首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Bruce Diner  Pierre Joliot 《BBA》1976,423(3):479-498
The intermediate phase of fluorescence relaxation (lms-ls) (Joliot, P., Joliot, A., Bouges, B, and Barbieri, G. (1971) Photochem. Photobiol. 14, 287–305), following a single saturating flash, is shown to be controlled by a slow phase of the reoxidation of Q? by a secondary acceptor and, in vivo, by the transmembrane electric field.The kinetics of reoxidation of Q? are slowed by lowering the pH. This slowing effect is interpreted in terms of the reversible formation at low pH of QH which is not oxidizable by the secondary acceptor.The electric field transforms Photosystem II centers into a non-quenching photochemically inactive state that cannot be attributed to an accumulation of Q?. Centers are unequally sensitive to the field. A critical field strength can be defined for each center above which that center is blocked and below which the center is photochemically active. The transformation from the active to inactive state occurs over a narrow range of field strength.Sensitive centers are blocked by the field in less than 1 ms and become active again in less than 10 ms as the field strength falls. Two hypotheses are proposed for the mechanism of blockage of centers by the field: (1) a field induced conformational change in the centers, (2) the formation or suppression of a dipole critical to the function of a center.The activity of the ATP synthetase, determining the rate of relaxation of the field, was controlled by a light-dark treatment or by a chemical method using p-benzoquinone.  相似文献   

2.
By low intensity picosecond absorption spectroscopy it is shown that the exciton lifetime in the light-harvesting antenna of Rhodopseudomonas (Rps.) viridis membranes with photochemically active reaction centers at room temperature is 60 +/- 10 ps. This lifetime reflects the overall trapping rate of the excitation energy by the reaction center. With photochemically inactive reaction centers, in the presence of P+, the exciton lifetime increases to 150 +/- 15 ps. Prereducing the secondary electron acceptor QA does not prevent primary charge separation, but slows it down from 60 to 90 +/- 10 ps. Picosecond kinetics measured at 77 K with inactive reaction centers indicates that the light-harvesting antenna is spectrally homogeneous. Picosecond absorption anisotropy measurements show that energy transfer between identical Bchlb molecules occurs on the subpicosecond time scale. Using these experimental results as input to a random-walk model, results in strict requirements for the antenna-RC coupling. The model analysis prescribes fast trapping (approximately 1 ps) and an approximately 0.5 escape probability from the reaction center, which requires a more tightly coupled RC and antenna, as compared with the Bchla-containing bacteria Rhodospirillum (R.) rubrum and Rhodobacter (Rb.) sphaeroides.  相似文献   

3.
A fraction (usually in the range of 10–25%) of PS II centers is unable to transfer electrons from the primary quinone acceptor QA to the secondary acceptor QB. These centers are inactive with respect to O2 evolution since their reopening after photochemical charge separation to the S2OA - state involves predominantly a back reaction to S1QA in the few seconds time range (slower phases are also occurring). Several properties of these centers are analyzed by fluorescence and absorption change experiments. The initial rise phase Fo-Fpl of fluorescence induction under weak illumination reflects both the closure of inactive centers and the modulation of the fluorescence yield by the S-states of the oxygen-evolving system: We estimate typical relative amplitudes of these contributions as, respectively, 65 and 35% of the Fo-Fpl amplitude. The half-rise time of this phase is significantly shorter than for the fluorescence induction in the presence of DCMU (in which all centers are involved). This finding is shown to be consistent with inactive centers sharing the same light-harvesting antenna as normal centers, a view which is also supported by comparing the dependence of the fluorescence yield on the amount of closed active or inactive centers estimated through absorption changes. It is argued that the exponential kinetics of the Fo-Fpl phase does not indicate absence of excitation energy transfer between the antennas of inactive and active centers. We show that the acceptor dichlorobenzoquinone does not restore electron transfer in inactive centers, in disagreement with previous suggestions. We confirm, however, the enhancement of steady-state electron flow caused by this quinone and suggest that it acts by relieving a blocking step involved in the reoxidation of a fraction of the plastoquinone pool. Part of the discrepancies between the present results and those from previous literature may arise from the confusion of inactive centers characterized on a single turnover basis and PS II centers that become blocked under steady-state conditions because of deficient reoxidation of their secondary acceptors.Abbreviations DCBQ 2,6-dichloro-p-benzoquinone - DCMU 3-(3,4-dichlorophenyl)-1,1-dimethylurea - DMQ 2,5-dimethyl-p-benzoquinone - PS photosystem  相似文献   

4.
It is well known that two photosystems, I and II, are needed to transfer electrons from H2O to NADP+ in oxygenic photosynthesis. Each photosystem consists of several components: (a) the light-harvesting antenna (L-HA) system, (b) the reaction center (RC) complex, and (c) the polypeptides and other co-factors involved in electron and proton transport. First, we present a mini review on the heterogeneity which has been identified with the electron acceptor side of Photosystem II (PS II) including (a) L-HA system: the PS II and PS II units, (b) RC complex containing electron acceptor Q1 or Q2; and (c) electron acceptor complex: QA (having two different redox potentials QL and QH) and QB (QB-type; Q'B type; and non-QB type); additional components such as iron (Q-400), U (Em,7=–450 mV) and Q-318 (or Aq) are also mentioned. Furthermore, we summarize the current ideas on the so-called inactive (those that transfer electrons to the plastoquinone pool rather slowly) and active reaction centers. Second, we discuss the bearing of the first section on the ratio of the PS II reaction center (RC-II) and the PS I reaction center (RC-I). Third, we review recent results that relate the inactive and active RC-II, obtained by the use of quinones DMQ and DCBQ, with the fluorescence transient at room temperature and in heated spinach and soybean thylakoids. These data show that inactive RC-II can be easily monitored by the OID phase of fluorescence transient and that heating converts active into inactive centers.Abbreviations DCBQ 2,5 or 2,6 dichloro-p-benzoquinone - DMQ dimethylquinone - QA primary plastoquinone electron acceptor of photosystem II - QB secondary plastoquinone electron acceptor of photosystem II - IODP successive fluorescence levels during time course of chlorophyll a fluorescence: O for origin, I for inflection, D for dip or plateau, and P for peak  相似文献   

5.
In dark-adapted spinach leaves approximately one third of the Photosystem II (PS II) reaction centers are impaired in their ability to transfer electrons to Photosystem I. Although these inactive PS II centers are capable of reducing the primary quinone acceptor, QA, oxidation of QA occurs approximately 1000 times more slowly than at active centers. Previous studies based on dark-adapted leaves show that minimal energy transfer occurs from inactive centers to active centers, indicating that the quantum yield of photosynthesis could be significantly impaired by the presence of inactive centers. The objective of the work described here was to determine the performance of inactive PS II centers in light-adapted leaves. Measurements of PS II activity within leaves did not indicate any increase in the concentration of active PS II centers during light treatments between 10 s and 5 min, showing that inactive centers are not converted to active centers during light treatment. Light-induced modification of inactive PS II centers did occur, however, such that 75% of these centers were unable to sustain stable charge separation. In addition, the maximum yield of chlorophyll fluorescence associated with inactive PS II centers decreased substantially, despite the lack of any overall quenching of the maximum fluorescence yield. The effect of light treatment on inactive centers was reversed in the dark within 10–20 mins. These results indicate that illumination changes inactive PS II centers into a form that quenches fluorescence, but does not allow stable charge separation across the photosynthetic membrane. One possibility is that inactive centers are converted into centers that quench fluorescence by formation of a radical, such as reduced pheophytin or oxidized P680. Alternatively, it is possible that inactive PS II centers are modified such that absorbed excitation energy is dissipated thermally, through electron cycling at the reaction center.Abbreviations A518 absorbance change at 518 nm, reflecting the formation of an electric field across the thylakoid membrane - AFL1 amplitude of the fast (<100 ms) phase of A518 induced by the first of two saturating, single-turnover flashes spaced 30 ms apart - AFL2 amplitude of the fast (<100 ms) phase of A518 induced by the second of two saturating, single-turnover flashes spaced 50 ms apart - DCBQ 2,6-dichloro-p-benzoquinone - Fo yield of chlorophyll fluorescence when QA is fully oxidized - Fm yield of chlorophyll fluorescence when QA is fully reduced - Fx yield of chlorophyll fluorescence when QA is fully reduced at inactive PS II centers, but fully oxidized at active PS II centers - Pheo pheophytin - P680 the primary donor of Photosystem II - PPFD photosynthetic photon flux density - QA Primary quinone acceptor of PS II - QB secondary quinone acceptor of PS II  相似文献   

6.
Alain Boussac  Anne-Lise Etienne 《BBA》1982,682(2):281-288
Tris-washed chloroplasts were submitted to saturating short flashes, and then rapidly mixed with dichlorophenyldimethylurea (DCMU). The amount of singly reduced secondary acceptor was estimated from the DCMU-induced increase in fluorescence, caused by the reverse electron flow from secondary to primary acceptor. The back-transfer from the singly reduced secondary acceptor to the primary acceptor Q induced by DCMU addition affects only a part (60%) of the variable fluorescence (ΔFmax). As previously shown, the quenchers involved in this phenomenon, ‘B-type’ quenchers, are different from those controlling the complementary part of the fluorescence, the non-B-type. In this report, we show that at pH 8.5 in the B-type systems, there exist two kinds of secondary electron acceptors: B, a two-electron acceptor, the corresponding Q accounting for 40% of the variable fluorescence; B′, a one-electron acceptor, the corresponding Q accounting for 20% of the variable fluorescence. The lifetimes of B? and B′? in the absence of DCMU are 40 and 1 s, respectively. The primary acceptors of the B and B′ systems can be considered as corresponding to the Q1s defined previously (Joliot, P. and Joliot, A. (1981) in Proceedings of the 5th International Congress on Photosynthesis (Akoynoglou, G., ed.), pp. 885–899, Balaban International Science Services, Philadelphia). The B′ centers seems to be equivalent to the Qβ centers as defined by other workers (Van Gorkom, H.J., Thielen, A.P.G.M. and Gorren, A.C.F. (1982) in The Function of Quinones in Energy Conserving Systems (Trumpower, B.L., ed.), Academic Press, New York, in the press).  相似文献   

7.
Photoinhibition was induced in a cyanobacterium strain, Synechocystis 6714, and a green alga, Chlamydomonas reinhardtii, by exposing them to light intensities from 1000 to 4000 microE/(m2.s) at various temperatures. The photoinhibition process was followed by measurements of chlorophyll fluorescence and oxygen evolution. During exposure to high light, fluorescent active reaction centers II became low fluorescent inactive centers. This process involved several reversible and irreversible steps. The pathway from the active state to the inactive low fluorescent state was different in Synechocystis and Chlamydomonas. In the latter there was a reversible intermediary step characterized by an increase of F0. This state was stable at 5 degrees C and slowly reversible at room temperature. The high F0 fluorescence level corresponded to a state of photosystem II centers that were inactive for oxygen evolution. An F0 decrease occurred in the dark in the absence of protein synthesis and was correlated to a restoration of oxygen evolution. Further experiments suggested that the existence of the intermediate fluorescent state is due to modified closed centers in which the reduced primary acceptor is less accessible to reoxidation. In cyanobacteria this reversible state was not detected. In both organisms, the decrease of Fmax reflected an irreversible damage of photosystem II centers. These centers need replacement of proteins in order to be active again. The quenching of Fmax and the irreversible inhibition of oxygen evolution were slowed down in both organisms by decreasing the temperature of the photoinhibitory treatment from 34 to 5 degrees C. We conclude that low temperature protected the reaction center II from irreversible photodamage.  相似文献   

8.
W Leibl  J Breton 《Biochemistry》1991,30(40):9634-9642
The kinetics of electron transfer from the primary (QA) to the secondary (QB) quinone acceptor in whole cells and chromatophores of Rhodopseudomonas viridis was studied as a function of the redox state of QB and of pH by using a photovoltage technique. Under conditions where QB was oxidized, the reoxidation of QA- was found to be essentially monophasic and independent of pH with a half-time of about 20 microseconds. When QB was reduced to the semiquinone form by a preflash, the reoxidation of QA- was slowed down showing a half-time between 40 and 80 microseconds at pH less than or equal to 9. Above pH 9, the rate of the second electron transfer decreased nearly one order of magnitude per pH unit. After a further preflash, the fast and pH-independent kinetics of QA- reoxidation was essentially restored. The concentration of QA still reduced 100 microseconds after its complete reduction by a flash showed distinct binary oscillations as a function of the number of preflashes, confirming the interpretation that the electron-transfer rate depends on the redox state of QB. After addition of o-phenanthroline, the reoxidation of QA- is slowed down to the time range of seconds as expected for a back-reaction with oxidized cytochrome. Under conditions where inhibitors of the electron transfer between the quinones fail to block this reaction in a fraction of the reaction centers due to the presence of the extremely stable and strongly bound semiquinone, QB-, these reaction centers show a slow electron transfer on the first flash and a fast one on the second, i.e., an out-of-phase oscillation.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
A minimal kinetic model of the photocycle, including both quinone (Q-6) reduction at the secondary quinone-binding site and (mammalian) cytochrome c oxidation at the cytochrome docking site of isolated reaction centers from photosynthetic purple bacteria Rhodobacter sphaeroides, was elaborated and tested by cytochrome photooxidation under strong continuous illumination. The typical rate of photochemical excitation by a laser diode at 810 nm was 2.200 s-1, and the rates of stationary turnover of the reaction center (one-half of that of cytochrome photooxidation) were 600 +/- 70 s-1 at pH 6 and 400 +/- 50 s-1 at pH 8. The rate of turnover showed strong pH dependence, indicating the contribution of different rate-limiting processes. The kinetic limitation of the photocycle was attributed to the turnover of the cytochrome c binding site (pH < 6), light intensity and quinone/quinol exchange (6 < pH < 8), and proton-coupled second electron transfer in the quinone acceptor complex (pH > 8). The analysis of the double-reciprocal plot of the rate of turnover versus light intensity has proved useful in determining the light-independent (maximum) turnover rate of the reaction center (445 +/- 50 s-1 at pH 7.8).  相似文献   

10.
A test of the 'iron-wire' hypothesis for the role of Fe2+ in promoting the electron transfer between the primary (Q1) and secondary (Q2) quinones in bacterial reaction centers of Rhodopseudomonas sphaeroides strain R-26.1 has been conducted. Kinetics of this step, P+Q-1Q2----P+Q1Q-2, and of recombination with the oxidized donor, P+Q-1----PQ1 and P+Q-2----PQ2, were followed optically at 4 degrees C in normal iron-containing reaction centers and in reaction centers having 58% Mn2+, replacing Fe2+. This significant replacement is accomplished biosynthetically by control of the growth conditions, and so should preserve the native interactions between the cofactors. There are no significant differences observed in the recombination kinetics of the two types of reaction centers. The electron transfer between the quinones was observed to show apparent biphasic kinetics with major components of approx. 170 microseconds and 1.5 ms at 4 degrees C and pH = 7.5. There is no statistically significant difference observed between the two types of reaction centers. This major change in the electronic structure of the metal and the unaltered kinetics discount the likelihood of any direct orbital participation of the metal in the electron transfer between the quinones.  相似文献   

11.
Jerome Lavergne 《BBA》1982,682(3):345-353
The kinetics and concentration dependence of the binding of dichlorophenyldimethylurea (DCMU) to Photosystem II (PS II) were monitored through fluorescence measurements. According to whether the acceptor system is in the ‘odd’ state (QB ag QB) or ‘even’ state (QB), very different results are obtained. The binding to centers in the even state is rapid ( at [DCMU] = 10−5 M and [chlorophyll] = 10 μg/ml), with a pH-independent rate. The concentration curve of the bound inhibitor (at equilibrium) corresponds to an association constant of about 3.3·107 M−1·1. The binding of the inhibitor to centers in the odd state is slow ( at pH 7, same DCMU and chlorophyll concentrations as above), and depends on pH. In the pH range 6–8, the lower the pH, the slower the kinetics. The association constant is also diminished by a factor of approx. 20 (at pH 7) compared to the even state centers. It is shown that these effects are in good agreement with predictions from Velthuys' hypothesis (Velthuys, B.R. (1981) FEBS Lett. 126, 277–281) that the mode of action of DCMU is a competition with plastoquinone for the binding to the secondary acceptor site. A large part of PS II photochemical quenching corresponds to acceptors which seem to possess a secondary acceptor distinct from B. They were called ‘non-B-type acceptors’ (Lavergne, J. (1982) Photobiochem. Photobiophys. 3, 257–285) and may be identified with Joliot's ‘Q2’ (Joliot P. and Joliot, A. (1977) Biochim. Biophys. Acta 462, 559–574). However, the rate at which the inhibition affects these non-B-type acceptors is similar to the rate of DCMU binding on the B site (i.e., slow in the odd state, fast in the even state).  相似文献   

12.
The effect of molecular oxygen on the photochemical activity of the Rhodobacter sphaeroides reaction centers frozen to 160 K under actinic illumination was investigated by the ESR method. About 90% of initially photochemically active bacteriochlorophyll (P) were fixed at 160 K for a long time in aerobic samples in an inactive form. In anaerobic samples, not more than 65% were fixed in an inactive form under the same conditions. In aerobic preparations, a small portion of photochemically active bacteriochlorophyll (about 10%) that retains its photochemical activity at 160 K after freezing under illumination has dark reduction kinetics similar to that of samples at room temperature after several seconds of actinic illumination. In anaerobic samples frozen under illumination, the remaining photochemically active reaction centers (35%) have the same dark reduction kinetics as samples illuminated at 295 K for 1-2 min. The conclusion is that the irreversible stabilization of bacteriochlorophyll P in the oxidized inactive state formed in the reaction centers frozen under illumination is brought about by light-induced conformational changes fixed under low temperatures.  相似文献   

13.
The spectra of absorbance changes (delta A) due to the formation of P+Q- (P, primary electron donor, Q, primary quinone acceptor) at 1.7K in Rhodopseudomonas viridis reaction centers (RCs) excited at 1014 nm has been shown to include, besides a progression of broad (170-190 cm-1) Gaussian vibronic bands separated by 150 cm-1, a 'narrow' structure near 1014 nm which can be simulated by a Lorentian zero-phonon hole (ZPH) and Lorentian one-mode (26.8 cm-1) phonon wings. The widths of ZPH of approximately 17 cm-1 for delta A reflecting the formation of P+Q- decaying in the ms time domain and of 6.8 +/- 0.4 cm-1 for P+Q- decaying in the min time domain at 1.7K, seems to correspond to different conformations of RCs with a relaxation time of P* of approximately 0.6 ps (in agreement with measurements in this time domain) and 1.6 +/- 0.1 ps, respectively. The comparison of the spectra of delta A in the region of the BL band for slow (min) and fast (ms) decaying components suggests a different mutual arrangement of P and BL for different conformations of RCs. It is assumed that the broad and narrow structures of the P band reflect the transitions to two configurations with different P-protein interactions. 'Narrow' structure of delta A spectrum with essentially the same phonon wings and ZPH (width of 3.8 +/- 0.4 cm-1) was observed within the P band when HL was photoreduced at 1.7K.  相似文献   

14.
The reoxidation phase of the catalytic cycle of succinate dehydrogenase was studied in Complex II preparations' by the rapid freeze-electron paramagnetic resonance (epr) technique. With the synthetic water-soluble Q1 analog, 2,3-dimethoxy-5-methyl-6-pentyl-1, 4-benzoquinone (DPB), as the oxidant, the observed reoxidation of the epr-detectable components, previously reduced with dithionite or succinate, came to completion within a few milliseconds, well within the turnover time of the enzyme. Only ~80% of Fe-S center 1 and the HiPIP (the high-potential cluster) Fe-S center reacted rapidly with DPB, however; similarly incomplete reactions were observed previously in our studies of the reduction of the enzyme by succinate. The subsequent addition of ferricyanide, which appears to act as a chemical oxidant in these experiments, caused immediate reoxidation of the Fe-S centers and of the free radical. Ferricyanide and phenazine methosulfate (PMS) reoxidized all epr-detectable components in Complex II as well as in reconstitutively active, soluble preparations in' <6 ms, even at 0°C. Thus, reoxidation of the purified enzyme by PMS cannot be rate-limiting. Carboxamides and thenoyltrifluoroacetone inhibit strongly the reoxidation of the Fe-S center 1 and the HiPIP center by DPB, but not their reduction by succinate. These and other data suggest that these inhibitors block electron transport from the dehydrogenase to the Q pool on the O2-side of the HiPIP center, but there is no evidence that they combine directly with the iron. A recent report that Wurster's blue reacts with soluble succinate dehydrogenase much more rapidly than does PMS could not be confirmed. The two oxidants react at equal rates with the purified soluble enzyme before and after it has been reincorporated into membranes.  相似文献   

15.
The Photosystem I primary reaction, as measured by electron paramagnetic resonance changes of P-700 and a bound iron-sulfur center, has been studied at 15 degrees K in P-700-chlorophyll alpha-protein complexes isolated from a blue-green alga. One complex, prepared with sodium dodecyl sulfate shows P-700 photooxidation only at 300 degrees K, whereas a second complex, prepared with Triton X-100, is photochemically active at 15 degrees K as well as at 300 degrees K. Analysis of these two preparations shows that the absence of low-temperature photoactivity in the sodium dodecyl sulfate complex reflects a lack of bound iron-sulfur centers in this preparation and supports the assignment of an iron-sulfur center as the primary electron acceptor of Photosystem I.  相似文献   

16.
Isolated reaction centers of photosystem II with an altered pigment content were obtained by chemical exchange of the native pheophytin a molecules with externally added 13(1)-deoxo-13(1)-hydroxy-pheophytin a. Judged from a comparison of the absorption spectra and photochemical activities of exchanged and control reaction centers, 70-80% of the pheophytin molecules active in charge separation are replaced by 13(1)-deoxo-13(1)-hydroxy-pheophytin a after double application of the exchange procedure. The new molecule at the active branch was not active photochemically. This appears to be the first stable preparation in which a redox active chromophore of the reaction center of photosystem II was modified by chemical substitution. The data are compatible with the presence of an active and inactive branch of cofactors, as in bacterial reaction centers. Possible applications of the 13(1)-deoxo-13(1)-hydroxy-pheophytin a-exchanged preparation to the spectral and functional analysis of native reaction centers of photosystem II are discussed.  相似文献   

17.
Energy and electron transfer in Photosystem II reaction centers in which the photochemically inactive pheophytin had been replaced by 13(1)-deoxo-13(1)-hydroxy pheophytin were studied by femtosecond transient absorption-difference spectroscopy at 77 K and compared to the dynamics in untreated reaction center preparations. Spectral changes induced by 683-nm excitation were recorded both in the Q(Y) and in the Q(X) absorption regions. The data could be described by a biphasic charge separation. In untreated reaction centers the major component had a time constant of 3.1 ps and the minor component 33 ps. After exchange, time constants of 0.8 and 22 ps were observed. The acceleration of the fast phase is attributed in part to the redistribution of electronic transitions of the six central chlorin pigments induced by replacement of the inactive pheophytin. In the modified reaction centers, excitation of the lowest energy Q(Y) transition produces an excited state that appears to be localized mainly on the accessory chlorophyll in the active branch (B(A) in bacterial terms) and partially on the active pheophytin H(A). This state equilibrates in 0.8 ps with the radical pair. B(A) is proposed to act as the primary electron donor also in untreated reaction centers. The 22-ps (pheophytin-exchanged) or 33-ps (untreated) component may be due to equilibration with the secondary radical pair. Its acceleration by H(B) exchange is attributed to a faster reverse electron transfer from B(A) to. After exchange both and are nearly isoenergetic with the excited state.  相似文献   

18.
Photosystem II complexes of higher plants are structurally and functionally heterogeneous. While the only clearly defined structural difference is that Photosystem II reaction centers are served by two distinct antenna sizes, several types of functional heterogeneity have been demonstrated. Among these is the observation that in dark-adapted leaves of spinach and pea, over 30% of the Photosystem II reaction centers are unable to reduce plastoquinone to plastoquinol at physiologically meaningful rates. Several lines of evidence show that the impaired reaction centers are effectively inactive, because the rate of oxidation of the primary quinone acceptor, QA, is 1000 times slower than in normally active reaction centers. However, there are conflicting opinions and data over whether inactive Photosystem II complexes are capable of oxidizing water in the presence of certain artificial electron acceptors. In the present study we investigated whether inactive Photosystem II complexes have a functional water oxidizing system in spinach thylakoid membranes by measuring the flash yield of water oxidation products as a function of flash intensity. At low flash energies (less that 10% saturation), selected to minimize double turnovers of reaction centers, we found that in the presence of the artificial quinone acceptor, dichlorobenzoquinone (DCBQ), the yield of proton release was enhanced 20±2% over that observed in the presence of dimethylbenzoquinone (DMBQ). We argue that the extra proton release is from the normally inactive Photosystem II reaction centers that have been activated in the presence of DCBQ, demonstrating their capacity to oxidize water in repetitive flashes, as concluded by Graan and Ort (Biochim Biophys Acta (1986) 852: 320–330). The light saturation curves indicate that the effective antenna size of inactive reaction centers is 55±12% the size of active Photosystem II centers. Comparison of the light saturation dependence of steady state oxygen evolution in the presence of DCBQ or DMBQ support the conclusion that inactive Photosystem II complexes have a functional water oxidation system.Abbreviations DCBQ 2,6-dichloro-p-benzoquinone - DMBQ 2,5-dimethyl-p-benzoquinone - Fo initial fluorescence level using dark-adapted thylakoids - Inactive reaction centers reaction centers inactive in plastoquinone reduction - PS II Photosystem II - QA primary quinone acceptor of Photosystem II - QB secondary quinone acceptor of Photosystem II Department of Plant Biology, University of IllinoisDepartment of Physiology & Biophysics, University of Illinois  相似文献   

19.
The acceptor quinone complex of Rhodopseudomonas viridis reaction centers   总被引:3,自引:0,他引:3  
The acceptor complex of isolated reaction centers from Rhodopseudomonas viridis contains both menaquinone and ubiquinone. In a series of flashes the ubiquinone was observed to undergo binary oscillations in the formation and disappearance of a semiquinone, indicative of secondary acceptor (QB) activity. The oscillating signal, Q-B, was typical of a ubisemiquinone anion with a peak at 450 nm (delta epsilon = 6 mM-1 X cm-1) and a shoulder at 430 nm. Weak electrochromic bandshifts in the infrared were also evident. The spectrum of the reduced primary acceptor (Q-A) exhibited a major peak at 412 nm (delta epsilon = 10 mM-1 X cm-1) consistent with the assignment of menaquinone as QA. The Q-A spectrum also had minor peaks at 385 and 455 nm in the blue region. The same spectrum was recorded after quantitative removal of the secondary acceptor, when only menaquinone was present in the reaction centers. Spectral features in the near-infrared due to Q-A were attributed to electrochromic effects on bacteriochlorophyll (BChl) b and bacteriopheophytin (BPh) b pigments resulting in a distinctive split peak at 810 and 830 nm (delta epsilon = 8 mM-1 X cm-1). The menaquinone was identified as 2-methyl-3-nonylisoprenyl-1,4-naphthoquinone (menaquinone-9). The native QA activity was uniquely provided by this menaquinone and ubiquinone was not involved. QB activity, on the other hand, displayed at least a 40-fold preference for ubiquinone (Q-10) as compared to menaquinone. Thus, both quinone-binding sites display remarkable specificity for their respective quinones. In the absence of donors to P+, charge recombination of the P+Q-A and P+Q-B pairs had half-times of 1.1 +/- 0.2 and 110 +/- 20 ms, respectively, at pH 9.0, indicating an electron-transfer equilibrium constant (Kapp2) of at least 100 for Q-AQB in equilibrium QAQ-B. Also observed was a slow recombination of the cytochrome c-558+ Q-A pair, with t 1/2 = 2 +/- 0.5 s at pH 6.  相似文献   

20.
The effect of temperature and lectin from bacteria of the genues Azospirillum with blocked activity on human adipose tissue cells has been studied. The temperature used was 43.5 +/- 0.5 degrees C. Comparative results are given for the effect of lectin with the blocked and active carbohydrate-binding centers on adipocytes during heating, and the time course of the structural changes of adipocytes is described. When lectin with the active carbohydrate-binding centers was used for treatment, the heat-treated cells of a healthy obesity-prone subject died on the average in 55 +/- 5 min, whereas cells treated with lectin with the L-fucose-blocked carbohydrate-binding centers died in 80 +/- 5 min. The heat-treated cells of a diabetic obesity-prone patient died in 150 +/- 10 min on average when exposed to both active and inactive lectin. Consequently, when the lectin center is blocked with L-fucose, the effectiveness of lectin action on adipose cells of healthy obesity-prone persons decreases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号