首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Oligodeoxynucleic acid (21-mer) containing both negatively charged phosphate and positively charged ribonucleic guanidine linkages (RNG/DNA chimera) have been synthesized. DNA binding characteristics and nuclease resistance of RNG/DNA chimeras have been evaluated. Using the bcr-abl oncogene (cause of chronic myeloid leukemia) as a target, the binding of a 21-mer RNG/DNA chimera that includes six RNG's is more than 103.5 stronger than the binding of 21-mer composed solely of DNA.  相似文献   

2.
The interaction of the human adenovirus proteinase (AVP) with various DNAs was characterized. AVP requires two cofactors for maximal activity, the 11-amino acid residue peptide from the C-terminus of adenovirus precursor protein pVI (pVIc) and the viral DNA. DNA binding was monitored by changes in enzyme activity or by fluorescence anisotropy. The equilibrium dissociation constants for the binding of AVP and AVP-pVIc complexes to 12-mer double-stranded (ds) DNA were 63 and 2.9 nM, respectively. DNA binding was not sequence specific; the stoichiometry of binding was proportional to the length of the DNA. Three molecules of the AVP-pVIc complex bound to 18-mer dsDNA and six molecules to 36-mer dsDNA. When AVP-pVIc complexes bound to 12-mer dsDNA, two sodium ions were displaced from the DNA. A Delta of -4.6 kcal for the nonelectrostatic free energy of binding indicated that a substantial component of the binding free energy results from nonspecific interactions between the AVP-pVIc complex and DNA. The cofactors altered the interaction of the enzyme with the fluorogenic substrate (Leu-Arg-Gly-Gly-NH)2-rhodamine. In the absence of any cofactor, the Km was 94.8 microM and the kcat was 0.002 s(-1). In the presence of adenovirus DNA, the Km decreased 10-fold and the kcat increased 11-fold. In the presence of pVIc, the Km decreased 10-fold and the kcat increased 118-fold. With both cofactors present, the kcat/Km ratio increased 34000-fold, compared to that with AVP alone. Binding to DNA was coincident with stimulation of proteinase activity by DNA. Although other proteinases have been shown to bind to DNA, stimulation of proteinase activity by DNA is unprecedented. A model is presented suggesting that AVP moves along the viral DNA looking for precursor protein cleavage sites much like RNA polymerase moves along DNA looking for a promoter.  相似文献   

3.
We describe herein the construction of periodically, spatially controlled glycoclusters along DNA duplexes and their cooperative lectin recognition. Site-specifically alpha-mannosylated oligodeoxynucleotide 20-mer (Man-ODN20) was synthesized via the phosphoramidite solid-phase synthesis. Alternate hybridization of the Man-ODN20 with the half-sliding complementary ODN 20-mer (hscODN20) gave an alternately prolonged Man-cluster Man-ODN20/hscODN20. The binding of the Man-cluster to FITC-labeled ConA lectin showed sigmoidal fluorescence dependency on the concentration of Man-ODN, indicating that some mannose residues along the repeating DNA duplex were cooperatively bound to ConA (apparent affinity constant: K(af)=2.4 x 10(4)M(-1) and Hill coefficient: n=3.5). The duplex of Man-ODN20 with full complementary ODN 20-mer (fcODN20) was little bound to ConA. The binding behavior of Man-ODN20/hscODN20 is compared with that of the alternately prolonged Gal-cluster Gal-ODN20/hscODN20 previously reported. Duplexes 20-mer, 40-mer, and 60-mer presenting one, two, and three periodic galactoses were also prepared by full hybridization of 20-mer beta-galactosylated oligodeoxynucleotide (Gal-ODN20) with the periodically repeating full complementary 20-mer, 40-mer, and 60-mer ODNs. RCA(120) lectin was found to little bind the 20-mer and 40-mer duplexes and to bind weakly and non-cooperatively the 60-mer duplex (K(af)=1.1 x 10(4)M(-1)). The cooperative lectin recognition of these glycoclusters in relation with the degree of association (DA) of ODN and the numbers of glycosides along the DNA duplex is discussed.  相似文献   

4.
The DNA helix destabilizing activity of a series of cyclobisintercaland compounds (CBIs) has been evaluated by measuring their ability to displace a 32P-labelled oligonucleotide primer (17-mer) hybridized to the single stranded DNA of M13. This destabilizing activity appears to be strongly dependent on the cyclic structure (the linear acyclic references are inactive) and the size of the macrocycle; both features being known to determine the preferential binding of the compound to ssDNA. Interestingly, CBIs induced the dissociation of the duplex template in a concentration range (0.5-1 microM) close to that required for the destabilizing activity of single stranded DNA binding proteins (SSBs). Therefore competition experiments between CBIs and an SSB protein (Eco SSB) for binding to a single stranded oligonucleotide target (36-mer) have been performed through gel electrophoresis and nitrocellulose binding assays and strong inhibitory effects on the formation of the SSB:36-mer complex have been observed.  相似文献   

5.
Relative stability of parallel- and antiparallel-stranded duplex DNA   总被引:3,自引:0,他引:3  
  相似文献   

6.
Inhibition of the pre-steady-state burst of nucleotide incorporation by a single incorrect nucleotide (nucleotide discrimination) was measured with the Klenow fragment of DNA polymerase I [KF(exo+)]. For the eight mispairs studied on three DNA sequences, only low levels of discrimination ranging from none to 23-fold were found. The kinetics of dNTP incorporation into the 9/20-mer at low nucleotide concentrations was also determined. A limit of greater than or equal to 250 s-1 was placed on the nucleotide off-rate from the KF(exo+)-9/20-dTTP complex in accord with nucleotide binding being at equilibrium in the overall kinetic sequence. The influence of the relatively short length of the 9/20-mer on the mechanism of DNA replication fidelity was determined by remeasuring important kinetic parameters on a 30/M13-mer with high homology to the 9/20-mer. Pre-steady-state data on the nucleotide turnover rates, the dATP(alpha S) elemental effect, and the burst of dAMP misincorporation into the 30/M13-mer demonstrated that the kinetics were not affected by the length of the DNA primer/template. The effects on fidelity of two site-specific mutations, KF(polA5) and KF(exo-), were also examined. KF(polA5) showed an increased rate of DNA dissociation and a decreased rate of polymerization resulting in less processive DNA synthesis. Nevertheless, with at least one misincorporation event, that of dAMP into the 9/20-mer, KF(polA5) displays an increased replication fidelity.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
To investigate the role that the individual subunits play in the ATP-dependent helicase activity of the RecBCD protein we have investigated the ability of the RecB, RecC and RecD proteins to displace various 20-mer oligonucleotides annealed to either end or to the centre of an oligonucleotide 60 bases long. The results show that the only subunit which can displace the 20-mers in the absence of the other subunits is the RecB protein. Moreover, the 20-mer is displaced only if it is annealed to the 60-mer at the 5′ end or the middle, suggesting that the RecB protein translocates along the 60-mer in the 3′ to 5′ direction, displacing annealed 20-mers as it proceeds. We have shown that reconstituted RecBC and RecBCD complexes displace the 20-mers but, unlike RecB, they do not require a 3′-ended single-stranded region for helicase action, but can displace the 20-mers from either end of the 60-mer. The level of helicase activity of the RecBC complex is considerably greater than that of RecB alone, and the activity of the RecBCD complex appears to be greater still. This hierarchy of activity is also shown by DNA binding studies, but is not reflected in the ATPase activities of the enzymes. We have also shown that the ability of trypsin to cleave various sites on the RecB molecule is modified by the presence of ATP or ATP-γ-S, suggesting that conformational changes may be induced in RecB upon ATP binding. We discuss a model for the ATP-driven, unidirectional motion of the RecB translocase along single-stranded DNA. In this model, the RecB molecule binds to single-stranded DNA and then translocates along it, one base at a time, in the 3′ to 5′ direction, by a `ratchet' mechanism in which repeated stretching and contraction of the protein is coupled to ATP hydrolysis. The RecC protein in the RecBC complex is proposed to act as a `sliding clamp' which increases processivity by preventing dissociation.  相似文献   

8.
The properties of the interaction of 5-fluorocytosine-containing DNA with the EcoRII methyltransferase were studied. The DNA used was either a polymer synthesized in vitro, or a 20-mer containing one CCA/TGG sequence. The DNA could be methylated by the enzyme. In the process the enzyme formed a tight binding adduct with the DNA that could be identified by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Enzyme activity was inhibited by this interaction. The 20-mer could be used to titrate the active site of the enzyme. The DNA polymer formed a tight binding complex that could be identified following digestion of the DNA with pancreatic deoxyribonuclease or micrococcal nuclease. A peptide-DNA adduct could be isolated after digestion of the EcoRII-DNA adduct with staphylococcal protease V8 by high pressure liquid chromatography and polyacrylamide gel electrophoresis. Sequencing of the peptide indicated the DNA bound to a region of the protein that is conserved in all procaryotic DNA(cytosine-5)-methyltransferases. We have previously shown that this region contains a cysteine that can be photomethylated with adenosylmethionine. This region, in addition to forming part of, or being adjacent to, the AdoMet binding site, also forms part of the DNA binding site.  相似文献   

9.
Map of chartreusin and elsamicin binding sites on DNA   总被引:1,自引:0,他引:1  
X Salas  J Portugal 《FEBS letters》1991,292(1-2):223-228
Three DNA restriction fragments designated tyrT, 102-mer and 70-mer, have been used as substrates for footprinting studies using DNase I in the presence of the structurally similar antibiotics chartreusin and elsamicin A. The sequence-selective binding sites of the antibiotics can be mapped in regions which are rich in guanine + cytosine. Chartreusin and elsamicin appear to recognize and bind preferentially to sequences containing a CpG step. Regions containing a TpG step also seem to be a good binding site. The binding of elsamicin to these sites appears to be more concentration-dependent. A comparative analysis is performed of the sizes and locations of the different binding sites, aimed to infer whether the different biological effects of chartreusin and elsamicin A can be correlated to differences in their sequence-selective binding to DNA.  相似文献   

10.
For further characterization of the hybridization properties of peptide nucleic acids (PNAs), the thermodynamics of hybridization of mixed sequence PNA-DNA duplexes have been studied. We have characterized the binding of PNA to DNA in terms of binding affinity (perfectly matched duplexes) and sequence specificity of binding (singly mismatched duplexes) using mainly absorption hypochromicity melting curves and isothermal titration calorimetry. For perfectly sequence-matched duplexes of varying lengths (6-20 bp), the average free energy of binding (DeltaG degrees ) was determined to be -6.5+/-0.3 kJ mol(-1) bp(-1), corresponding to a microscopic binding constant of about 14 M(-1) bp(-1). A variety of single mismatches were introduced in 9- and 12-mer PNA-DNA duplexes. Melting temperatures (T(m)) of 9- and 12-mer PNA-DNA duplexes with a single mismatch dropped typically 15-20 degrees C relative to that of the perfectly matched sequence with a corresponding free energy penalty of about 15 kJ mol(-1) bp(-1). The average cost of a single mismatch is therefore estimated to be on the order of or larger than the gain of two matched base pairs, resulting in an apparent binding constant of only 0.02 M(-1) per mismatch. The impact of a mismatch was found to be dependent on the neighboring base pairs. To a first approximation, increasing the stability of the surrounding region, i.e., the distribution of A.T and G.C base pairs, decreases the effect of the introduced mismatch.  相似文献   

11.
Single-stranded DNA molecules containing a 15-nucleotide consensus sequence have been reported to inhibit thrombin activity. The mechanism of the inhibition was studied using a consensus 15-mer oligonucleotide and two recombinant mutant thrombins: the anion-binding exosite mutant thrombin R70E, and thrombin K154A, in which the mutation was located in a surface loop outside of the exosite. The consensus 15-mer oligonucleotide inhibited both fibrinogen-clotting and platelet-activation activities of plasma-derived thrombin, recombinant wild type thrombin, and mutant thrombin K154A in a sequence-specific and dose-dependent manner, whereas it did not inhibit either activity of mutant thrombin R70E. The 15-mer oligonucleotide also inhibited thrombomodulin-dependent protein C activation by plasma-derived thrombin. In competition equilibrium binding experiments, binding of 125I-labeled diisopropyl phosphoryl-thrombin to thrombomodulin was completely inhibited by the consensus 15-mer oligonucleotide with a Kd value of 2.68 +/- 0.16 nM. These results suggest that Arg-70 in the anion-binding exosite of thrombin is a key determinant for interaction with specific single-stranded DNA molecules, and that binding of single-stranded DNA molecules to the exosite prevents the interaction of thrombin with fibrinogen, the platelet thrombin receptor, and thrombomodulin.  相似文献   

12.
Small-angle X-ray and neutron scattering with contrast variation has been used to study the structure of the DNA targeting component (Ku) of the DNA-dependent protein kinase and its complex with DNA. The Ku protein in solution has the approximate shape of a prolate ellipsoid with semi-axes of 24, 43, and 89 A. In the presence of a minimal-length DNA binding sequence (a 24-base-pair duplex DNA), a 1:1 Ku/DNA complex forms. This 1:1 stoichiometry is observed when either the Ku or the DNA is in excess. Analysis of the contrast variation data on Ku complexed with either the 24-mer duplex DNA or a slightly longer 30-mer duplex DNA shows that both the DNA and Ku structures have the same overall conformations within the 1:1 complex as the uncomplexed components. The separation of the centers-of-mass for the Ku/24-mer DNA complex is 46 A, while that for the Ku/30-mer DNA is 56 A. The DNA binds within what appears to be a preformed channel that penetrates deeply into the Ku protein such that the entire length of the 24-mer DNA spans the protein. The slightly longer 30-mer binds in a similar fashion, but with its extra length protruding from the protein envelop. The scattering data are consistent with the idea that the Ku "threads" onto the duplex DNA via a channel that can completely bury approximately 24 base pairs.  相似文献   

13.
B T Eger  S J Benkovic 《Biochemistry》1992,31(38):9227-9236
The minimal kinetic mechanism for misincorporation of a single nucleotide (dATP) into a short DNA primer/template (9/20-mer) by the Klenow fragment of DNA polymerase I [KF(exo+)] has been previously published [Kuchta, R. D., Benkovic, P., & Benkovic, S.J. (1988) Biochemistry 27, 6716-6725]. In this paper are presented refinements to this mechanism. Pre-steady-state measurements of correct nucleotide incorporation (dTTP) in the presence of a single incorrect nucleotide (dATP) with excess KF-(exo+) demonstrated that dATP binds to the KF(exo+)-9/20-mer complex in two steps preceding chemistry. Substitution of (alpha S)dATP for dATP yielded identical two-step binding kinetics, removing nucleotide binding as a cause of the elemental effect on the rate of misincorporation. Pyrophosphate release from the ternary species [KF'(exo+)-9A/20-mer-PPi] was found to occur following a rate-limiting conformational change, with this species partitioning equally to either nucleotide via internal pyrophosphorolysis or to misincorporated product. The rate of 9A/20-mer dissociation from the central ternary complex (KF'-9A/20-mer-PPi) was shown to be negligible relative to exonucleolytic editing. Pyrophosphorolysis of the misincorporated DNA product (9A/20-mer), in conjunction with measurement of the rate of dATP misincorporation, permitted determination of the overall equilibrium constant for dATP misincorporation and provided a value similar to that measured for correct incorporation. A step by step comparison of the polymerization catalyzed by the Klenow fragment for correct and incorrect nucleotide incorporation emphasizes that the major source of the enzyme's replicative fidelity arises from discrimination in the actual chemical step and from increased exonuclease activity on the ternary misincorporated product complex owing to its slower passage through the turnover sequence.  相似文献   

14.
The interactions of oligonucleotide analogs, 12-mers, which contain deoxyribo- or 2'-O-methylribose sugars and methylphosphonate internucleotide linkages with complementary 12-mer DNA and RNA targets and the effect of chirality of the methylphosphonate linkage on oligomer-target interactions was studied. Oligomers containing a single Rp or Sp methylphosphonate linkage (type 1) or oligomers containing a single phosphodiester linkage at the 5'-end followed by 10 contiguous methylphosphonate linkages of random chirality (type 2) were prepared. The deoxyribo- and 2'-O-methylribo- type 1 12-mers formed stable duplexes with both the RNA and DNA as determined by UV melting experiments. The melting temperatures, Tms, of the 2'-O-methylribo-12-mer/RNA duplexes (49-53 degrees C) were higher than those of the deoxyribo-12mer/RNA duplexes (31-36 degrees C). The Tms of the duplexes formed by the Rp isomers of these oligomers were approximately 3-5 degrees C higher than those formed by the corresponding Sp isomers. The deoxyribo type 2 12-mer formed a stable duplex, Tm 34 degrees C, with the DNA target and a much less stable duplex with the RNA target, Tm < 5 degrees C. In contrast, the 2'-O-methylribo type 2 12-mer formed a stable duplex with the RNA target, Tm 20 degrees C, and a duplex of lower stability with the DNA target, Tm < 5 degrees C. These results show that the previously observed greater stability of oligo-2'-O-methylribonucleotide/RNA duplexes versus oligodeoxyribonucleotide/RNA duplexes extends to oligomers containing methylphosphonate linkages and that the configuration of the methylphosphonate linkage strongly influences the stability of the duplexes.  相似文献   

15.
Nucleotide excision repair (NER) is the process responsible for eliminating most ultraviolet (UV) radiation damage from DNA, as well as base alterations caused by a variety of mutagens. The xeroderma pigmentosum group A complementing protein (XPA) is believed to be involved in the early step of NER by recognizing and binding damaged DNA. Recent work has suggested that electrospray ionization-mass spectrometry (ESI-MS) can be an effective tool for the study of protein-DNA complexes. We have used ESI-Fourier transform ion cyclotron resonance (FTICR) mass spectrometry to examine the cisplatin-adducted oligonucleotide and its interaction with the human XPA minimal binding domain (XPA-MBD). High-resolution FTICR experiments of the binding products showed that both double-stranded damaged 20-mer and double-stranded undamaged 20-mer formed 1:1 noncovalent complexes with XPA-MBD. A 2:1 binding stoichiometry complex was also observed between XPA-MBD and double-stranded damaged 20-mer. Competitive binding experiments indicated only slightly preferential binding of XPA-MBD with the double-stranded damaged 20-mer compared to the undamaged 20-mer. The results demonstrate that ESI-FTICR mass spectrometry provides a fast and efficient approach for characterizing weak protein-DNA interactions such as the binding between XPA-MBD and a 20-mer oligonucleotide system.  相似文献   

16.
17.
Studies performed in our laboratory demonstrated the formation of two thermodynamically distinct complexes on binding of netropsin to a number of hairpin-forming DNA sequences containing AATT-binding regions. These two complexes were proposed to differ only by a bridging water molecule between the drug and the DNA in the lower affinity complex. A temperature-dependent isothermal titration calorimetry (ITC)-binding study was performed using one of these constructs (a 20-mer hairpin of sequence 5'-CGAATTCGTCTCCGAATTCG) and netropsin. This study demonstrated a break in the heat capacity change for the formation of the complex containing the bridging water molecule at approximately 303 K. In the plot of the binding enthalpy change versus temperature, the slope (DeltaCp) was -0.67 kcal mol-1 K-1 steeper after the break at 303 K. Because of the relatively low melting temperature of the 20-mer hairpin (341 K (68 degrees C)), the enthalpy change for complex formation might have included some energy of refolding of the partially denatured hairpin, giving the suggestion of a larger DeltaCp. Studies done on the binding of netropsin to similar constructs, a 24-mer and a 28-mer, with added GC basepairs in the hairpin stem to increase thermal stability, exhibit the same nonlinearity in DeltaCp over the temperature range of from 275 to 333 K. The slopes (DeltaCp) were -0.69 and -0.64 kcal mol-1 K-1 steeper after 303 K for the 24-mer and 28-mer, respectively. This observation strengthens the argument regarding the presence of a bridging water molecule in the lower affinity netropsin/DNA complex. The DeltaCp data seem to infer that because the break in the heat capacity change function for the lower affinity binding occurs at the isoequilibrium temperature for water, water may be included or trapped in the complex. The fact that this break does not occur in the heat capacity change function for formation of the higher affinity complex can similarly be taken as evidence that water is not included in the higher affinity complex.  相似文献   

18.
L S Kappen  Z Xi  I H Goldberg 《Biochemistry》2001,40(50):15378-15383
Neocarzinostatin chromophore (NCS-Chrom) induces strong cleavage at a single site (C3) in the single-stranded and 5' (32)P-end-labeled 13-mer GCCAGATTTGAGC in a reaction dependent on a thiol. By contrast, in the duplex form of the same 13-mer, strand cleavage occurs only at the T and A residues, and C3 is not cleaved. To determine the minimal structural requirement(s) for C3 cleavage in the single-stranded oligomer, several deletions and mutations were made in the 13-mer. A 10-mer (GCCAGAGAGC) derived from the 13-mer by deletion of the three T residues was also cleaved exclusively at C3 by NCS-Chrom, generating fragments having 5' phosphate ends. That the cleavage at C3 is initiated by abstraction of its 5' hydrogen is confirmed in experiments using 3' (32)P-end-labeled 10-mer. The competent 13-mer and 10-mer were assigned hairpin structures with a stem loop and a single bulged out A base, placing C3 across from and 3' to the bulge. Removal of the bulged A base from the 13-mer and the 10-mer resulted in complete loss of cutting activity, proving that it is the essential determinant in competent substrates. Studies of thiol post-activated NCS-Chrom binding to the DNA oligomers show that the drug binds to the bulge-containing 13-mer (K(d) = 0.78 microM) and the 10-mer (K(d) = 1.11 microM), much more strongly than to the 12-mer (K(d) = 20 microM) and the 9-mer (K(d) = 41 microM), lacking the single-base bulge. A mutually induced-fit between NCS-Chrom and the oligomer resulting in optimal stabilization of the drug-DNA complex is proposed to account for the site-specific cleavage at C3. These studies establish the usefulness of NCS-Chrom as a probe for single-base bulges in DNA.  相似文献   

19.
We characterize the binding affinity and the thermodynamics of hybridization of triplex-forming antiparallel purine-hairpins composed of two antiparallel purine domains linked by a loop directed toward single-stranded and double-stranded DNA (ssDNA, dsDNA). Gel retardation assays and melting experiments reveal that a 13-mer purine-hairpin binds specifically and with a K ( d ) of 8 x 10(8) M to polypyrimidine ssDNA to form a triple helical structure. Remarkably, we show that purine-hairpins also bind polypurine/polypyrimidine stretches included in a dsDNA of several hundred bp in length. Binding of purine-hairpins to dsDNA occurs by triplex formation with the polypyrimidine strand, causing displacement of the polypurine strand. Because triplex formation is restricted to polypurine/polypyrimidine stretches of dsDNA, we studied the triplex formation between purine-hairpins and polypyrimidine targets containing purine interruptions. We found that an 11-mer purine-hairpin with an adenine opposite to a guanine interruption in the polypyrimidine track binds to ssDNA and dsDNA, allowing expansion of the possible target sites and increase in the length of purine-hairpins. Thus, when using a 20-mer purine-hairpin targeting an interruption-containing polypyrimidine target, the binding affinity is increased compared to its 13-mer antiparallel purine-hairpin counterpart. Surprisingly, this increase is much more pronounced than that observed for a tail-clamp purine-hairpin extended up to 20 nt in the Watson-Crick domain only. Thus, triplexforming antiparallel purine-hairpins can be a potentially useful strategy for both single-strand and double-strand nucleic acid recognition.  相似文献   

20.
The first stepwise solid-phase synthesis of deoxynucleic guanidine (DNG), a positively charged DNA analog, using controlled pore glass as the solid support is reported. For the first time, purine bases have been incorporated into the DNG oligomer and DNG has been synthesized using a solid-phase method, proceeding in the 3′→5′ direction, that is compatible with the cleavage conditions used in the solid-phase synthesis of DNA. A DNG sequence containing a pentameric tract of adenosine nucleosides has been synthesized and the thermal denaturation temperature of its complexes with complementary thymidyl DNA oligomers was 79°C. Binding of thymidyl DNA oligomers to adenyl DNG oligomers is 2:1, as seen in thymidyl and adenyl DNA triplexes. No binding of adenyl DNG with octameric cytidyl DNA was observed, indicating that the positive charge does not overcome base pairing fidelity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号