelial cells, fibroblasts, and smooth muscle cells; however, the cell lines F9, PYS-2, and 3T3 were not affected. The activity of native SPARC was inhibited by heat denaturation and prior incubation with anti-SPARC IgG. The effect of SPARC on endothelial cells appeared to be independent of the rounding phenomenon produced by the peptide GRGDSP. Immunofluorescence localization of SPARC on endothelial cells showed preferential distribution at the leading edges of membranous extensions. SPARC bound Ca+2 in both amino- and carboxyl-terminal (EF-hand) domains and required this cation for maintenance of native structure. Solid-phase binding assays indicated a preferential affinity of native SPARC for several proteins comprising the extracellular matrix, including types III and V collagen, and thrombospondin. This binding was saturable, Ca+2 dependent, and inhibited by anti-SPARC IgG. Endothelial cells also failed to spread on a substrate of native type III collagen complexed with SPARC. We propose that SPARC is an extracellular modulator of Ca+2 and cation-sensitive proteins or proteinases, which facilitates changes in cellular shape and disengagement of cells from the extracellular matrix.  相似文献   

12.
SPARC is a multifunctional glycoprotein that belongs to the matricellular group of proteins. It modulates cellular interaction with the extracellular matrix (ECM) by its binding to structural matrix proteins, such as collagen and vitronectin, and by its abrogation of focal adhesions, features contributing to a counteradhesive effect on cells. SPARC inhibits cellular proliferation by an arrest of cells in the G1 phase of the cell cycle. It also regulates the activity of growth factors, such as platelet-derived growth factor (PDGF), fibroblast growth factor (FGF)-2, and vascular endothelial growth factor (VEGF). The expression of SPARC in adult animals is limited largely to remodeling tissue, such as bone, gut mucosa, and healing wounds, and it is prominent in tumors and in disorders associated with fibrosis. The crystal structure of two of the three domains of the protein has revealed a novel follistatin-like module and an extracellular calcium-binding (EC) module containing two EF-hand motifs. The follistatin-like module and the EC module are shared by at least four other proteins that comprise a family of SPARC-related genes. Targeted disruption of the SPARC locus in mice has shown that SPARC is important for lens transparency, as SPARC-null mice develop cataracts shortly after birth. SPARC is a prototypical matricellular protein that functions to regulate cell-matrix interactions and thereby influences many important physiological and pathological processes.  相似文献   

13.
SPARC, a matricellular protein: at the crossroads of cell-matrix.   总被引:17,自引:0,他引:17  
SPARC is a multifunctional glycoprotein that belongs to the matricellular group of proteins. It modulates cellular interaction with the extracellular matrix (ECM) by its binding to structural matrix proteins, such as collagen and vitronectin, and by its abrogation of focal adhesions, features contributing to a counteradhesive effect on cells. SPARC inhibits cellular proliferation by an arrest of cells in the G1 phase of the cell cycle. It also regulates the activity of growth factors, such as platelet-derived growth factor (PDGF), fibroblast growth factor (FGF)-2, and vascular endothelial growth factor (VEGF). The expression of SPARC in adult animals is limited largely to remodeling tissue, such as bone, gut mucosa, and healing wounds, and it is prominent in tumors and in disorders associated with fibrosis. The crystal structure of two of the three domains of the protein has revealed a novel follistatin-like module and an extracellular calcium-binding (EC) module containing two EF-hand motifs. The follistatin-like module and the EC module are shared by at least four other proteins that comprise a family of SPARC-related genes. Targeted disruption of the SPARC locus in mice has shown that SPARC is important for lens transparency, as SPARC-null mice develop cataracts shortly after birth. SPARC is a prototypical matricellular protein that functions to regulate cell-matrix interactions and thereby influences many important physiological and pathological processes.  相似文献   

14.
The publisher regrets that the above article was published with several typographical errors. The corrected version appears on the following pages. SPARC is a multifunctional glycoprotein that belongs to the matricellular group of proteins. It modulates cellular interaction with the extracellular matrix (ECM) by its binding to structural matrix proteins, such as collagen and vitronectin, and by its abrogation of focal adhesions, features contributing to a counteradhesive effect on cells. SPARC inhibits cellular proliferation by an arrest of cells in the G1 phase of the cell cycle. It also regulates the activity of growth factors, such as platelet-derived growth factor (PDGF), fibroblast growth factor (FGF)-2, and vascular endothelial growth factor (VEGF). The expression of SPARC in adult animals is limited largely to remodeling tissue, such as bone, gut mucosa, and healing wounds, and it is prominent in tumors and in disorders associated with fibrosis. The crystal structure of two of the three domains of the protein has revealed a novel follistatin-like module and an extracellular calcium-binding (EC) module containing two EF-hand motifs. The follistatin-like module and the EC module are shared by at least four other proteins that comprise a family of SPARC-related genes. Targeted disruption of the SPARC locus in mice has shown that SPARC is important for lens transparency, as SPARC-null mice develop cataracts shortly after birth. SPARC is a prototypical matricellular protein that functions to regulate cell–matrix interactions and thereby influences many important physiological and pathological processes.  相似文献   

15.
During corneal development, neural crest derivatives from the periocular mesenchyme migrate into the cornea and differentiate into corneal fibroblasts. During this time, these cells interact with a variety of extracellular matrices for proper orientation and development. In the present studies, we have examined the interaction of beta(1) integrins on periocular mesenchyme cells (POM) and corneal fibroblasts (CF) with fibronectin and tenascin by perturbing the function of this integrin. POM and CF attached and spread to a much greater extent on fibronectin than on tenascin. An antibody against beta(1) integrin, CSAT, decreased spreading and attachment, and resulted in a lack of immuno-detectable beta(1) integrin in focal adhesions on fibronectin; few beta(1) positive focal adhesions were observed in cells grown on tenascin. An anti-sense retroviral construct decreased endogenous levels of beta(1) integrin protein, and caused decreased attachment and spreading as well as sparse, disorganized focal adhesions. These data indicate that in vitro, both POM and CF have beta(1) integrins that interact with fibronectin and allow them to attach and spread, while tenascin is anti-adhesive. Further studies using both of these experimental paradigms will clarify whether these interactions also occur in vivo.  相似文献   

16.
Matricellular proteins such as SPARC, thrombospondin 1 and 2, and tenascin C and X subserve important functions in extracellular matrix synthesis and cellular adhesion to extracellular matrix. By virtue of its reported interaction with collagen I and deadhesive activity on cells, we hypothesized that hevin, a member of the SPARC gene family, regulates dermal extracellular matrix and collagen fibril formation. We present evidence for an altered collagen matrix and levels of the proteoglycan decorin in the normal dermis and dermal wound bed of hevin-null mice. The dermal elastic modulus was also enhanced in hevin-null animals. The levels of decorin protein secreted by hevin-null dermal fibroblasts were increased by exogenous hevin in vitro, data indicating that hevin might regulate both decorin and collagen fibrillogenesis. We also report a decorin-independent function for hevin in collagen fibrillogenesis. In vitro fibrillogenesis assays indicated that hevin enhanced fibril formation kinetics. Furthermore, cell adhesion assays indicated that cells adhered differently to collagen fibrils formed in the presence of hevin. Our observations support the capacity of hevin to modulate the structure of dermal extracellular matrix, specifically by its regulation of decorin levels and collagen fibril assembly.  相似文献   

17.
The matricellular protein SPARC (secreted protein acidic and rich in cysteine) has been implicated in development, differentiation, response to injury, and tumor biology by virtue of its regulation of extracellular matrix production/assembly and its antiadhesive and antiproliferative effects on different cell types. Despite numerous biological activities described for SPARC, cell surface receptors for this protein have not been identified. By phage display and in vitro-binding assays, we now show that SPARC interacts with stabilin-1, a scavenger receptor expressed by tissue macrophages and sinusoidal endothelial cells. The interaction is mediated by the extracellular epidermal growth factor-like region of stabilin-1 containing the sequence FHGTAC. Using FACS analysis and confocal microscopy, we demonstrate that stabilin-1 internalizes and targets SPARC to an endosomal pathway in Chinese hamster ovary cells stably transfected with this receptor. In human macrophages, stabilin-1 expression is required for receptor-mediated endocytosis of SPARC. SPARC was efficiently endocytosed by alternatively activated macrophages stimulated by IL-4 and dexamethasone, but not solely by Th1 or Th2 cytokines. A time course of ligand exposure to alternatively activated macrophages revealed that stabilin-1-mediated endocytosis of SPARC was followed by its targeting for degradation, similar to the targeting of acetylated low density lipoprotein, another stabilin-1 ligand. We propose that alternatively activated macrophages coordinate extracellular matrix remodeling, angiogenesis, and tumor progression via stabilin-1-mediated endocytosis of SPARC and thereby regulate its extracellular concentration.  相似文献   

18.
We have investigated the binding of soluble tenascin-C (TN-C) to several cell lines using a radioligand binding assay. Specific binding was demonstrated to U-251MG human glioma cells and to a line of bovine aortic endothelial cells, but hamster fibroblasts showed no specific binding. Recombinant proteins corresponding to specific domains of TN-C were used to map the binding site(s) in TN-C. The alternatively spliced segment (TNfnA-D) inhibited the binding of native TN-C most strongly, and itself bound to glioma and endothelial cells. Scatchard analysis of TNfnA-D binding indicated 2-5 x 10(5) binding sites per cell, with an apparent 2 nM dissociation constant. The cell surface receptor for TNfnA-D was identified as a 35-kD protein on the basis of blot binding assays and affinity chromatography of membrane extracts on native TN-C and TNfnA-D columns. Protein sequencing indicated that this 35-kD receptor was annexin II. Annexin II is well characterized as a cytoplasmic protein, so it was surprising to find it as a presumably extracellular receptor for TN-C. To confirm that it was the 35-kD receptor, we obtained purified annexin II and demonstrated its binding to TNfnA-D and TN-C at nM concentrations. Antibodies to annexin II prominently stained the external surface of live endothelial cells and blocked the binding of TNfnA-D to the cells. Thus annexin II appears to be a receptor for the alternatively spliced segment of TN-C, and may mediate cellular responses to soluble TN-C in the extracellular matrix.  相似文献   

19.
SPARC is a transiently expressed extracellular matrix-binding protein that alters cell shape and regulates endothelial cell proliferation in vitro. In this study, we show that SPARC mRNA and protein are synthesized by endothelial cells during angiogenesis in vivo. SPARC and peptides derived from a cationic region of the protein (amino acids 113- 130) stimulated the formation of endothelial cords in vitro; moreover, these peptides stimulated angiogenesis in vivo. Mapping of the active domain demonstrated that the sequence KGHK was responsible for most of the angiogenic activity; substitution of the His residue decreased the effect. We found that proteolysis of SPARC provided a source of KGHK, GHK, and longer peptides that contained these sequences. Although the Cu(2+)-GHK complex had been identified as a mitogen/morphogen in normal human plasma, we found KGHK and longer peptides to be potent stimulators of angiogenesis. SPARC113-130 and KGHK were shown to bind Cu2+ with high affinity; however, previous incubation with Cu2+ was not required for the stimulatory activity. Since a peptide from a second cationic region of SPARC (SPARC54-73) also bound Cu2+ but had no effect on angiogenesis, the angiogenic activity appeared to be sequence specific and independent of bound Cu2+. Thus, specific degradation of SPARC, a matrix-associated protein expressed by endothelial cells during vascular remodeling, releases a bioactive peptide or peptides, containing the sequence (K)GHK, that could regulate angiogenesis in vivo.  相似文献   

20.
SPARC (osteonectin/BM-40), a secreted matricellular protein that promotes cellular deadhesion and motility in wound healing, carcinogenesis, and inflammation, binds to the scavenger receptor stabilin-1 in alternatively activated macrophages and undergoes endocytosis and clearance from the extracellular space. Both SPARC and stabilin-1 are expressed by endothelial cells during inflammation, but their interaction in this context is unknown. We have identified a binding site on SPARC for stabilin-1 by a solid-state peptide array coupled with a modified enzyme-linked immunosorbent assay. A monoclonal antibody that recognizes the identified binding site was also characterized that could be an inhibitor for the SPARC-stabilin-1 interaction in macrophages or endothelial cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号