首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract The SS-A mutation carried by the virulence-as-associated plasmid of Salmonella typhimurium results in increased outer membrane permeability to hydrophobic compounds. A 7.8-kilobase pair Bam HI- Sal I fragment containing the SS-A mutation was cloned from the virulence-associated plasmid into the cloning vector pACYC184. The cloned DNA segment hybridized with a radioactive probed prepared from the traT gene of R6-5. A similar DNA fragment, cloned from the wild-type virulence-associated plasmid, complemented the SS-A mutant phenotype. Both clones produced a protein that immunologically resembled the R6-5 TraT protein; however, the protein produced by the SS-A containing clone appeared truncated by approximately M r 1000 indicating an alteration in the primary structure or processing of the protein. We conclude that the mutation producing the SS-A phenotype has occured in a traT -like gene of the Salmonella plasmid.  相似文献   

2.
Six epidemiologically distinct ancestral strains of Salmonella enteritidis and 5 of S. typhimurium from the pre-antibiotic era were examined for plasmid content, and for presence of plasmid genes implicated in mouse-virulence. Five sizes of plasmid were detected in S. enteritidis varying from 1 to 60 MDa. Two sizes of plasmid were found in S. typhimurium, 28 and 60 MDa. Plasmids of the same size were not common to both serovars. The HindIII restriction patterns of 3 of the ancestral S. enteritidis plasmids were identical to the modern 38 MDa plasmid, while all contained identical bands of 3.5, 2.7 and 1.9 kb. All the 60-MDa S. typhimurium plasmids, ancestral and contemporary, had an identical restriction pattern. Three different sized S. enteritidis plasmids and one size S. typhimurium plasmid contained a 3.5-kb DNA fragment carrying the virulence locus VirA. The VirB virulence locus was located on a 2.7-kb DNA fragment in S. enteritidis and on a 2.5-kb fragment in S. typhimurium. Both loci were precisely conserved between the ancestral strains and the modern representatives of both serovars.  相似文献   

3.
The nucleotide sequence of the traT gene present in the virulence-associated plasmid of Salmonella typhimurium was determined. The predicted TraT protein encoded by this gene was found to consist of 243 amino acids and to resemble the known TraT proteins of the plasmids of the F incompatibility group. Thus it contains a signal sequence of 20 amino acids, an amino-terminal lipid attachment site, and two strongly hydrophobic regions close to each other in the mature protein. A mutation leading to increased permeability of the outer membrane to hydrophobic agents, previously localized to the traT gene, was shown to change a glycine residue to arginine within one of these hydrophobic regions. The same principle was found to apply to TraT of R6-5: the introduction, by site-directed mutagenesis, of either positively or negatively charged amino acids or the helix-disrupting proline in the corresponding hydrophobic region led to increased hydrophobic permeability of the outer membrane.  相似文献   

4.
5.
6.
Mutation of a single gene, referred to as selA1 in Salmonella typhimurium and as selD in Escherichia coli, results in the inability of these organisms to insert selenium specifically into the selenopolypeptides of formate dehydrogenase and into the 2-selenouridine residues of tRNAs. The mutation does not involve transport of selenite into the cell or reduction of selenite to selenide since both mutant strains synthesize selenocysteine and selenomethionine from added selenite and incorporate these selenoamino acids non-specifically into numerous proteins of the bacterial cells. Complementation of the mutation in S. typhimurium with the selD gene from E. coli indicates functional identity of the selA1 and selD genes. Although the selA1 gene maps at approximately 21 min on the S. typhimurium chromosome and the selD gene at approximately 38 min on the E. coli chromosome, only a single gene in wild-type S. typhimurium hybridized to the E. coli selD gene probe. Transformation of the mutant Salmonella strain with a plasmid bearing the E. coli selD gene restored formate dehydrogenase activity, 75Se incorporation into formate dehydrogenase seleno-polypeptides and [75Se]seleno-tRNA synthesis. Transformation with an additional plasmid carrying an E. coli formate dehydrogenase selenopolypeptide-lacZ gene fusion showed that the selD gene allowed readthrough of the UGA codon and synthesis of beta-galactosidase in the Salmonella mutant.  相似文献   

7.
DNA polymerase III holoenzyme is a multiprotein complex responsible for the bulk of chromosomal replication in Escherichia coli and Salmonella typhimurium. The catalytic core of the holoenzyme is an alpha epsilon theta heterotrimer that incorporates both a polymerase subunit (alpha; dnaE) and a proofreading subunit (epsilon; dnaQ). The role of theta is unknown. Here, we describe a null mutation of holE, the gene for theta. A strain carrying this mutation was fully viable and displayed no mutant phenotype. In contrast, a dnaQ null mutant exhibited poor growth, chronic SOS induction, and an elevated spontaneous mutation rate, like dnaQ null mutants of S. typhimurium described previously. The poor growth was suppressible by a mutation affecting alpha which was identical to a suppressor mutation identified in S. typhimurium. A double mutant null for both holE and dnaQ was indistinguishable from the dnaQ single mutant. These results show that the theta subunit is dispensable in both dnaQ+ and mutant dnaQ backgrounds, and that the phenotype of epsilon mutants cannot be explained on the basis of interference with theta function.  相似文献   

8.
9.
The ability of Salmonella enterica serovar Typhimurium to cause disease depends upon the co-ordinated expression of many genes located around the Salmonella chromosome. Specific pathogenicity loci, termed Salmonella pathogenicity islands, have been shown to be crucial for the invasion and survival of Salmonella within host cells. Salmonella pathogenicity island 1 (SPI-1) harbours the genes required for the stimulation of Salmonella uptake across the intestinal epithelia of the infected host. Regulation of SPI-1 genes is complex, as invasion gene expression responds to a number of different signals, presumably signals similar to those found within the environment of the intestinal tract. As a result of our continued studies of SPI-1 gene regulation, we have discovered that the nucleoid-binding protein Fis plays a pivotal role in the expression of HilA and InvF, two activators of SPI-1 genes. A S. typhimurium fis mutant demonstrates a two- to threefold reduction in hilA:Tn5lacZY and a 10-fold reduction in invF:Tn5lacZY expression, as well as a 50-fold decreased ability to invade HEp-2 tissue culture cells. This decreased expression of hilA and invF resulted in an altered secreted invasion protein profile in the fis mutant. Furthermore, the virulence of a S. typhimurium fis mutant is attenuated 100-fold when administered orally, but has wild-type virulence when administered intraperitoneally. Expression of hilA:Tn5lacZY and invF:Tn5lacZY in the fis mutant could be restored by introducing a plasmid containing the S. typhimurium fis gene or a plasmid containing hilD, a gene encoding an AraC-like regulator of Salmonella invasion genes.  相似文献   

10.
Mutations at the Escherichia coli prlC locus suppress the export defect of certain lamB signal sequence mutations. The Salmonella typhimurium opdA gene encodes an endoprotease that can participate in the catabolism of certain peptides and is required for normal development of phage P22. Plasmids carrying either the wild-type (pTC100 prlC+) or suppressor alleles of prlC complemented all phenotypes associated with an S. typhimurium opdA mutation. A plasmid carrying an amber mutation in prlC [prlC31(AM)] was unable to complement except in an amber suppressor background. Tn1000 insertions which eliminated the ability of pTC100 (prlC+) to complement opdA mapped to the region of the plasmid shown by deletion analysis and subcloning to contain prlC. The nucleotide sequence of a 2.7-kb fragment including this region was determined, revealing an open reading frame encoding a 77-kDa protein. The sequences of this open reading frame and its putative promoter region were very similar (84% nucleotide sequence identity and 95% amino acid identity) to those of S. typhimurium opdA, showing that these genes are homologs. The nucleotide sequence of the prlC1 suppressor allele was determined and predicts an in-frame duplication of seven amino acids, providing further confirmation that the prlC suppressor phenotype results from changes in the endopeptidase OpdA.  相似文献   

11.
Abstract A genetic determinant for serum resistance, designated iss , has been found previously on the colicinogenic plasmid ColV2-K94. In this work we have identified a second serum resistance gene, traT , on ColV2-K94. The serum resistance mediated by derivatives of ColV2-K94 was due to presence of one or both of the iss and traT genes. Plasmid pWS12 (TraT+ Iss+) contained the kanamycin (Km) resistance transposon Tn 903 inserted near the origin of replication of ColV2-K94, and plasmids pWS15 (TraT+), pWS16 (TraT+) and pWS18 (TraT+ Iss+) were deletion derivatives of pWS12 constructed in vitro and in vivo. pWS12 and pWS18 conferred a 20-fold increase in relative resistance to 20% guinea pig serum when introduced into the serum-susceptible, genetically defined recA strain of Escherichia coli K-12, AB2463. Plasmids pWS15 and pWS16, from which iss had been deleted, still conferred 5-fold increases in relative resistance on AB2463. The level of resistance conferred on this strain by the antibiotic resistance plasmid R100–1 (which expresses the traT serum resistance gene) was comparable to that of plasmids pWS15 and pWS16. The 25-kDa traT gene product was identified by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) analysis of the outer membrane proteins of strain AB2463 carrying ColV2-K94. This protein cross-reacted immunologically with the traT protein expressed by F or R100–1. Our results indicated that both traT and iss are capable of mediating serum resistance in ColV2-K94.  相似文献   

12.
We have previously identified the gene (the ssc gene) defective in the thermosensitive and antibiotic-supersusceptible outer membrane permeability mutant SS-C of Salmonella typhimurium and shown that this gene is analogous to the Escherichia coli gene firA (L. Hirvas, P. Koski, and M. Vaara, EMBO J. 10:1017-1023, 1991). Others have tentatively implicated firA in a different function, mRNA synthesis. Here we report that the defect in the thermosensitive outer membrane omsA mutant of E. coli (T. Tsuruoka, M. Ito, S. Tomioka, A. Hirata, and M. Matsuhashi, J. Bacteriol. 170:5229-5235, 1988) is due to a mutation in firA; this mutation changed codon 271 from serine to asparagine. The omsA-induced phenotype was completely reverted by plasmids containing wild-type firA or ssc. Plasmids carrying the omsA allele, or an identical mutant allele prepared by localized mutagenesis, under the control of lac elicited partial complementation. Transcomplementation studies with plasmids carrying various mutant alleles of the S. typhimurium gene indicated that the ability of these plasmids to complement the omsA mutation was similar to their ability to complement the ssc mutation. The antibiotic-supersusceptible phenotype of the omsA mutant closely resembled that of the ssc mutant, i.e., the omsA mutant was supersusceptible to hydrophobic antibiotics and large-peptide antibiotics against which the intact outer membrane is an effective permeability barrier. As previously demonstrated with the omsA mutant, the outer membrane of the ssc mutant became selectively ruptured after incubation for 1 h at the growth-nonpermitting temperature; 82% of the periplasmic beta-lactamase and less than 3% of the cytoplasmic marker enzyme were released into the medium. All of these findings are consistent with our concept that firA is an essential gene involved in generation of the outer membrane.  相似文献   

13.
Distribution of virulence plasmids within Salmonellae   总被引:10,自引:0,他引:10  
The virulence region of the Salmonella dublin 50 MDa plasmid shared homology with 678 of 1021 salmonellae tested in colony hybridization experiments. The majority of S. dublin, S. typhimurium and S. enteritidis isolates tested hybridized with the region whereas, with the exception of S. hessarek, S. pullorum and S. gallinarum, other serotypes did not. Homologous virulence regions were plasmid encoded. In S. typhimurium a common 60 MDa plasmid was present in all phage types tested but not in DT4, DT37 and DT170. Smaller plasmids showing partial homology were found in DT12, DT18, DT193 and DT204C. In S. enteritidis a distinct plasmid profile for each of eight phage types was observed. Hybridizing plasmids were found in DT3, DT4, DT8, DT9 and DT11 whereas DT7, which was plasmid free, and DT10 and DT14, which harboured plasmids, did not hybridize. The extent of homology shared between S. dublin, S. typhimurium and S. enteritidis virulence plasmids was about 10 MDa and appeared conserved. Virulence plasmids from S. typhimurium and S. enteritidis did not show homology with a region of the S. dublin 50 MDa plasmid which was not associated with virulence functions whereas plasmids of about 24 MDa and 38 MDa in some S. typhimurium phage types did. The association of conserved virulence regions upon differing plasmids within salmonellae is discussed with reference to possible mechanisms of distribution and evolution of virulence genes.  相似文献   

14.
Survival rates of Salmonella dublin in rabbit serum after culture for 1 h at 37 degrees C were compared between a wild-type strain (5240) carrying a 50 MDa plasmid, a plasmid-cured strain (C524), and a cured strain containing the 50 MDa plasmid tagged with Tn1 (5241). Strain C524 was more susceptible to the bactericidal activity of normal serum than its parent strain 5240 (percentage survival less than 1% and 52.5 +/- 9.2%, respectively). On the other hand, the percentage survival of strain 5241 was significantly increased (90.4 +/- 4.0%), indicating that the reintroduction of the plasmid into the cured strain restored the serum resistance. Moreover, this change in the serum resistance properties correlated with changes in the neutral sugar composition of the lipopolysaccharides (LPS) of these strains, suggesting that the 50 MDa plasmid is necessary for O-side chain expression in the LPS of S. dublin.  相似文献   

15.
Precise excision of transposon Tn10 results in reversion of the Trp- phenotype to Trp+ in a trp-1014::Tn10 strain of Salmonella typhimurium, and also occurs at a markedly higher frequency in a strain carrying the temperature-sensitive polA7 allele. The frequency with which precise excision events occurs can be modified by the plating medium, results indicating that the great majority of mutants which arise on broth-supplemented or tryptophan-supplemented minimal media actually arise on the selective plating medium. Trp+ revertants (1000) arising from excision of Tn10 were purified by re-streaking for single colonies; none were found to retain the Tn10 encoded resistance to tetracycline. Yields of Trp+ revertants of the polA7 strain were consistently higher when glycerol rather than glucose was used as sole carbon source in the selective medium. Clean excision of Tn10 can also be increased by ultraviolet irradiation in (R) plasmid-free strains, and is further increased in strains carrying an N-group plasmid (R205, R46 or pKM101). Ultraviolet-induced precise excision of Tn10 also occurs at a much enhanced frequency in a strain with a deletion through the uvrB gene; in this case, however, the addition of plasmid pKM101 leads to a decrease in yields of ultraviolet-induced precise excision events.  相似文献   

16.
17.
Diane E. Taylor 《Plasmid》1983,9(3):227-239
Transposon Tn7 insertion was used to obtain either transfer-defective (Tra-) or tetracycline-sensitive (Tc-) mutants of the HI incompatibility group (IncHI) plasmid R27. The 600 apparent R27::Tn7 derivatives fell into three classes: Tra-, Tc-, and Tra- Tc-. Mutants of R27 defective in the thermosensitive mode of transfer characteristic of IncH plasmids were obtained with transfer frequencies of less than 1 X 10(-8) transconjugants per recipient after 18 hr at 26 degrees C. These mutants, which were generated at a frequency of 1 per 100 insertions, were nonleaky and nonrevertible. Tc- mutants of R27, generated at a frequency of 0.5 per 100 insertions, were also nonrevertible. Loss of tetracycline resistance was associated with an increased frequency of transfer (average 3.6 X 10(-3) transconjugants per donor per hour at 30 degrees C) compared with transfer of the wild-type R27 plasmid (1.6 X 10(-8) per donor per hour). Tn7 insertions which generated Tc- or Tra- mutants of R27 had no effect on entry exclusion of other H group plasmids. The molecular weights of Tra- and Tc- R27::Tn7 derivatives were approximately 120.5 MDa, corresponding to the sum of R27 (112 MDa) and Tn7 (8.5 MDa). A third class of Tn7 insertion derivatives (Tra- Tc-) was obtained; however, strains expressing this phenotype were plasmid free, and appeared to have Tn7 integrated at a chromosomal site. Restriction digestion with XbaI and subsequent hybridization with ColE1::Tn7 were used to compare R27::Tn7 derivatives and to locate Tn7 insertion sites. Loss of tetracycline resistance was associated with Tn7 insertion into a 24-kb XbaI fragment of R27. Although loss of plasmid transfer in several R27::Tn7 derivatives was accompanied by insertion of Tn7 into a 14-kb XbaI fragment of the plasmid, these mutants had also undergone a small increase in the size of the 24-kb XbaI fragment of R27.  相似文献   

18.
Localization of symbiotic mutations in Rhizobium meliloti   总被引:23,自引:18,他引:5       下载免费PDF全文
A total of 5 Nod- and 57 Fix- symbiotic mutants of Rhizobium meliloti strain 41 have been isolated after either nitrosoguanidine or Tn5 transposition mutagenesis. Chromosomal locations of mutations in 1 Nod- and 11 Fix- derivatives were ascertained by transferring the chromosome (mobilized by plasmid R68.45), in eight fragments, into symbiotically effective recipients and testing the recombinants for symbiotic phenotype. Alternatively, the kanamycin resistance marker of Tn5 was mapped. In five mutants the fix alleles were localized on different chromosomal regions, but six other fix mutations and one nod mutation tested did not map onto the chromosome. It was shown that the chromosome-mobilizing ability (Cma+) of R68.45 was not involved in the mobilization of genes located extrachromosomally. Moreover, Cma- derivatives of R68.45 could mobilize regions of the indigenous plasmid pRme41b but not chromosomal genes. Thus, mobilization of a marker by Cma- R68.45 indicates its extrachromosomal location. With a 32P-labeled DNA fragment carrying Tn5 as a hybridization probe, it was shown that in five extrachromosomally located Tn5-induced fix mutants and one nod mutant Tn5 was localized on plasmid pRme41b. This is in agreement with the genetic mapping data.  相似文献   

19.
Analysis of six Shigella flexneri and four S. sonnei isolates with trimethoprim (Tp) resistance from clinical cases in Ontario has shown that, in all isolates, the Tp resistance is mediated by gene(s) on conjugative, multiple antibiotic-resistance plasmids. The physical and genetic characterization of these plasmids revealed that there are three different Tp resistance plasmids. One group, composed of all six S. flexneri plasmids, consists of plasmids which are about 70 megadaltons (MDa) and inhibit the fertility of an Escherichia coli Hfr strain (Fi+). A representative member of this group, pPT4, demonstrates a weak incompatibility reaction with IncFl plasmid R455-2. Another group, three of the four S. sonnei plasmids, contains plasmids which are about 43 MDa, Fi-, and mediate propagation of phage PRD1. The third group, the remaining S. sonnei plasmid, is 53 MDa, fi+, mediates propagation of phages fd and MS2, and is incompatible with IncFII plasmid R100. These plasmids also have been differentiated by restriction endonuclease fragment profiles. Analysis of pPT4 has revealed that the Tp resistance of this plasmid is transposable. The transposon, Tn536, is different from previously described Tp resistance transposons; it is 16 MDa, and in addition to Tp, it encodes resistance to mercuric chloride ions, spectinomycin, streptomycin, and sulfonamides.  相似文献   

20.
A common virulence region on plasmids from eleven serotypes of Salmonella   总被引:23,自引:0,他引:23  
Cured derivatives of Salmonella dublin and S. typhimurium showed reduced virulence following oral infection of mice (10(4)-10(5)-fold for S. dublin, 10(2)-fold for S. typhimurium). Large plasmids from S. dublin and S. typhimurium independently restored virulence to the cured S. dublin but truncated S. dublin plasmids with deletions in a previously identified virulence region did not. This common virulence region identified in plasmids from S. dublin and S. typhimurium was shown to be carried on plasmids from 11 other serotypes of Salmonella but was absent from 10 plasmid-containing serotypes. TnA and Tn10 were transduced from the virulence region of two TnA-insertion mutants of S. dublin and one Tn10-insertion mutant of S. typhimurium that showed diminished virulence to recipient wild-type strains of S. dublin, S. enteritidis and S. typhimurium. Each transductant showed a decrease in mouse virulence within the range 10(3)-10(5). It is therefore proposed that similar virulence determinants are expressed in different serotypes. It was also shown that integration that occurred during curing was Tn10 dependent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号