首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
PDK1 (3-phosphoinositide-dependent protein kinase 1) activates a group of protein kinases belonging to the AGC [PKA (protein kinase A)/PKG (protein kinase G)/PKC (protein kinase C)]-kinase family that play important roles in mediating diverse biological processes. Many cancer-driving mutations induce activation of PDK1 targets including Akt, S6K (p70 ribosomal S6 kinase) and SGK (serum- and glucocorticoid-induced protein kinase). In the present paper, we describe the small molecule GSK2334470, which inhibits PDK1 with an IC?? of ~10 nM, but does not suppress the activity of 93 other protein kinases including 13 AGC-kinases most related to PDK1 at 500-fold higher concentrations. Addition of GSK2334470 to HEK (human embryonic kidney)-293, U87 or MEF (mouse embryonic fibroblast) cells ablated T-loop residue phosphorylation and activation of SGK isoforms and S6K1 induced by serum or IGF1 (insulin-like growth factor 1). GSK2334470 also inhibited T-loop phosphorylation and activation of Akt, but was more efficient at inhibiting Akt in response to stimuli such as serum that activated the PI3K (phosphoinositide 3-kinase) pathway weakly. GSK2334470 inhibited activation of an Akt1 mutant lacking the PH domain (pleckstrin homology domain) more potently than full-length Akt1, suggesting that GSK2334470 is more effective at inhibiting PDK1 substrates that are activated in the cytosol rather than at the plasma membrane. Consistent with this, GSK2334470 inhibited Akt activation in knock-in embryonic stem cells expressing a mutant of PDK1 that is unable to interact with phosphoinositides more potently than in wild-type cells. GSK2334470 also suppressed T-loop phosphorylation and activation of RSK2 (p90 ribosomal S6 kinase 2), another PDK1 target activated by the ERK (extracellular-signal-regulated kinase) pathway. However, prolonged treatment of cells with inhibitor was required to observe inhibition of RSK2, indicating that PDK1 substrates possess distinct T-loop dephosphorylation kinetics. Our data define how PDK1 inhibitors affect AGC signalling pathways and suggest that GSK2334470 will be a useful tool for delineating the roles of PDK1 in biological processes.  相似文献   

2.
BACKGROUND: Protein kinase B (PKB), and the p70 and p90 ribosomal S6 kinases (p70 S6 kinase and p90 Rsk, respectively), are activated by phosphorylation of two residues, one in the 'T-loop' of the kinase domain and, the other, in the hydrophobic motif carboxy terminal to the kinase domain. The 3-phosphoinositide-dependent protein kinase 1 (PDK1) activates many AGC kinases in vitro by phosphorylating the T-loop residue, but whether PDK1 also phosphorylates the hydrophobic motif and whether all other AGC kinases are substrates for PDK1 is unknown. RESULTS: Mouse embryonic stem (ES) cells in which both copies of the PDK1 gene were disrupted were viable. In PDK1(-/-) ES cells, PKB, p70 S6 kinase and p90 Rsk were not activated by stimuli that induced strong activation in PDK1(+/+) cells. Other AGC kinases - namely, protein kinase A (PKA), the mitogen- and stress-activated protein kinase 1 (MSK1) and the AMP-activated protein kinase (AMPK) - had normal activity or were activated normally in PDK1(-/-) cells. The insulin-like growth factor 1 (IGF1) induced PKB phosphorylation at its hydrophobic motif, but not at its T-loop residue, in PDK1(-/-) cells. IGF1 did not induce phosphorylation of p70 S6 kinase at its hydrophobic motif in PDK1(-/-) cells. CONCLUSIONS: PDK1 mediates activation of PKB, p70 S6 kinase and p90 Rsk in vivo, but is not rate-limiting for activation of PKA, MSK1 and AMPK. Another kinase phosphorylates PKB at its hydrophobic motif in PDK1(-/-) cells. PDK1 phosphorylates the hydrophobic motif of p70 S6 kinase either directly or by activation of another kinase.  相似文献   

3.
The multi-site phosphorylation of the protein kinase C (PKC) superfamily plays an important role in the regulation of these enzymes. One of the key phosphorylation sites required for the activation of all PKC isoforms lies in the T-loop of the kinase domain. Recent in vitro and transfection experiments indicate that phosphorylation of this residue can be mediated by the 3-phosphoinositide-dependent protein kinase-1 (PDK1). In this study, we demonstrate that in embryonic stem (ES) cells lacking PDK1 (PDK1-/- cells), the intracellular levels of endogenously expressed PKCalpha, PKCbetaI, PKCgamma, PKCdelta, PKCepsilon, and PKC-related kinase-1 (PRK1) are vastly reduced compared to control ES cells (PDK1+/+ cells). The levels of PKCzeta and PRK2 protein are only moderately reduced in the PDK1-/- ES cells. We demonstrate that in contrast to PKCzeta expressed PDK1+/+ ES cells, PKCzeta in ES cells lacking PDK1 is not phosphorylated at its T-loop residue. This provides the first genetic evidence that PKCzeta is a physiological substrate for PDK1. In contrast, PRK2 is still partially phosphorylated at its T-loop in PDK1-/- cells, indicating the existence of a PDK1-independent mechanism for the phosphorylation of PRK2 at this residue.  相似文献   

4.
The substrates of most protein kinases remain unknown because of the difficulty tracing signaling pathways and identifying sites of protein phosphorylation. Here we describe a method useful in detecting subclasses of protein kinase substrates. Although the method is broadly applicable to any protein kinase for which a substrate consensus motif has been identified, we illustrate here the use of antibodies broadly reactive against phosphorylated Ser/Thr-motifs typical of AGC kinase substrates. Phosphopeptide libraries with fixed residues corresponding to consensus motifs RXRXXT*/S* (Akt motif) and S*XR (protein kinase C motif) were used as antigens to generate antibodies that recognize many different phosphoproteins containing the fixed motif. Because most AGC kinase members are phosphorylated and activated by phosphoinositide-dependent protein kinase-1 (PDK1), we used PDK1-/- ES cells to profile potential AGC kinase substrates downstream of PDK1. To identify phosphoproteins detected using the Akt substrate antibody, we characterized the antibody binding specificity to generate a specificity matrix useful in predicting antibody reactivity. Using this approach we predicted and then identified a 30-kDa phosphoprotein detected by both Akt and protein kinase C substrate antibodies as S6 ribosomal protein. Phosphospecific motif antibodies offer a new approach to protein kinase substrate identification that combines immunoreactivity data with protein data base searches based upon antibody specificity.  相似文献   

5.
Pharmacodynamic (PD) biomarkers are an increasingly valuable tool for decision-making and prioritization of lead compounds during preclinical and clinical studies as they link drug-target inhibition in cells with biological activity. They are of particular importance for novel, first-in-class mechanisms, where the ability of a targeted therapeutic to impact disease outcome is often unknown. By definition, proximal PD biomarkers aim to measure the interaction of a drug with its biological target. For kinase drug discovery, protein substrate phosphorylation sites represent candidate PD biomarkers. However, substrate phosphorylation is often controlled by input from multiple converging pathways complicating assessment of how potently a small molecule drug hits its target based on substrate phoshorylation measurements alone. Here, we report the use of quantitative, differential mass-spectrometry to identify and monitor novel drug-regulated phosphorylation sites on target kinases. Autophosphorylation sites constitute clinically validated biomarkers for select protein tyrosine kinase inhibitors. The present study extends this principle to phosphorylation sites in serine/threonine kinases looking beyond the T-loop autophosphorylation site. Specifically, for the 3'-phosphoinositide-dependent protein kinase 1 (PDK1), two phospho-residues p-PDK1(Ser410) and p-PDK1(Thr513) are modulated by small-molecule PDK1 inhibitors, and their degree of dephosphorylation correlates with inhibitor potency. We note that classical, ATP-competitive PDK1 inhibitors do not modulate PDK1 T-loop phosphorylation (p-PDK1(Ser241)), highlighting the value of an unbiased approach to identify drug target-regulated phosphorylation sites as these are complementary to pathway PD biomarkers. Finally, we extend our analysis to another protein Ser/Thr kinase, highlighting a broader utility of our approach for identification of kinase drug-target engagement biomarkers.  相似文献   

6.
Phosphoinositide-dependent kinase 1 (PDK1) is a critical activator of multiple prosurvival and oncogenic protein kinases and has garnered considerable interest as an oncology drug target. Despite progress characterizing PDK1 as a therapeutic target, pharmacological support is lacking due to the prevalence of nonspecific inhibitors. Here, we benchmark literature and newly developed inhibitors and conduct parallel genetic and pharmacological queries into PDK1 function in cancer cells. Through kinase selectivity profiling and x-ray crystallographic studies, we identify an exquisitely selective PDK1 inhibitor (compound 7) that uniquely binds to the inactive kinase conformation (DFG-out). In contrast to compounds 1-5, which are classical ATP-competitive kinase inhibitors (DFG-in), compound 7 specifically inhibits cellular PDK1 T-loop phosphorylation (Ser-241), supporting its unique binding mode. Interfering with PDK1 activity has minimal antiproliferative effect on cells growing as plastic-attached monolayer cultures (i.e. standard tissue culture conditions) despite reduced phosphorylation of AKT, RSK, and S6RP. However, selective PDK1 inhibition impairs anchorage-independent growth, invasion, and cancer cell migration. Compound 7 inhibits colony formation in a subset of cancer cell lines (four of 10) and primary xenograft tumor lines (nine of 57). RNAi-mediated knockdown corroborates the PDK1 dependence in cell lines and identifies candidate biomarkers of drug response. In summary, our profiling studies define a uniquely selective and cell-potent PDK1 inhibitor, and the convergence of genetic and pharmacological phenotypes supports a role of PDK1 in tumorigenesis in the context of three-dimensional in vitro culture systems.  相似文献   

7.
8.
PKB/Akt, S6K, SGK and RSK are mediators of responses triggered by insulin and growth factors and are activated following phosphorylation by 3-phosphoinositide-dependent protein kinase-1 (PDK1). To investigate the importance of a substrate-docking site in the kinase domain of PDK1 termed the 'PIF-pocket', we generated embryonic stem (ES) cells in which both copies of the PDK1 gene were altered by knock-in mutation to express a form of PDK1 retaining catalytic activity, in which the PIF-pocket site was disrupted. The knock-in ES cells were viable, mutant PDK1 was expressed at normal levels and insulin-like growth factor 1 induced normal activation of PKB and phosphorylation of the PKB substrates GSK3 and FKHR. In contrast, S6K, RSK and SGK were not activated, nor were physiological substrates of S6K and RSK phosphorylated. These experiments establish the importance of the PIF-pocket in governing the activation of S6K, RSK, SGK, but not PKB, in vivo. They also illustrate the power of knock-in technology to probe the physiological roles of docking interactions in regulating the specificity of signal transduction pathways.  相似文献   

9.
Phosphoinositide-dependent protein kinase-1 (PDK1) is a recently identified kinase that phosphorylates and activates protein kinase B (PKB). Activation of PKB by insulin is linked to its translocation from the cytosol to the plasma membrane. However, no data are available yet concerning the localization of PDK1 in insulin-sensitive tissue. Using isolated adipocytes, we studied the effect of insulin and of an insulin-mimicking agent peroxovanadate on the subcellular localization of PDK1. In unstimulated adipocytes, overexpressed PDK1 was mostly cytosolic with a low amount associated to membranes. Peroxovanadate stimulation induced the redistribution of PDK1 to the membranes while insulin was without effect. This peroxovanadate effect was dependent on phosphatidylinositol 3,4,5 triphosphate [PtdIns(3,4,5)P3] production as inhibition of PtdIns 3-kinase by wortmannin or deletion of the PH domain of PDK1 prevented the peroxovanadate-induced translocation of PDK1. Further, peroxovanadate-treatment induced a tyrosine phosphorylation of PDK1 which was wortmannin insensitive and did not require the PH domain of PDK1. An inhibitor of Src kinase (PP2) decreased the peroxovanadate-induced PDK1 tyrosine phosphorylation and overexpression of v-Src stimulated this phosphorylation. Mutation of tyrosine 373 of PDK1 abolished the v-Src induced PDK1 tyrosine phosphorylation and partially reduced the effect of peroxovanadate. Our findings suggest that PDK1 could be a substrate for tyrosine kinases and identify Src kinase as one of the tyrosine kinases able to phosphorylate PDK1.  相似文献   

10.
PKB/Akt, S6K1 and SGK are related protein kinases activated in a PI 3-kinase-dependent manner in response to insulin/growth factors signalling. Activation entails phosphorylation of these kinases at two residues, the T-loop and the hydrophobic motif. PDK1 activates S6K, SGK and PKB isoforms by phosphorylating these kinases at their T-loop. We demonstrate that a pocket in the kinase domain of PDK1, termed the 'PIF-binding pocket', plays a key role in mediating the interaction and phosphorylation of S6K1 and SGK1 at their T-loop motif by PDK1. Our data indicate that prior phosphorylation of S6K1 and SGK1 at their hydrophobic motif promotes their interaction with the PIF-binding pocket of PDK1 and their T-loop phosphorylation. Thus, the hydrophobic motif phosphorylation of S6K and SGK converts them into substrates that can be activated by PDK1. In contrast, the PIF-binding pocket of PDK1 is not required for the phosphorylation of PKBalpha by PDK1. The PIF-binding pocket represents a substrate recognition site on a protein kinase that is only required for the phosphorylation of a subset of its physiological substrates.  相似文献   

11.
Nonsteroidal anti-inflammatory drugs, which inhibit cyclooxygenase (COX) activity, are powerful antineoplastic agents that exert their antiproliferative and proapoptotic effects on cancer cells by COX-dependent and/or COX-independent pathways. Celecoxib, a COX-2-specific inhibitor, has been shown to reduce the number of adenomatous colorectal polyps in patients with familial adenomatous polyposis. Here, we show that celecoxib induces apoptosis in the colon cancer cell line HT-29 by inhibiting the 3-phosphoinositide-dependent kinase 1 (PDK1) activity. This effect was correlated with inhibition of the phosphorylation of the PDK1 downstream substrate Akt/protein kinase B (PKB) on two regulatory sites, Thr(308) and Ser(473). However, expression of a constitutive active form of Akt/PKB (myristoylated PKB) has a low protective effect toward celecoxib-induced cell death. In contrast, overexpression of constitutive active mutant of PDK1 (PDK1(A280V)) was as potent as the pancaspase inhibitor, benzyloxycarbonyl-Val-Ala-Asp-fluoromethylketone, to impair celecoxib-induced apoptosis. By contrast, cells expressing a kinase-defective mutant of PDK1 (PDK1(K114G)) remained sensitive to celecoxib. Furthermore, in vitro measurement reveals that celecoxib was a potential inhibitor of PDK1 activity with an IC(50) = 3.5 microm. These data indicate that inhibition of PDK1 signaling is involved in the proapoptotic effect of celecoxib in HT-29 cells.  相似文献   

12.
PDK-1 is a protein kinase that is critical for the activation of many downstream protein kinases in the AGC superfamily, through phosphorylation of the activation loop site on these substrates. Cells lacking PDK-1 show decreased activity of these protein kinases, including protein kinase B (PKB) and p70S6K, whereas mTOR activity remains largely unaffected. Here we show, by assessing both association of cellular RNAs with polysomes and by metabolic labeling, that PDK-1-/- embryonic stem (ES) cells exhibit defects in mRNA translation. We identify which mRNAs are most dramatically translationally regulated in cells lacking PDK-1 expression by performing microarray analysis of total and polysomal RNA in these cells. In addition to the decreased translation of many RNAs, a smaller number of RNAs show increased association with polyribosomes in PDK-1-/- ES cells relative to PDK-1+/+ ES cells. We show that PKB activity is a critical downstream component of PDK-1 in mediating translation of cystatin C, RANKL, and Rab11a, whereas mTOR activity is less important for effective translation of these targets.  相似文献   

13.
The anti-tumorigenic and anti-proliferative effects of N-alpha-tosyl-l-phenylalanyl chloromethyl ketone (TPCK) have been known for more than three decades. Yet little is known about the discrete cellular targets of TPCK controlling these effects. Previous work from our laboratory showed TPCK, like the immunosuppressant rapamycin, to be a potent inhibitor of the 70-kilodalton ribosomal S6 kinase 1 (S6K1), which mediates events involved in cell growth and proliferation. We show here that rapamycin and TPCK display distinct inhibitory mechanisms on S6K1 as a rapamycin-resistant form of S6K1 was TPCK-sensitive. Additionally, we show that TPCK inhibited the activation of the related kinase and proto-oncogene Akt. Upstream regulators of S6K1 and Akt include phosphoinositide 3-kinase (PI 3-K) and 3-phosphoinositide-dependent kinase 1 (PDK1). Whereas TPCK had no effect on either mitogen-regulated PI 3-K activity or total cellular PDK1 activity, TPCK prevented phosphorylation of the PDK1 regulatory sites in S6K1 and Akt. Furthermore, whereas both PDK1 and the mitogen-activated protein kinase (MAPK) are required for full activation of the 90-kilodalton ribosomal S6 kinase (RSK), TPCK inhibited RSK activation without inhibiting MAPK activation. Consistent with the capacity of RSK and Akt to mediate a cell survival signal, in part through phosphorylation of the pro-apoptotic protein BAD, TPCK reduced BAD phosphorylation and led to cell death in interleukin-3-dependent 32D cells. Finally, in agreement with results seen in embryonic stem cells lacking PDK1, protein kinase A activation was not inhibited by TPCK showing TPCK specificity for mitogen-regulated PDK1 signaling. TPCK inhibition of PDK1 signaling thus disables central kinase cascades governing diverse cellular processes including proliferation and survival and provides an explanation for its striking biological effects.  相似文献   

14.
Members of the AGC subfamily of protein kinases including protein kinase B, p70 S6 kinase, and protein kinase C (PKC) isoforms are activated and/or stabilized by phosphorylation of two residues, one that resides in the T-loop of the kinase domain and the other that is located C-terminal to the kinase domain in a region known as the hydrophobic motif. Atypical PKC isoforms, such as PKCzeta, and the PKC-related kinases, like PRK2, are also activated by phosphorylation of their T-loop site but, instead of possessing a phosphorylatable Ser/Thr in their hydrophobic motif, contain an acidic residue. The 3-phosphoinositide-dependent protein kinase (PDK1) activates many members of the AGC subfamily of kinases in vitro, including PKCzeta and PRK2 by phosphorylating the T-loop residue. In the present study we demonstrate that the hydrophobic motifs of PKCzeta and PKCiota, as well as PRK1 and PRK2, interact with the kinase domain of PDK1. Mutation of the conserved residues of the hydrophobic motif of full-length PKCzeta, full-length PRK2, or PRK2 lacking its N-terminal regulatory domain abolishes or significantly reduces the ability of these kinases to interact with PDK1 and to become phosphorylated at their T-loop sites in vivo. Furthermore, overexpression of the hydrophobic motif of PRK2 in cells prevents the T-loop phosphorylation and thus inhibits the activation of PRK2 and PKCzeta. These findings indicate that the hydrophobic motif of PRK2 and PKCzeta acts as a "docking site" enabling the recruitment of PDK1 to these substrates. This is essential for their phosphorylation by PDK1 in cells.  相似文献   

15.
3-Phosphoinositide-dependent protein kinase-1 (PDK1) appears to play a central regulatory role in many cell signalings between phosphoinositide-3 kinase and various intracellular serine/threonine kinases. In resting cells, PDK1 is known to be constitutively active and is further activated by tyrosine phosphorylation (Tyr(9) and Tyr(373/376)) following the treatment of the cell with insulin or pervanadate. However, little is known about the mechanisms for this additional activation of PDK1. Here, we report that the SH2 domain of Src, Crk, and GAP recognized tyrosine-phosphorylated PDK1 in vitro. Destabilization of PDK1 induced by geldanamycin (a Hsp90 inhibitor) was partially blocked in HEK 293 cells expressing PDK1-Y9F. Co-expression of Hsp90 enhanced PDK1-Src complex formation and led to further increased PDK1 activity toward PKB and SGK. Immunohistochemical analysis with anti-phospho-Tyr(9) antibodies showed that the level of Tyr(9) phosphorylation was markedly increased in tumor samples compared with normal. Taken together, these data suggest that phosphorylation of PDK1 on Tyr(9), distinct from Tyr(373/376), is important for PDK1/Src complex formation, leading to PDK1 activation. Furthermore, Tyr(9) phosphorylation is critical for the stabilization of both PDK1 and the PDK1/Src complex via Hsp90-mediated protection of PDK1 degradation.  相似文献   

16.
Serine/threonine kinase Akt is thought to mediate many biological actions toward anti-apoptotic responses. Screening of drugs that could interfere with the Akt signaling pathway revealed that Hsp90 inhibitors (e.g. geldanamycin, radicicol, and its analogues) induced Akt dephosphorylation, which resulted in Akt inactivation and apoptosis of the cells. Hsp90 inhibitors did not directly affect Akt kinase activity in vitro. Thus, we examined the effects of Hsp90 inhibitors on upstream Akt kinases, phosphatidylinositide-3-OH kinase (PI3K) and 3-phosphoinositide-dependent protein kinase-1 (PDK1). Hsp90 inhibitors had no effect on PI3K protein expression. In contrast, treatment of the cells with Hsp90 inhibitors decreased the amount of PDK1 without directly inhibiting PDK1 kinase activity. We found that the kinase domain of PDK1 was essential for complex formation with Hsp90 and that Hsp90 inhibitors suppressed PDK1 binding to Hsp90. PDK1 degradation mechanisms revealed that inhibition of PDK1 binding to Hsp90 caused proteasome-dependent degradation of PDK1. Treatment of proteasome inhibitors increased the amount of detergent-insoluble PDK1 in Hsp90 inhibitor-treated cells. Therefore, the association of PDK1 with Hsp90 regulates its stability, solubility, and signaling. Because Akt binding to Hsp90 is also involved in the maintenance of Akt kinase activity, Hsp90 plays an important role in PDK1-Akt survival signaling pathway.  相似文献   

17.
The 90 kDa ribosomal S6 kinase-2 (RSK2) is a growth factor-stimulated protein kinase with two kinase domains. The C-terminal kinase of RSK2 is activated by ERK-type MAP kinases, leading to autophosphorylation of RSK2 at Ser386 in a hydrophobic motif. The N-terminal kinase is activated by 3-phosphoinositide-dependent protein kinase-1 (PDK1) through phosphorylation of Ser227, and phosphorylates the substrates of RSK. Here, we identify Ser386 in the hydrophobic motif of RSK2 as a phosphorylation-dependent docking site and activator of PDK1. Treatment of cells with growth factor induced recruitment of PDK1 to the Ser386-phosphorylated hydrophobic motif and phosphorylation of RSK2 at Ser227. A RSK2-S386K mutant showed no interaction with PDK1 or phosphorylation at Ser227. Interaction with Ser386-phosphorylated RSK2 induced autophosphorylation of PDK1. Addition of a synthetic phosphoSer386 peptide (RSK2(373-396)) increased PDK1 activity 6-fold in vitro. Finally, mutants of RSK2 and MSK1, a RSK-related kinase, with increased affinity for PDK1, were constitutively active in vivo and phosphorylated histone H3. Our results suggest a novel regulatory mechanism based on phosphoserine-mediated recruitment of PDK1 to RSK2, leading to coordinated phosphorylation and activation of PDK1 and RSK2.  相似文献   

18.
Phosphoinositide-dependent kinase l (PDK1) phosphorylates and activates multiple AGC serine kinases, including protein kinase B (PKB), p70Ribosomal S6 kinase (S6K) and p90Ribosomal S6 kinase (RSK). PDK1 is required for thymocyte differentiation and proliferation, and herein, we explore the molecular basis for these essential functions of PDK1 in T lymphocyte development. A key finding is that PDK1 is required for the expression of key nutrient receptors in T cell progenitors: CD71 the transferrin receptor and CD98 a subunit of L-amino acid transporters. PDK1 is also essential for Notch-mediated trophic and proliferative responses in thymocytes. A PDK1 mutant PDK1 L155E, which supports activation of PKB but no other AGC kinases, can restore CD71 and CD98 expression in pre-T cells and restore thymocyte differentiation. However, PDK1 L155E is insufficient for thymocyte proliferation. The role of PDK1 in thymus development thus extends beyond its ability to regulate PKB. In addition, PDK1 phosphorylation of AGC kinases such as S6K and RSK is also necessary for thymocyte development.  相似文献   

19.
Regulation of protein tyrosine phosphorylation is required for sperm capacitation and oocyte fertilization. The objective of the present work was to study the role of the calcium‐sensing receptor (CaSR) on protein tyrosine phosphorylation in boar spermatozoa under capacitating conditions. To do this, boar spermatozoa were incubated in Tyrode's complete medium for 4 hr and the specific inhibitor of the CaSR, NPS2143, was used. Also, to study the possible mechanism(s) by which this receptor exerts its function, spermatozoa were incubated in the presence of specific inhibitors of the 3‐phosphoinositide dependent protein kinase 1 (PDK1) and protein kinase A (PKA). Treatment with NPS2143, GSK2334470, an inhibitor of PDK1 and H‐89, an inhibitor of PKA separately induced an increase in tyrosine phosphorylation of 18 and 32 kDa proteins, a decrease in the serine/threonine phosphorylation of the PKA substrates together with a drop in sperm motility and viability. The present work proposes a new signalling pathway of the CaSR, mediated by PDK1 and PKA in boar spermatozoa under capacitating conditions. Our results show that the inhibition of the CaSR induces the inhibition of PDK1 that blocks PKA activity resulting in a rise in tyrosine phosphorylation of p18 and p32 proteins. This novel signalling pathway has not been described before and could be crucial to understand boar sperm capacitation within the female reproductive tract.  相似文献   

20.
3-phosphoinositide dependent protein kinase-1 (PDK1) plays a key role in regulating signalling pathways by activating AGC kinases such as PKB/Akt and S6K. Here we describe the 2.0 A crystal structure of the PDK1 kinase domain in complex with ATP. The structure defines the hydrophobic pocket termed the "PIF-pocket", which plays a key role in mediating the interaction and phosphorylation of certain substrates such as S6K1. Phosphorylation of S6K1 at its C-terminal PIF-pocket-interacting motif promotes the binding of S6K1 with PDK1. In the PDK1 structure, this pocket is occupied by a crystallographic contact with another molecule of PDK1. Interestingly, close to the PIF-pocket in PDK1, there is an ordered sulfate ion, interacting tightly with four surrounding side chains. The roles of these residues were investigated through a combination of site-directed mutagenesis and kinetic studies, the results of which confirm that this region of PDK1 represents a phosphate-dependent docking site. We discuss the possibility that an analogous phosphate-binding regulatory motif may participate in the activation of other AGC kinases. Furthermore, the structure of PDK1 provides a scaffold for the design of specific PDK1 inhibitors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号