首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Plasma protein binding of oxybutynin (OXY) was investigated quantitatively and enantioselectively using high-performance frontal analysis (HPFA). An on-line HPLC system which consists of HPFA column, extraction column and analytical column was developed to determine the unbound concentrations of OXY enantiomers in human plasma, in human serum albumin (HSA) solutions, and in human alpha1-acid glycoprotein (AGP) solutions. OXY is bound in human plasma strongly and enantioselectively. The bound drug fraction in human plasma containing 2-10 microM (R)- or (S)-OXY was higher than 99%, and the unbound fraction of (R)-OXY was 1.56 times higher than that of (S)-isomer. AGP plays the dominant role in this strong and enantioselective plasma protein binding. The total binding affinities (nK) of (R)- and (S)-OXY to AGP were 6.86 x 10(6) and 1.53 x 10(7) M(-1), respectively, while the nK values of (R)- and (S)-OXY to HSA were 2.64 x 10(4) and 2.19 x 10(-4) M(-1), respectively. The binding affinity of OXY to AGP is much higher than that to HSA, and shows high enantioselectivity (SIR ratio of nK values is 2.2). It was found that both enantiomers are bound competitively at the same binding site on an AGP molecule. The binding property between OXY and low density lipoprotein (LDL) was investigated by using the frontal analysis method incorporated in high-performance capillary electrophoresis (HPCE/FA). It was found the binding is non-saturable and non-enantioselective.  相似文献   

2.
Plasma protein binding of N-desethyloxybytynin (DEOXY), a major active metabolite of oxybutynin (OXY), was investigated quantitatively and enantioselectively using high-performance frontal analysis (HPFA). An on-line HPLC system which consists of HPFA column, extraction column and analytical column was developed to determine the unbound concentrations of DEOXY enantiomers in human plasma, in human serum albumin (HSA) solutions, and in human alpha1-acid glycoprotein (AGP) solutions. DEOXY is bound in human plasma strongly and enantioselectively. The unbound drug fraction in human plasma samples containing 5 microM (R)- or (S)-DEOXY was 1.19 +/- 0.001 and 2.33 +/- 0.044%, respectively. AGP plays the dominant role in this strong and enantioselective plasma protein binding of DEOXY. The total binding affinity (nK) of (R)-DEOXY and (S)-DEOXY to AGP was 2.97 x 10(7) and 1.31 x 10(7) M(-1), respectively, while the nK values of (R)-DEOXY and (S)-DEOXY to HSA were 7.77 x 10(3) and 8.44 x 10(3) M(-1), respectively. While the nK value of (S)-DEOXY is weaker than that of (S)-OXY (1.53 x 10(7) M(-1)), the nK value of (R)-DEOXY is 4.33 times stronger than that of (R)-OXY (6.86 x I0(6) M(-1)). This suggests that the elimination of an ethyl group weakens the binding affinity of the (S)-isomer because of the decrease in hydrophobicity, while the binding affinity of the (R)-isomer is enhanced by the decrease in steric hindrance. The total binding affinity of DEOXY to HSA is much lower than that of DEOXY-AGP binding as well as OXY-HSA binding (2.64 x 10(4) and 2.19 x 10(4) M(-1) for (R)-OXY and (S)-OXY, respectively). The study on competitive binding between OXY and DEOXY indicated that DEOXY enantiomers and OXY enantiomers are all bound competitively at the same binding site of AGP molecule.  相似文献   

3.
S K Yang  K Liu  F P Guengerich 《Chirality》1990,2(3):150-155
Rates of hydrolysis of racemic and enantiomeric oxazepam 3-acetates (OXA) by esterases in human and rat liver microsomes and rat brain S9 fraction were compared. When rac-OXA was the substrate, esterases in human and rat liver microsomes were highly enantioselective toward (R)-OXA. In contrast, esterases in rat brain S9 fraction were highly enantioselective toward (S)-OXA. Hydrolysis rates of rac-OXA were highly dependent on the amount of esterases used. At 0.05 mg protein equivalent of esterases and 150 nmol of rac-OXA per ml of incubation mixture, the (R)-OXA was hydrolyzed 3.6-fold and 18.5-fold faster than (S)-OXA by rat and human liver microsomes, respectively. The specific activities (nmol of OXA hydrolyzed/mg microsomal protein/min) of liver microsomes in the hydrolysis of enantiomerically pure (R)-OXA were approximately 120 (rat) and 1,980 (human), and in the hydrolysis of enantiomerically pure (S)-OXA were 4 (rat) and 7 (human), respectively. In the incubation of rac-OXA with rat brain S9 fraction, (S)-OXA was hydrolyzed approximately 6-fold faster than (R)-OXA. Results also indicated an enantiomeric interaction in the hydrolysis of rac-OXA by esterases in rat and human liver microsomes; the presence of (R)-OXA stimulated the hydrolysis of (S)-OXA, whereas the presence of (S)-OXA inhibited the hydrolysis of (R)-OXA. In rat brain S9 fraction, the presence of (R)-OXA inhibited the hydrolysis of (S)-OXA, whereas the presence of (S)-OXA appeared to have stimulated the hydrolysis of (R)-OXA.  相似文献   

4.
M G Shou  S K Yang 《Chirality》1990,2(3):141-149
Enantiomeric pairs of 1-hydroxy-3-hydroxymethylcholanthrene (1-OH-3-OHMC), 3-methylcholanthrene (3MC) trans- and cis-1,2-diols, and 1-hydroxy-3-methylcholanthrene (1-OH-3MC) were resolved by HPLC using a covalently bonded (R)-N-(3,5-dinitrobenzoyl)phenylglycine chiral stationary phase (Pirkle type 1A) column. The absolute configuration of an enantiomeric 3MC trans-1,2-diol was established by the exciton chirality CD method following conversion to a bis-p-N,N-dimethylaminobenzoate. Incubation of an enantiomeric 1-OH-3MC with rat liver microsomes resulted in the formation of enantiomeric 3MC trans- and cis-1,2-diols; the absolute configurations of the enantiomeric 1-OH-3MC and 3MC cis-1,2-diol were established on the basis of the absolute configuration of an enantiomeric 3MC trans-1,2-diol. Absolute configurations of enantiomeric 1-OH-3-OHMC were determined by comparing their CD spectra with those of enantiomeric 1-OH-3MC. The relative amount of three aliphatic hydroxylation products formed by rat liver microsomal metabolism of racemic 1-OH-3MC was 1-OH-3-OHMC greater than 3MC cis-1,2-diol greater than 3MC trans-1,2-diol. Enzymatic hydroxylation at C2 of racemic 1-OH-3MC was enantioselective toward the 1S-enantiomer over the 1R-enantiomer (approximately 3/1); hydroxylation at the C3-methyl group was enantioselective toward the 1R-enantiomer over the 1S-enantiomer (approximately 58/42). Rat liver microsomal C2-hydroxylation of racemic 1-OH-3MC resulted in a 3MC trans-1,2-diol with a (1S,2S)/(1R,2R) ratio of 63/37 and a 3MC cis-1,2-diol with a (1S,2R)/(1R,2S) ratio of 12/88, respectively.  相似文献   

5.
The stereochemistry of S-(2-chloro-1,1,2-trifluoroethyl)glutathione formation was studied in rat liver cytosol, microsomes, N-ethylmaleimide-treated microsomes, 9000g supernatant fractions, purified rat liver microsomal glutathione S-transferase, and isolated rat hepatocytes. The absolute configuration of the chiral center generated by the addition of glutathione to chlorotrifluoroethene was determined by degradation of S-(2-chloro-1,1,2-trifluoroethyl)glutathione to chlorofluoroacetic acid, followed by derivatization to form the diastereomeric amides N-(S)-alpha-methylbenzyl-(S)-chlorofluoacetamide and N-(S)-alpha-methylbenzyl-(R)-chlorofluoroacetamide, which were separated by gas chromatography. Native and N-ethylmaleimide-treated rat liver microsomes, purified rat liver microsomal glutathione S-transferase, rat liver 9000g supernatant, and isolated rat hepatocytes catalyzed the formation of 75-81% (2S)-S-(2-chloro-1,1,2-trifluoroethyl)glutathione; rat liver cytosol catalyzed the formation of equal amounts of (2R)- and (2S)-S-(2-chloro-1,1,2-trifluoroethyl)glutathione. In rat hepatocytes, microsomal glutathione S-transferase catalyzed the formation of 83% of the total S-(2-chloro-1,1,2-trifluoroethyl)glutathione formed. These observations show that the microsomal glutathione S-transferase catalyzes the first step in the intracellular, glutathione-dependent bioactivation of the nephrotoxin chlorotrifluoroethene.  相似文献   

6.
In this study, we report the synthesis, spectral characterization, antiepileptic activity and biotransformation of three new, chiral, N‐aminoalkyl derivatives of trans – 2 aminocyclohexan‐1‐ol: 1 (R enantiomer), 2 (S enantiomer) and 3 (racemate). Antiepileptic activity of the titled compounds was studied using MES and scMet. Moreover, in this study, the biotransformation of 1 , 2 and 3 in microbial model (Cunninghamella), liver microsomal assay as well as in silico studies (MetaSite) was evaluated. Studies have indicated that 1 , 2 and 3 have good antiepileptic activity in vivo, comparable to valproate. Biotransformation assays showed that the most probable metabolite (indicated in every tested assays) was M1 . The microbial model as well as in silico study showed no difference in biotransformation between tested enantiomers. However, in a rat liver microsomal study compound 1 and 2 (R and S enantiomer) had different main metabolite – M2 for 1 and M1 for 2 . MS/MS fragmentation allowed us to predict the structures of obtained metabolites, which were in agreement with 1°alcohol ( M1 ) and carboxylic acid ( M2 ). Our research has shown that microbial model, microsomal assay, and computational methods can be included as useful and reliable tools in early ADME‐Tox assays in the process of developing new drug candidates. Chirality 27:163–169, 2015. © 2014 Wiley Periodicals, Inc.  相似文献   

7.
The rat kidney microsomal epoxygenase catalyzed the asymmetric epoxidation of arachidonic acid to generate as major products: 8(R),9(S)-, 11(R),12(S)- and 14(S),15(R)-epoxyeicosatrienoic acids with optical purities of 97, 88, and 70%, respectively. Inhibition studies utilizing a panel of polyclonal antibodies to several rat liver cytochrome P-450 isoforms, indicated that the renal epoxygenase(s) belongs to the cytochrome P-450 2C gene family. Dietary salt, administered either as a 2-2.5% (w/v) solution in the drinking water or as a modified solid diet containing 8% NaCl (w/w), resulted in marked and selective increases in the renal microsomal epoxygenase activity (416 and 260% of controls, for the liquid and solid forms of NaCl, respectively) with no significant changes in the microsomal omega/omega-1 oxygenase or in the hepatic arachidonic acid monooxygenase reaction. Immunoblotting studies demonstrated that dietary salt induced marked increases in the concentration of a cytochrome P-450 isoform(s) recognized by polyclonal antibodies raised against human liver cytochrome P-450 2C10 or rat liver cytochrome P-450 2C11. Comparisons of the stereochemical selectivity of the induced and non-induced microsomal epoxygenase(s) with that of purified rat liver cytochrome P-450 2C11 suggest that the salt-induced protein(s) is catalytically and structurally different from liver cytochrome P-450 2C11. The in vivo significance of dietary salt in regulating the activities of the kidney endogenous arachidonic acid epoxygenase was established by the demonstration of a salt-induced 10-20-fold increase in the urinary output of epoxygenase metabolites. These results, in conjunction with published evidence demonstrating the potent biological activities of its metabolites, suggest a role for the epoxygenase in the renal response to dietary salt.  相似文献   

8.
An enantioselective mandelate-degrading bacterium, Alcaligenes sp. ECU0401, was newly isolated from soil. By fed-batch culture, (R)-(-)-mandelic acid was successfully prepared in a 5-L fermenter with 32.8% isolated yield and >99.9% enantiomeric excesses (e.e.) from totally 3.04% (w/v) of racemic mandelic acid after 99 h of biotransformation. The optimal reaction pH and temperature were 6.5 and 30 degrees C, respectively. Using the resting cell as a biocatalyst for asymmetric degradation of racemic mandelic acid and chloro-substituted derivatives thereof, (R)-(-)-mandelic acid, (R)-(-)-o-chloromandelic acid, (S)-(+)-m-chloromandelic acid and (S)-(+)-p-chloromandelic acid were recovered with high analytic yields and excellent enantiomeric excesses (e.e. > 99.9%). (R)-(-)-Mandelic acid could also be obtained after 12 h of biotransformation with 41.5% isolated yield and >99.9% e.e.  相似文献   

9.
Flobufen (F) is the original nonsteroidal antiinflammatory drug (NSAID) containing two enantiomers. The aim of this investigation was to elucidate the biotransformation pathway of F at chiral level in phase I of biotransformation. Stereoselectivity and stereospecificity of the respective enzymes were studied in male rats in vitro (microsomal and cytosolic fractions, hepatocytes suspension) and in vivo. The rac-F, (+)-R-F and (-)-S-F were used as substrates. Amounts of F enantiomers, 4-dihydroflobufen diastereoisomers (DHF) and other metabolites (M-17203, UM) were determined with a chiral HPLC method in two chromatographic runs on R,R-ULMO and allyl-terguride bonded columns. Stereoselective biotransformation of the two enantiomers of F was observed at all tested levels and significant bidirectional chiral inversion of enantiomers of F was observed in hepatocytes. Mean enantiomeric ratios of F concentrations (S-/R-), after rac-F incubations, ranging from 1.09 in cytosolic fraction to 18.23 in hepatocytes. Stereospecificity of the respective F reductases was also observed. (2R;4S)-DHF and (2S;4S)-DHF are the principal metabolites of F in microsomes and hepatocytes. Neither DHF diastereoisomers nor M-17203 were found in cytosolic fraction. Only the nonchiral metabolite, M-17203, was found in all urine and feces samples after oral administration of F.  相似文献   

10.
Using a polyclonal antiserum raised against the inositol 1,4,5-trisphosphate receptor (IP3R) purified from rat cerebellum, we examined the subcellular distribution of IP3R in canine pancreatic homogenates. IP3R was present primarily in a smooth microsomal fraction (low density), a (high density) rough microsomal (RM) fraction previously shown to consist of highly purified rough endoplasmic reticulum (RER) vesicles, and, to a much lesser extent, in an intermediate density microsomal fraction which did not contain markers for RER or plasma membrane. When the RM fraction was subjected to isopycnic centrifugation on sucrose gradients, IP3R equilibrated at high sucrose densities. When ribosomes were extracted from the RM fraction by treatment with puromycin/high salt, IP3R equilibrated at considerably lighter sucrose densities. This shift in density indicated that IP3R which was present in the RM fraction is associated with the RER. Because of a significant amount of IP3R fractionating into the smooth microsomal fraction (which contains plasma membrane, among other "smooth" membranes) and a considerable amount of IP3R present in the nuclear pellet which is also enriched in plasma membrane, we examined the possibility that IP3R may be present in plasma membrane. Further subfractionation of a crude plasma membrane pellet from rat liver revealed that IP3R coenriched with a plasma membrane marker and strongly suggested an association of IP3R with plasma membrane. The issue of why the same receptor is found in multiple biochemically and morphologically distinct membrane fractions is discussed in terms of the possibility of RER subcompartmentalization and IP3R subtypes. The fractionation pattern of IP3R in pancreas is significantly different from that previously reported for calcium (Ca2+)-binding proteins and an intracellular Ca-ATPase (Nigam, S. K. and Towers, T. (1990) J. Cell Biol. 111, 197-200), raising questions as to links between these latter proteins and IP3 sensitive Ca2+ pools. Nevertheless, although the fractionation patterns are different, all of these proteins are clearly associated with the RER.  相似文献   

11.
The metabolism of testosterone (TEST), androstenedione (AD) and progesterone (PROG) was assessed in hepatic microsomal fractions from male sheep. Rates of total hydroxylation of each steroid were lower in sheep liver than in microsomes isolated from untreated male rat, guinea pig or human liver, 6 beta-Hydroxylation was the most important pathway of biotransformation of each of the three steroids (0.80, 0.89 and 0.43 nmol/min/mg protein for TEST, AD and PROG, respectively). Significant minor metabolites from TEST were the 2 beta-, 15 beta- and 15 alpha-alcohols (0.19, 0.22 and 0.17 nmol/min/mg microsomal protein, respectively). Apart from the 6 beta-hydroxysteroid, only the 21-hydroxy derivative was formed from PROG at a significant rate (0.27 nmol/min/mg protein). The 6 beta-alcohol was the only metabolite formed from AD at a rate greater than 0.1 nmol/min/mg protein. Antisera raised in rabbits to several rat hepatic microsomal P450s were assessed for their capacity to modulate sheep microsomal TEST hydroxylation. Anti-P450 IIIA isolated from phenobarbital-induced rat liver effectively inhibited TEST hydroxylation at the 2 beta-, 6 beta-, 15 alpha- and 15 beta-positions (by 31-56% when incubated with microsomes at a ratio of 5 mg IgG/mg protein). IgG raised against rat P450 IIC11 and IIB1 inhibited the formation of some of the minor hydroxysteroid metabolites but did not decrease the rate of TEST 6 beta-hydroxylation. Western immunoblot analysis confirmed the cross-reactivity of anti-rat P450 IIIA with an antigen in sheep hepatic microsomes; anti-IIC11 and anti-IIB1 exhibited only weak immunoreactivity with proteins in these fractions. Considered together, the present findings indicate that, as is the case in many mammalian species, 6 beta-hydroxylation is the principal steroid biotransformation pathway of male sheep liver. Evidence from immunoinhibition and Western immunoblot experiments strongly implicate the involvement of a P450 from the IIIA subfamily in ovine steroid 6 beta-hydroxylation.  相似文献   

12.
An enantioselective assay for l- and d-fenfluramine in rat liver microsomal incubates was developed. The method involves extraction of fenfluramine from the microsomal incubates, and formation of fenfluramine diastereomeric derivatives with the chiral reagent S-(−)-N-trifluoroacetyl prolyl chloride. Separation and quantitation of the diastereomeric fenfluramine derivatives are carried out by a capillary gas chromatographic system with flame ionization detection. The assay is linear from 1 to 50 μg/ml for each enantiomer. The analytical method affords average recoveries of 92.28 and 96.44% for l- and d-fenfluramine, respectively. The limits of detection and quantitation for the method are 0.1 and 1.0 μg/ml for the l- and d-fenfluramine isomers, respectively. The reproducibility of the assay was <10% (RSD). The method allowed study of the depletion of l- and d-fenfluramine in rat liver microsomal incubates. The stereoselectivity of fenfluramine phase I metabolism was observed.  相似文献   

13.
The non-K-region benz[a]anthracene (BA) 8,9- and 10,11-epoxides were isolated by normal-phase high-performance liquid chromatography as rat liver microsomal metabolites of BA. The identities of these epoxides were established by ultraviolet and mass spectral analyses and were further validated by the microsomal epoxide hydrolase catalyzed conversion to BA trans-8,9-dihydrodiol and trans-10,11-dihydrodiol, respectively. Circular dichroism spectral analyses of the metabolically formed non-K-region epoxides and dihydrodiols and mass spectral analyses of metabolically formed 18O-labeled non-K-region dihydrodiols and their acid-catalyzed dehydration products indicated that BA (8R,9S)-epoxide and (10S,11R)-epoxide were the predominant enantiomers formed in the metabolism at the 8,9- and 10,11- aromatic double bonds of BA, respectively, by rat liver microsomes. This is the first example demonstrating the direct detection and stereoselective metabolic formation of non-K-region epoxides of a polycyclic aromatic hydrocarbon.  相似文献   

14.
A protein fraction which has a high affinity for polyribosomes was isolated from rough microsomal membranes of rat liver. The mode of polyribosome binding to this fraction (R-fraction) was studied by using CsCl equilibrium centrifugation and compared with that for stripped rough microsomal membranes. The following were found. (1) The polyribosome-binding cpacity of the R-fraction was heat-labile and sensitive to trypsin, and was suppressed by increasing KCl concentration and addition of 0.1 mM-aurintricarboxylic acid. (2) Of the four subfractions obtained by gel filtration of the R-fraction on a Sephadex G-200, only the R1-fraction, eluted at the void volume, showed a high affinity for polyribosomes. The polyribosome-binding capacity of the R1-fraction decreased with time on storage at 4 degrees C. (3) The R1-fraction contained three major proteins with mol. wts. 108,000, 99,000 and 65,000.  相似文献   

15.
X L Lu  S K Yang 《Chirality》1990,2(1):1-9
Metabolism of halazepam [7-chloro-1,3-dihydro-5-phenyl-1-(2,2,2-trifluoroethyl)-2H-1,4-benzod iazepin- 2-one, HZ] was studied by incubation with liver microsomes prepared from untreated, phenobarbital (PB)-treated, and 3-methylcholanthrene (3MC)-treated male Sprague-Dawley rats. Metabolites of HZ were separated by normal-phase HPLC. Relative rates of HZ metabolism by liver microsomes prepared from untreated and treated rats were PB-treated much greater than untreated greater than 3MC-treated at low concentration of microsomal enzymes (0.25 mg protein per ml of incubation mixture) and PB-treated much greater than 3MC-treated approximately untreated at high concentration of microsomal enzymes (2 mg protein per ml of incubation mixture). The relative amounts of major metabolites were found to be 3-hydroxy-HZ (3-OH-HZ) greater than N-desalkylhalazepam (NDZ, also known as N-desmethyldiazepam and nordiazepam) much greater than oxazepam (OX) for all three rat liver microsomal preparations and the distribution of metabolites was independent of microsomal enzyme concentrations. Enantiomers of 3-OH-HZ were resolved by HPLC on a Chiralcel OC column (cellulose trisphenylcarbamate coated on silica gel, particle size 10 microns). 3-OH-HZ enantiomeres have racemization half-lives of approximately 150 min in pH 4, 7.5, and 10 aqueous solutions. 3-OH-HZ formed in the metabolism of HZ by liver microsomes prepared from untreated and treated rats were found to have 3R/3S enantiomer ratios of 37/63 (untreated), 55/45 (PB-treated), and 36/64 (3MC-treated), respectively. N-dealkylation of 3-OH-HZ by liver microsomes from PB-treated rats was substrate enantioselective; the 3R-enantiomer was N-dealkylated faster than 3S-enantiomer.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
The enantiomers of K-region benz[a]anthracene (BA) 5,6-epoxide and benzo[a]pyrene (BP) 4,5-epoxide were resolved by chiral stationary-phase high-performance liquid chromatography (CSP-HPLC). The K-region epoxides formed in the metabolism of BA by liver microsomes from untreated (control), phenobarbital (PB)-treated, and 3-methylcholanthrene (MC)-treated male Sprague-Dawley rats were determined by CSP-HPLC to have a 5R,6S/5S,6R enantiomer ratio of 25:75, 21:79, and 4:96, respectively. The K-region 4,5-epoxide formed in the metabolism of BP by the same rat liver microsomal preparations contained a 4R,5S/4S,5R enantiomer ratio of 48:52 (control), 40:60 (PB), and 5:95 (MC), respectively. The results indicate that various cytochrome P-450 isozymes of rat liver exhibit different stereoselective properties in catalyzing the epoxidation reactions at the K region of BA and of BP.  相似文献   

17.
Species differences and substrate specificities for the stereoselective hydrolysis of fifteen O-acyl propranolol (PL) prodrugs were investigated in pH 7.4 Tris-HCl buffer and rat and dog plasma and liver subfractions. The (R)-isomers were preferentially converted to propranolol (PL) in both rat and dog plasma with the exception of isovaleryl-PL in rat plasma, although the hydrolytic activities of prodrugs in rat plasma were 5–119-fold greater than those in dog plasma. The prodrugs with promoieties (C(=O)CH(R)CH3) based on propionic acid showed marked preference for hydrolysis of the (R)-enantiomers in plasma from both species (R/S ratio 2.5–18.2). On the other hand, the hepatic hydrolytic activities of prodrugs were greater in dog than rat, especially in cytosolic fractions. The hydrolytic activity was predominantly located in microsomes of the liver in rat, while the cytosol also contributed to hepatic hydrolysis in dog. Hepatic microsomal hydrolysis in dog showed a preference for the (R)-isomers except acetyl- and propionyl-PL. Interestingly, in rat liver all types of prodrugs with substituents of small carbon number showed (S)-preference for hydrolysis. The hydrolyses of (R)- and (S)-isomers of straight chain acyl esters in rat liver microsomes were linearly and parabolically related with the carbon number of substituents, respectively, while these relationships were linear for both isomers in dogs. Chirality 9:661–666, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

18.
Boulton DW  Devane CL 《Chirality》2000,12(9):681-687
Methadone enantiomers and EDDP, the main metabolite of methadone, were separated (R(s) = 2.0 for methadone enantiomers) following liquid-liquid extraction from human serum and urine followed by reverse-phase high-performance liquid chromatography on a derivatized beta-cyclodextrin column and quantified at therapeutic concentrations with ultraviolet detection. Detector response was linear (r(2) > 0.98) to 1,000 and 2,500 ng x mL(-1) for methadone enantiomers and EDDP, respectively. The limit of quantification from a 1-mL biological sample was 2.5 and 5 ng x mL(-1) for methadone enantiomers and EDDP, respectively. Interday variation was <13% and intraday variation was <8% for the analytes of interest. The assay was applied to plasma protein and erythrocyte binding studies and a 96-h pharmacokinetic study in two healthy female volunteers following oral dosing with rac-methadone. The binding of methadone to plasma proteins was enantioselective with the active (-)-(R) enantiomer having the highest free fraction (mean +/- SD: 21.2+/-7.6% vs. 13.3+/-6.2% for (+)-(S)-methadone, n = 8). Binding of methadone to erythrocytes was not apparently enantioselective (38.6+/-1.3% and 38.1+/-1.4% bound for (-)-(R)- and (+)-(S)-methadone, respectively). The pharmacokinetic study revealed enantioselective disposition of methadone in one volunteer but not in the other. EDDP was observed in urine but was only in small or undetectable concentrations in serum. The method is applicable to in vitro and pharmacokinetic studies of rac-methadone disposition in humans.  相似文献   

19.
1. A method for the extraction and purification of cytochrome c from rat liver is described. The method depends on multiple chromatography on Amberlite IRC-50 with elution with ammonium phosphate buffers of differing ionic composition and pH, interspersed with gel filtration with Sephadex G-25. Conditions leading to denaturation are avoided and the product is chromatographically pure. 2. The method may be used for the quantitative analysis of cytochrome c either in unfractionated liver or in subcellular fractions. 3. Two pools of cytochrome c were detected, one extractable at pH4.0 with distilled water and the other extracted from the residues of the first extraction with 0.15m-sodium chloride. 4. For subcellular distribution studies the liver was homogenized in 0.3m-sucrose and a nuclear fraction (washed thoroughly to remove trapped mitochondria), a mitochondrial fraction, a heavy microsomal fraction, a standard microsomal fraction and the cell sap were isolated. The mitochondrial fraction was subfractionated further by density-gradient centrifugation. Each fraction was analysed for protein, RNA, DNA, succinate-neotetrazolium oxidoreductase and glucose 6-phosphatase. 5. A total of 123mug. of cytochrome c was obtained/g. wet wt. of rat liver. 6. Values for the percentage subcellular distribution of cytochrome c are: nuclear fraction, 24.4; mitochondrial fraction, 57.2; heavy microsomal fraction, 5.2; standard microsomal fraction, 10.6; cell sap, 2.7. 7. Three out of the eight mitochondrial subfractions separated by gradient centrifugation contained 76% of the cytochrome c and 85% of the succinate-neotetrazolium oxidoreductase present in the mitochondrial fraction. 8. In unfractionated liver 94% of the cytochrome c was extracted at pH4.0 with water whereas in most of the subcellular fractions the corresponding value was approx. 75-80%.  相似文献   

20.
In liver fractions from male Sprague-Dawley rats, the metabolism of methacrylonitrile (MeAN) to cyanide (CN-) was localized in microsomal fraction and required reduced nicotinamide adenine dinucleotide phosphate (NADPH) and oxygen for maximal activity. The biotransformation of MeAN to CN- was characterized with respect to time, microsomal protein concentration, pH, and temperature. Metabolism of MeAN was increased in microsomes obtained from phenobarbital-treated rats (310% of control) and decreased with CoCl2 and SKF 525 A treatments (55% and 61%, respectively). Addition of the epoxide hydratase inhibitor, 1,1,1-trichloropropane 2,3-oxide, decreased the formation of CN- from MeAN. Addition of glutathione, cysteine, D-penicillamine, and 2-mercaptoethanol enhanced the released of CN- from MeAN. These findings indicate that MeAN is metabolized to CN- via a cytochrome P-450-dependent mixed-function oxidase system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号