共查询到20条相似文献,搜索用时 78 毫秒
1.
目的:基于阿尔茨海默病微阵列基因表达数据,分析研究微阵列基因表达数据预处理的新的有效方法。方法:首先采用标准差滤波、FSC(特征记分准则)和WPT-SAM(小波包变换-微阵列数据显著性分析)方法对微阵列基因表达数据进行预处理,比较处理后获得的基因数和FDR值;然后采用分类聚类方法对处理后的数据进行分类聚类和分层决策聚类,比较分类聚类结果。结果:标准差滤波和FSC方法获得的初筛基因数据较WPT-SAM方法多,但FDR值也高、后续分类聚类结果较WPT-SAM方法差。结论:WPT-SAM方法在预处理微阵列基因表达数据中,是比较灵活理想的分析方法。 相似文献
2.
目的:基于阿尔茨海默病微阵列基因表达数据,分析研究微阵列基因表达数据预处理的新的有效方法.方法:首先采用标准差滤波、FSC(特征记分准则)和WPT-SAM(小波包变换-微阵列数据显著性分析)方法对微阵列基因表达数据进行预处理,比较处理后获得的基因数和FDR值;然后采用分类聚类方法对处理后的数据进行分类聚类和分层决策聚类,比较分类聚类结果.结果:标准差滤波和FSC方法获得的初筛基因数据较WPT-SAM方法多,但FDR值也高、后续分类聚类结果较WPT-SAM方法差.结论:WPT-SAM方法在预处理微阵列基因表达数据中,是比较灵活理想的分析方法. 相似文献
3.
4.
目的:建立一种基于夹心免疫分析的抗体微阵列构建的优化方法。方法:将MCP-1的捕获抗体点样于修饰后的玻片,标准抗原加样覆盖所点阵列,生物素标记抗体和链酶亲和素-cy3依次加样孵育, 激光共聚焦扫描仪获取图象并进行数据分析。对捕获抗体浓度、封闭液种类、系统可重复性和定量检测能力、两种因子平行性检测对信号分析的影响及点样后玻片稳定性进行分析和评价。结果:随着捕获抗体浓度的升高,信号强度逐渐增加;2℅ BSA/PBS和5℅ 酪蛋白可作为本系统的封闭液;所构建系统具有较好的可重复性(组内变异 1.3%,组间变异8.7%)和定量分析能力(所建立的抗原浓度-相对信号强度标准曲线相关系数达0.9995);并实现了两因子的平行性分析和点样后玻片的稳定性。结论:确立了基于夹心免疫分析的抗体微阵列构建的优化方法,为进一步构建多因子定量检测抗体微阵列奠定了基础。 相似文献
5.
黄宝俊 赵雨杰 徐惠绵 何群 张玉魁 徐莹莹 马佳明HUANG Bao-Jun ZHAO Yu-Jie XU Hui-Mian HE Qun ZHANG Yu-Kui XU Ying-Ying MA Jia-Ming 《遗传》2003,25(5):691-595
为了优化筛检cDNA微阵列中靶基因的最适长度、浓度及点样溶液的种类,设计持家基因beta actin和GAPDH RT-PCR 3对引物,产物长度在189~1 078 bp之间,以乙肝病毒DNA片段为阴性对照,扩增纯化后分别溶于3×SSC、50%DMSO及0.5mol/L碳酸盐缓冲液(pH=9.0)中,调整浓度分别为0.5μg/μL、1.0μg/μL和1.5μg/μL,比较上述不同条件的杂交结果。结果表明,杂交具有较好的特异性,阴性对照(乙肝病毒)和空白对照(点样溶液)均未见杂交信号;3种长度的同一靶基因杂交信号强度无明显差别(beta actin P=0.378;GAPDH P=0.866);3种点样溶液中以50%DMSO杂交信号最好,较强且均匀一致(P=0.0001),其余2种差异不显著(P=0.142);3种浓度靶基因杂交信号差异不显著(P=0.648),浓度高者信号略强。短片段靶基因(200 bp左右)可获得与长片段靶基因(1 000 bp以上)一样较好的杂交信号,点样溶液以50%DMSO效果最好,靶基因浓度为0.5μg/μL时即可得到较好的杂交结果。Abstract:To optimize and screen the most suitable target gene length,concentration and printing solution in cDNA microarray,housekeeping genes,such as beta actin and GAPDH,were selected as targets and hepatitis B virus gene as negative control.The RT-PCR primers that spanned at least one intron and whose products were at between 189 bp and 1 078 bp were designed with primer premier 5.0,so did the hepatitis B virus gene PCR primer.After polymerase chain reaction,the products were purified with ethanol and dissolved in 3×SSC,50% DMSO and 0.5mol/L carbonate buffer(pH=9.0)respectively.The concentrations of target genes were adjusted at 0.5μg/μL,1.0μg/μL and 1.5μg/μL.The hybridization signals had a good specificity.No signal showed in either negative control (HBV) or blank control (printing solution only).There was no significant difference in target gene lengths.The P value of beta actin (189 bp,491 bp,974 bp) and GAPDH (227 bp,552 bp,1 078 bp) was 0.378 and 0.866 respectively.There was no significant difference among concentrations(P=0.648),too.However,the higher the concentration was,the stronger the signals would be.Among the three kinds of printing solution,50% DMSO was the best(P=0.0001),while the other two had no difference by multi-comparison(P=0.142).The target gene at length between 200 bp and 1 000 bp has got the same hybridization signals.50%DMSO printing solution and the target gene concentration of 0.5μg/μl are suitable for good hybridization. 相似文献
6.
基因芯片技术是基因组学中的重要研究工具。而基因芯片数据( 微阵列数据) 往往是高维的,使得降维成为微阵列数据分析中的一个必要步骤。本文对美国哈佛医学院 G. J. Gordon 等人提供的肺癌微阵列数据进行分析。通过 t- test,Wilcoxon 秩和检测分别提取微阵列数据特征属性,后根据 CART( Classification and Regression Tree) 算法,以 Gini 差异性指标作为误差函数,用提取的特征属性广延的构造分类树; 再进行剪枝找到最优规模的树,目的是提高树的泛化性能使得能很好适应新的预测数据。实验证明: 该方法对肺癌微阵列数据分类识别率达到 96% 以上,且很稳定; 并可以得到人们容易理解的分类规则和分类关键基因。 相似文献
7.
8.
提出了一种蛋白质相互作用的相似性度量,将其与基因表达数据的相似性度量相结合,定义了一种融合的距离度量,并且将这种融合的距离度量用于改进现有的K—means聚类方法。经过实际数据的检验,改进后的K—means方法比常用的其它几种聚类方法具有更好的效果,说明结合蛋白质相互作用数据可以使得基因表达聚类的结果更有生物意义。 相似文献
9.
11.
Ouafae Kaissi Eric Nimpaye Tiratha Raj Singh Brigitte Vannier Azeddine Ibrahimi Abdellatif Amrani Ghacham Ahmed Moussa 《Bioinformation》2013,9(20):1019-1022
In response to the rapid development of DNA Microarray Technologies, many differentially expressed genes selection algorithms
have been developed, and different comparison studies of these algorithms have been done. However, it is not clear how these
methods compare with each other, especially when we used different developments tools. Here, we considered three commonly
used differentially expressed genes selection approaches, namely: Fold Change, T-test and SAM, using Bioinformatics Matlab
Toolbox and R/BioConductor. We used two datasets, issued from the affymetrix technology, to present results of used methods
and software''s in gene selection process. The results, in terms of sensitivity and specificity, indicate that the behavior of SAM is
better compared to Fold Change and T-test using R/BioConductor. While, no practical differences were observed between the
three gene selection methods when using Bioinformatics Matlab Toolbox. In face of our result, the ROC curve shows that: on the
one hand R/BioConductor using SAM is favored for microarray selection compared to the other methods. And, on the other hand,
results of the three studied gene selection methods using Bioinformatics Matlab Toolbox are still comparable for the two datasets
used. 相似文献
12.
13.
cDNA微阵列在功能基因组学研究中的应用 总被引:2,自引:0,他引:2
cDNA微阵列是当前功能基因组学研究中的一种强有力的工具。由于微阵列能检测全基因组水平上的基因表达,它能帮助人们把研究对象作为一个整体进行研究。这正是以往孤立地研究特定基因的研究方式所不能比拟的。本文简要介绍了cDNA微阵列技术的发展渊源和大致的操作流程,侧重于原理和策略,突出了它与传统方法在思路上的不同之处,同时也分析了它目前的瓶颈和局限。最后,展望了其进一步发展的方向。 相似文献
14.
Biclustering is an important tool in microarray analysis when only a subset of genes co-regulates in a subset of conditions. Different from standard clustering analyses, biclustering performs simultaneous classification in both gene and condition directions in a microarray data matrix. However, the biclustering problem is inherently intractable and computationally complex. In this paper, we present a new biclustering algorithm based on the geometrical viewpoint of coherent gene expression profiles. In this method, we perform pattern identification based on the Hough transform in a column-pair space. The algorithm is especially suitable for the biclustering analysis of large-scale microarray data. Our studies show that the approach can discover significant biclusters with respect to the increased noise level and regulatory complexity. Furthermore, we also test the ability of our method to locate biologically verifiable biclusters within an annotated set of genes. 相似文献
15.
基因芯片是目前十分重要的分子生物学研究工具,但不可否认,作为一项新兴的技术,基因芯片正处于不断探索和改进的过程中。本文以Affymetrix基因芯片为例,分析了基因芯片探针注释中存在的探针错配以及探针非特异性两个主要问题。针对这两个问题,本文分Affymetrix官方和其它研究机构两方面对改进措施进行综述,其它研究机构的解决措施又从基因、转录本和外显子三方面展开叙述。最后,本文指出了目前研究的发展趋势,就今后的相关研究提出了一些建议。 相似文献
16.
基于DNA序列数据挖掘算法研究 总被引:1,自引:0,他引:1
引入数据挖掘技术,研究DNA序列数据内在规律性,并给出DNA序列分类问题的算法.综合考虑碱基组的出现概率以及相邻氨基酸之间的关系,从DNA序列片段的个案中密码子分布密度角度出发,提取出已知类别的DNA序列片段的特征;应用分类的逐步判别分析方法,剔除判别能力不显著的变量,给出DNA序列分类的判别函数.仿真结果表明,该算法具有分类计算公式简单且分类结果精度的优点. 相似文献
17.
低密度cDNA芯片技术的优化 总被引:2,自引:0,他引:2
为了建立稳定的低密度cDNA芯片技术平台,研究靶基因的最适长度、浓度、点样溶液种类及杂交反应动力学,并了解该芯片的重复性与可靠性.结果表明,杂交具有较好的特异性,不同长度(189~1078bp)、浓度(0.5g/L、1.0g/L、1.5g/L)的同一靶基因杂交信号强度无明显差别;以50%DMSO为点样溶液者杂交信号最好(P=0.0001).60℃杂交18h信号最佳(P<0.001).重复2次检测结果差异无显著性(P=0.348),重复性较好,其相关系数为0.588.与RT-PCR结果相比,相关系数为-0.778(P<0.0001),特异性为100%,灵敏度为80%(16/20),可靠性较好. 相似文献
18.
Dipankar Sengupta Meemansa Sood Poorvika Vijayvargia Sunil Hota Pradeep K Naik 《Bioinformation》2013,9(11):555-559
Healthcare sector is generating a large amount of information corresponding to diagnosis, disease identification and treatment of
an individual. Mining knowledge and providing scientific decision-making for the diagnosis & treatment of disease from the
clinical dataset is therefore increasingly becoming necessary. Aim of this study was to assess the applicability of knowledge
discovery in brain tumor data warehouse, applying data mining techniques for investigation of clinical parameters that can be
associated with occurrence of brain tumor. In this study, a brain tumor warehouse was developed comprising of clinical data for
550 patients. Apriori association rule algorithm was applied to discover associative rules among the clinical parameters. The rules
discovered in the study suggests - high values of Creatinine, Blood Urea Nitrogen (BUN), SGOT & SGPT to be directly associated
with tumor occurrence for patients in the primary stage with atleast 85% confidence and more than 50% support. A normalized
regression model is proposed based on these parameters along with Haemoglobin content, Alkaline Phosphatase and Serum
Bilirubin for prediction of occurrence of STATE (brain tumor) as 0 (absent) or 1 (present). The results indicate that the
methodology followed will be of good value for the diagnostic procedure of brain tumor, especially when large data volumes are
involved and screening based on discovered parameters would allow clinicians to detect tumors at an early stage of development. 相似文献
19.
Identification of Differentially-expressed Genes in Intestinal Gastric Cancer by Microarray Analysis
Shizhu Zang Ruifang Guo Rui Xing Liang Zhang Wenmei Li Min Zhao Jingyuan Fang Fulian Hu Bin Kang Yonghong Ren Yonglong Zhuang Siqi Liu Rong Wang Xianghong Li Yingyan Yu Jing Cheng Youyong Lu 《基因组蛋白质组与生物信息学报(英文版)》2014,12(6):276-283
20.