首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Our studies examined the effects of p27(kip1) and p21(cip1) on the assembly and activity of cyclin D3-cdk4 complexes and determined the composition of the cyclin D3 pool in cells containing and lacking these cyclin-dependent kinase inhibitors. We found that catalytically active cyclin D3-cdk4 complexes were present in fibroblasts derived from p27(kip1)-p21(cip1)-null mice and that immunodepletion of extracts of wild-type cells with antibody to p27(kip1) and/or p21(cip1) removed cyclin D3 protein but not cyclin D3-associated activity. Similar results were observed in experiments assaying cyclin D1-cdk4 activity. Data obtained using mixed cell extracts demonstrated that p27(kip1) interacted with cyclin D3-cdk4 complexes in vitro and that this interaction was paralleled by a loss of cyclin D3-cdk4 activity. In p27(kip1)-p21(cip1)-deficient cells, the cyclin D3 pool consisted primarily of cyclin D3 monomers, whereas in wild-type cells, the majority of cyclin D3 molecules were complexed to cdk4 and either p27(kip1) or p21(cip1) or were monomeric. We conclude that neither p27(kip1) nor p21(cip1) is required for the formation of cyclin D3-cdk4 complexes and that cyclin D3-cdk4 complexes containing p27(kip1) or p21(cip1) are inactive. We suggest that only a minor portion of the total cyclin D3 pool accounts for all of the cyclin D3-cdk4 activity in the cell regardless of whether the cell contains p27(kip1) and p21(cip1).  相似文献   

2.
3.

Berberine has shown anticancer properties and has potential for a chemopreventive and/or chemotherapeutic agent for breast cancer. Berberine showed cytotoxicity to breast cancer cells, with an increase in the levels of p21/cip1 and p27/kip1, cyclin-dependent kinase inhibitors (CDKI), but mechanisms involved in up-regulating these molecules are largely unknown. Herein, we studied the key regulatory mechanisms involved in berberine-mediated up-regulation of p21/cip1 and p27/kip1. Berberine treatment for 24 and 48 h decreased the number of cells by 44–84% (P?<?0.0001) and 38–78% (P?<?0.0001), and increased cell death by 12–17% (P?<?0.005) and 38–78% (P?<?0.0001) in MCF-7 and MDA-MB-231 cells, respectively. Cells were arrested in G1 phase by berberine which was accompanied with up-regulation of mRNA and protein level of both p21/cip1 and p27/kip1. Berberine decreased the expression of protein levels of cyclin D1, cyclin E, CDK2, CDK4, and CDK6 to cause G1 phase arrest. Berberine caused nuclear localization of p21/cip1 in both the cell lines. Our data for the first time showed that the post-translational stability of both the proteins was strongly increased by berberine as examined by cycloheximide chase assay. Inhibition of Akt was associated with berberine-mediated up-regulation of p21/cip1 and also led to a decrease in cell viability accompanied with significant G1 phase cell cycle arrest. Our study revealed that berberine not only up-regulates mRNA and protein levels of p21/cip1 and p27/kip1 but also increases their nuclear localization and post-translational protein stability. Further, Akt inhibition was found to mediate berberine-mediated up-regulation of p21/cip1 but not the p27/kip1.

  相似文献   

4.
Previously, we demonstrated that progesterone (P4) at physiologic levels (5-500 nM) inhibited proliferation in cultured rat aortic smooth muscle cells (RASMCs) through a P4 receptor (PR)-dependent pathway. We also showed that P4-induced cell cycle arrest in RASMCs occurs when the cyclin-CDK2 system is inhibited just as p21cip1 and p27kip1 protein levels are augmented. In the present study, we further investigated the molecular mechanism underlying P4-induced up-regulations of p21cip1 and p27kip1 in RASMCs. We used pharmacological inhibitors as well as dominant negative constructs and conducted Western blot analyses to delineate the signaling pathway involved. Our data suggest that P4 up-regulated the expression of p21cip1 and p27kip1 in RASMCs through increasing the level of p53 protein mediated by activating the cSrc/Kras/Raf-1/AKT/ERK/p38/IκBα/NFκB pathway. The findings of the present study highlight the molecular mechanism underlying P4-induced up-regulations in p21cip1 and p27kip1 in RASMCs.  相似文献   

5.
Unique cell cycle control is instituted in confluent osteoblast cultures, driving growth to high density. The postconfluent dividing cells share features with cells that normally exit the cell cycle; p27(kip1) is increased, p21(waf1/cip1) is decreased, free E2F DNA binding activity is reduced, and E2F4 is primarily nuclear. E2F4-p130 becomes the predominant E2F-pocket complex formed on E2F sites, but, unlike the complex that typifies resting cells, cyclin A and CDK2 are also present. Administration of dexamethasone at this, but not earlier stages, results in reduction of cyclin A and CDK2 levels with a parallel decrease in the associated kinase activity, dissociation of cyclin A-CDK2 from the E2F4-p130 complexes, and inhibition of G(1)/S transition. The glucocorticoid-mediated cell cycle attenuation is also accompanied by, but not attributable to, increased p27(kip1) and decreased p21(waf1/cip1) levels. The attenuation of osteoblast growth to high density by dexamethasone is associated with severe impairment of mineralized extracellular matrix formation, unless treatment commences in cultures that have already grown to high density. Both the antimitotic and the antiphenotypic effects are reversible, and both are antagonized by RU486. Thus, glucocorticoids induce premature attenuation of the osteoblast cell cycle, possibly contributing to the osteoporosis induced by these drugs in vivo.  相似文献   

6.
7.
The magnitude of gut adaptation is a decisive factor in determining whether patients are able to live independent of parenteral nutrition after massive small bowel loss. We previously established that the cyclin-dependent kinase inhibitor (CDKI) p21(waf1/cip1) is necessary for enterocyte proliferation and a normal adaptation response. In the present study, we have further elucidated the role of this CDKI in the context of p27(kip1), another member of the Cip/Kip CDKI family. Small bowel resections (SBRs) or sham operations were performed in control (C57/BL6), p21(waf1/cip1)-null, p27(kip1)-null, and p21(waf1/cip1)/p27(kip1) double-null mice. Morphological (villus height/crypt depth) alterations in the mucosa, the kinetics of enterocyte turnover (rates of enterocyte proliferation and apoptosis), and the protein expression of various cell cycle-regulatory proteins were recorded at various postoperative times. Enterocyte compartment-specific mRNA expression was investigated using laser capture microdissection. Resection-induced adaptation in control mice coincided with increased protein expression of p21(waf1/cip1) and decreased p27(kip1) within 3 days postoperatively. Identical changes in mRNA expression were detected in crypt but not in villus enterocytes. Adaptation occurred normally in control and p27(kip1)-null mice; however, mice deficient in both p21(waf1/cip1) and p27(kip1) failed to increase baseline rates of enterocyte proliferation and adaptation. The expression of p21(waf1/cip1) protein and mRNA in the proliferative crypt compartment is necessary for resection-induced enterocyte proliferation and adaptation. The finding that deficient expression of p27(kip1) does not affect adaptation suggests that these similar CDKI family members display distinctive cellular functions during the complex process of intestinal adaptation.  相似文献   

8.
The staurosporine-induced G1 cell cycle arrest was analyzed in a variety of cell lines which includes human tumor cell lines and oncogene-transformed NIH3T3 cell lines. All the cell lines which were sensitive to staurosporine-induced G1 arrest contained a functional retinoblastoma protein (pRB). However, when pRB-lacking fibroblast cells derived from pRB knockout mice were tested they were also sensitive to G1 arrest by staurosporine, indicating that the inactivation of pRB alone is not sufficient for the abrogation of staurosporine-induced G1 arrest. In searching for a common event caused by staurosporine, the cyclin-dependent kinase (CDK) inhibitor protein p27kip1but not p21cip1was found to accumulate after staurosporine treatment in all the cell lines examined. This accumulation occurred regardless of the induction of the G1 arrest. The result indicates that the accumulation of p27kip1is the cell's primary response to staurosporine and that the capability of staurosporine to induce G1 arrest depends on the integrity of cell cycle regulatory components which are downstream of p27kip1.  相似文献   

9.
Human cytomegalovirus (HCMV) stimulates arrested cells to enter the cell cycle by activating cyclin-dependent kinases (Cdks), notably Cdk2. Several mechanisms are involved in the activation of Cdk2. HCMV causes a substantial increase in the abundance of cyclin E and stimulates translocation of Cdk2 from the cytoplasm to the nucleus. Further, the abundance of the Cdk inhibitors (CKIs) p21cip1/waf1 (p21cip1) and p27kip1 is substantially reduced. The activity of cyclin E/Cdk2 increases as levels of CKIs, particularly p21cip1, fall. We have previously shown that these phenomena contribute to priming the cell for efficient replication of HCMV. In this study, the mechanisms responsible for the decrease in p21cip1 levels after HCMV infection were investigated by measuring p21cip1 RNA and protein levels in permissive human lung (LU) fibroblasts after HCMV infection. Northern blot analysis revealed that p21cip1 RNA levels increased briefly at 3 h after HCMV infection and then decreased to their nadir at 24 h; thereafter, RNA levels increased to about 60% of the preinfection level. Western blot analysis demonstrated that the relative abundance of p21cip1 protein roughly paralleled the observed changes in initial RNA levels; however, the final levels of protein were much lower than preinfection levels. After a transient increase at 3 h postinfection, p21cip1 abundance declined sharply over the next 24 h and remained at a very low level through 96 h postinfection. The disparity between p21cip1 RNA and protein levels suggested that the degradation of p21cip1 might be affected in HCMV-infected cells. Treatment of HCMV-infected cells with MG132, an inhibitor of proteasome-mediated proteolysis, provided substantial protection of p21cip1 in mock-infected cells, but MG132 was much less effective in protecting p21cip1 in HCMV-infected cells. The addition of E64d or Z-Leu-Leu-H, each an inhibitor of calpain activity, to HCMV-infected cells substantially increased the abundance of p21cip1 in a concentration-dependent manner. To verify that p21cip1 was a substrate for calpain, purified recombinant p21cip1 was incubated with either m-calpain or mu-calpain, which resulted in rapid proteolysis of p21cip1. E64d inhibited the proteolysis of p21cip1 catalyzed by either m-calpain or mu-calpain. Direct measurement of calpain activity in HCMV-infected LU cells indicated that HCMV infection induced a substantial and sustained increase in calpain activity, although there was no change in the abundance of either m- or mu-calpain or the endogenous calpain inhibitor calpastatin. The observed increase of calpain activity was consistent with the increases in intracellular free Ca2+ and phospholipid degradation in HCMV-infected LU cells reported previously from our laboratory. Considered together, these results suggest that the increase in calpain activity observed following HCMV infection contributes significantly to the reduction of p21cip1 levels and the resultant cell cycle progression.  相似文献   

10.
Morbidity and mortality from atherosclerosis are associated with complicated atherosclerotic lesions due to plaque rupture, which is regulated by a balance between proliferation and apoptosis of vascular smooth muscle cells (VSMC). We examined insulin-like growth factor-1 (IGF-1)-induced survival of plaque VSMC from carotid endarterectomy specimens and investigated the underlying cellular mechanisms in the presence and absence of IL-12 and IFN-gamma. Both IL-12 and IFN-gamma were strongly expressed in symptomatic atherosclerotic plaques as compared with asymptomatic plaques. In asymptomatic plaque VSMC, IGF-1 induced the survival and proliferation of VSMC and accelerated VSMC into S-phase. IL-12 or IFN-gamma inhibited proliferation and VSMC were arrested in the G0-G1 phase. IGF-1 markedly inhibited the expression of p27(kip) and p21(cip) and significantly induced cyclin E and cyclin D. Both cytokines by themselves increased the expression of p27(kip) and p21(cip) and inhibited cyclin E and cyclin D. On the contrary, in symptomatic VSMC there was already increased apoptosis of VSMC and there was no significant effect of IGF-1 or inflammatory cytokines on proliferation, apoptosis or the expression of p27(kip) and p21(cip) and cyclin D and E. These data suggest that IGF-1 is more potent in inducing the survival of VSMC from the endarterectomy specimens of asymptomatic patients as compared to that of symptomatic subjects and cytokines associated with atheroma lesions decrease the activity of IGF-1-induced survival in the VSMC of asymptomatic plaques. The different expression and activity of cell cycle regulatory proteins could be responsible for apoptosis of VSMC and destabilization of atherosclerotic plaques.  相似文献   

11.
N-Acetyl-seryl-aspartyl-lysyl-proline (Ac-SDKP) was originally reported as a natural inhibitor of the proliferation of stem cells. To elucidate whether Ac-SDKP inhibits the proliferation of human mesangial cells, we examined the effect of Ac-SDKP on fetal calf serum (FCS)- or platelet-derived growth factor (PDGF)-BB-induced DNA synthesis and a cell proliferation. Ac-SDKP inhibited PDGF-BB- or FCS-induced DNA synthesis without cellular toxicity. The protein expression of p53 and p27kip1 was significantly increased by Ac-SDKP. Ac-SDKP also up-regulated the PDGF-BB-stimulated expression of p21cip1 and suppressed PDGF-BB-induced cyclin D1 expression. In p53 knock-out human mesangial cells made with small interference RNA, the protein expression of p21cip1 and p27kip1 was also decreased and the inhibitory effect of Ac-SDKP on mesangial proliferation was completely abolished. Ac-SDKP increased the stability of p53 protein as demonstrated by pulse-chase experiment. These results suggest that p53 is the key mediator of Ac-SDKP-induced inhibition of DNA synthesis through the up-regulation of cell cycle modulators, highlighting a potential effect of Ac-SDKP on various progressive renal diseases.  相似文献   

12.
13.
14.
Rho小G蛋白作为一个信号分子家族具有多样化的功能, 可以调节细胞骨架重排 、细胞迁移、细胞极性、基因表达、细胞周期调控等. Rho小G蛋白家族对细胞周期 调控的研究主要集中在其对于有丝分裂期细胞的调节作用,包括调节有丝分裂期前 期细胞趋圆化、后期染色体排列及收缩环的收缩作用.近期的研究显示,Rho小G蛋白及其效应分子对于细胞周期G1、S、G2期的调控主要是通过影响细胞周期的正调控因子细胞周期蛋白D1 (cyclin D1) 和负调控因子细胞周期蛋白依赖型激酶相互作用蛋白1及细胞周期蛋白依赖型激酶抑制蛋白27 (p21cip1/p27kip1) 进行的.本文总结了Rho小G蛋白及其效应分子在细胞周期调控,尤其是对G1/S期调控的研究进展,并简要阐述了Rho小G蛋白介导的细胞周期调控异常与癌症发生的关系.  相似文献   

15.
The cycle inhibiting factor (Cif) is a cyclomodulin produced by enteropathogenic and enterohemorrhagic Escherichia coli. Upon injection into the host cell by the bacterial type III secretion system, Cif inhibits the G2/M transition via sustained inhibition of the mitosis inducer CDK1 independently of the DNA damage response. In this study, we show that Cif induces not only G2, but also G1 cell cycle arrest depending on the stage of cells in the cell cycle during the infection. In various cell lines including differentiated and untransformed enterocytes, the cell cycle arrests are correlated with the accumulation of the cyclin-dependent kinase inhibitors p21(waf1/cip1) and p27(kip1). Cif-induced cyclin-dependent kinase inhibitor accumulation is independent of the p53 pathway but occurs through inhibition of their proteasome-mediated degradation. Our results provide a direct link between the mode of action of Cif and the host cell cycle control.  相似文献   

16.
Previously, we reported that avenanthramide-c (Avn-c), one of the major avenanthramides, polyphenols of oats, inhibited the serum-induced proliferation of vascular smooth muscle cells (SMC), which is an important process in the initiation and development of atherosclerosis. In the present study, we further investigated its cell cycle inhibitory mechanism. Rat embryonic aortic smooth muscle cell line A10 was used in this study. Flow cytometry analysis revealed that treatment of A10 cells with 80 muM Avn-c arrested the cell cycle in G1 phase as indicated by an increase in the number of cells in G1 phase and a decrease in the number of cells in S phase. This cell cycle arrest was associated with a decrease in the phosphorylation of retinoblastoma protein (pRb), whose hyperphosphorylation is a hallmark of the G1 to S transition in the cell cycle. The inhibition of pRb phosphorylation with Avn-c was accompanied by a decrease in cyclin D1 expression and an increase in cyclin-dependent kinase inhibitor p21cip1 expression, without significant changes in p27kip1 expression. Furthermore, Avn-c treatment increased the expression level and stability of p53 protein, which could account for the increase of p21cip1 expression. Our results demonstrate for the first time that Avn-c, which is a unique polyphenol found in oats, arrests SMC proliferation at G1 phase by upregulating the p53-p21cip1 pathway and inhibiting pRB phosphorylation. This inhibitory effect of Avn-c on SMC proliferation is an additional indication for the potential health benefit of oat consumption in the prevention of coronary heart disease beyond its known effect through lowering blood cholesterol.  相似文献   

17.
HLA-G is involved in regulating T cell responses. Various mechanisms have been proposed to explain the inhibition of T cell proliferation. In this context, the possible role of HLA-G in cell cycle regulation remains to be explored. Using stably transfected M8 cells expressing the secreted isoform (HLA-G5) of HLA-G, we investigated the role of HLA-G in inducing apoptosis and in controlling the cell cycle of activated T cells. Soluble HLA-G (HLA-G5) inhibited both CD4 and CD8 T cell proliferation. However, HLA-G5 did not induce T cell apoptosis, as determined by 3,3'-diethyloxacarbocyanine and propidium iodine labeling. It induced accumulation of the retinoblastoma protein, but not its phosphorylated and active form. Treatment of activated T cells with HLA-G5 also reduced the amounts of cyclin D2, E, A, and B by >80%. In contrast, it induced an accumulation of p27kip, but not p21cip, in activated T cells. HLA-G does not induce apoptosis of alloreactive T cells, but induces p27kip1 and inhibits cell cycle progression.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号