首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Recombinant baculoviruses have emerged as a new gene delivery vehicle for mammalian cells. Thus, a shuttle promoter that mediates gene expression in both insect and mammalian cells will facilitate the development of a baculovirus vector-based mammalian cell gene delivery vehicle. This study described the generation of three recombinant baculoviruses with an EGFP reporter gene under the control of the white spot syndrome virus (WSSV) ie1 promoter, or either of two control promoters, the baculovirus early-to-late (ETL) promoter and polyhedrin promoter. The resulting recombinant baculoviruses were used to infect insect Sf9 cells and transduce several mammalian cell lines to test the expression of EGFP. We found that the WSSV ie1 promoter displayed a strong promoter activity in both insect and mammalian cells, and showed a stronger promoter activity than the ETL promoter in some mammalian cell lines. The activity of the WSSV ie1 promoter, but not the ETL promoter, can be enhanced by sodium butyrate, a histone deacetylase inhibitor. A transient plasmid transfection assay indicated that the WSSV ie1 promoter activity in mammalian cells is independent of baculovirus gene expression, differing from the ETL promoter, which was shown to be baculovirus-dependent. This study demonstrates, for the first time, that the WSSV ie1 promoter can function as a baculovirus-independent shuttle promoter between insect cells and mammalian cells. This novel shuttle promoter will facilitate the application of baculovirus-based vectors in gene expression, gene therapy, and non-replicative vector vaccines.  相似文献   

2.
The baculovirus expression system has been considered as a highly efficient tool for the production of recombinant biopharmaceutical proteins. The recombinant antigenic glycoprotein GA733 is a cell surface protein that is strongly expressed in human colorectal cancer. Efficient virus titration should be established to achieve optimal multiplicity of infection (MOI) conditions, which are in turn essential for strong expression of the recombinant GA733 fused to the human immunoglobulin IgG Fc fragment (GA733‐Fc) in the baculovirus‐insect system. In the present study, the Sf9 cell line was transfected with plasmid DNA containing the GA733‐Fc expression cassette under the control of the baculovirus polyhedron promoter. MOI values (0.05, 0.1, 0.5, 1, and 3) were calculated based on both microscope observations and results of titration assay and then used to determine the optimum recombinant expression and harvested sample [cell culture media (CM) or cell lysate (CL)]. The pFastBac dual vector carrying the GA733‐Fc gene was constructed to express GA733‐Fc and used to generate recombinant baculoviruses. Western blotting results showed that recombinant protein expression was dependent on the MOI. In addition, CM and CL showed significant differences in protein synthesis and protein secretion capacities. Our findings suggested that our proposed titration method can be used for reliable calculation of MOI values, which significantly influence recombinant GA733‐Fc protein expression in the baculovirus‐insect cell system.  相似文献   

3.
The baculovirus–insect cell expression system has been used to produce functional recombinant proteins. The antigen GA733 is a cell‐surface glycoprotein highly expressed on most human colorectal carcinoma cells. Conditions for the expression of GA733 fused to the human immunoglobulin IgG Fc fragment (GA733‐Fc) were optimized in the baculovirus expression system. Several variable factors were adjusted to optimize expression, including the cell line (Sf9 and High Five), multiplicity of infection (MOI) value (0.05, 0.1, 0.5, 1 and 3), post‐infection time (48, 72 and 96 h) and harvested sample (cell culture media (CM) or cell lysate (CL)). In addition, two pFastBac Dual vectors carrying the GA733‐Fc gene were constructed to express GA733‐Fc with or without an endoplasmic reticulum (ER) retention sequence KDEL and used to generate recombinant baculoviruses. Western blot showed that expression depended on the conditions used to express the recombinant proteins. The protein production level and secretion capability differed in each cell line. In Sf9 cells, the highest expression in the CM and CL was obtained with GA733‐Fc at 96 h post‐infection at 0.1 MOI and with GA733‐FcK at 96 h post‐infection at 3 MOI, respectively. In High Five cells, the highest expression in the CM and CL was obtained with GA733‐Fc at 48 h post‐infection at 1 MOI and with GA733‐FcK at 48 h post‐infection at 3 MOI, respectively. These results suggest that the MOI value, post‐infection time and subcellular localization affect expression, and that these conditions can be modified to optimize protein expression in the baculovirus–insect cell system.  相似文献   

4.
目的:利用昆虫细胞表达系统生产重组的人增殖细胞核抗原(proliferating cell nuclear antigen,PCNA),并进行纯化和抗体结合特性鉴定。方法:以HeLa细胞逆转录的cDNA为模板,扩增人PCNA基因,并插入杆状病毒载体AcMNPV。利用昆虫细胞得到PCNA基因的重组杆状病毒。病毒感染细胞表达蛋白,联合镍柱亲和层析和离子交换层析获得高纯度的重组人PCNA蛋白。ELISA法测定抗体结合特异性。结果:以HeLa细胞cDNA为模板得到的基因序列同GenBank的人PCNA基因序列一致。草地贪夜蛾细胞(Spodoptera frugiperda,Sf9)表达重组人PCNA(recombinant human PCNA,rPCNA)的最佳感染值(MOI)和感染时间分别为0.05h和144h。rPCNA的产量高达110mg/L细胞,纯度95%。间接ELISA法检测抗体结合特性,rPCNA的敏感性和特异性分别为93.3%和85.0%。结论:建立了rPCNA的表达和纯化方法,获得了高效表达、高度抗体结合特异性的PCNA蛋白,该蛋白质能进一步开发为PCNA相关疾病的体外诊断试剂盒,具较大的应用价值。  相似文献   

5.
A baculovirus‐insect cell expression system potentially provides the means to produce prophylactic HIV‐1 virus‐like particle (VLP) vaccines inexpensively and in large quantities. However, the system must be optimized to maximize yields and increase process efficiency. In this study, we optimized the production of two novel, chimeric HIV‐1 VLP vaccine candidates (GagRT and GagTN) in insect cells. This was done by monitoring the effects of four specific factors on VLP expression: these were insect cell line, cell density, multiplicity of infection (MOI), and infection time. The use of western blots, Gag p24 ELISA, and four‐factorial ANOVA allowed the determination of the most favorable conditions for chimeric VLP production, as well as which factors affected VLP expression most significantly. Both VLP vaccine candidates favored similar optimal conditions, demonstrating higher yields of VLPs when produced in the Trichoplusia ni Pro? insect cell line, at a cell density of 1 × 106 cells/mL, and an infection time of 96 h post infection. It was found that cell density and infection time were major influencing factors, but that MOI did not affect VLP expression significantly. This work provides a potentially valuable guideline for HIV‐1 protein vaccine optimization, as well as for general optimization of a baculovirus‐based expression system to produce complex recombinant proteins. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2009  相似文献   

6.
Infecting insect cells with a baculovirus expression vector system (BEVS) is an increasingly popular method for the production of recombinant proteins. Due to the lytic nature of the system, however, determining the optimal harvest time is critical for maximizing protein yield. We found that measuring the change in average diameter during the progress of infection with an automated cell analysis system (Cedex HiRes, Innovatis AG) could be used to determine the time of maximum protein production and, thus, optimal harvest time. As a model system, we use insect cells infected with a baculovirus expressing enhanced green fluorescent protein (EGFP). We infected two commonly used insect cell lines, Spodoptera frugiperda (Sf-9) and Trichoplusia ni BTI-TN-5B1-4 (Hi5) with an Autographa californica nuclear polyhedrosis virus (AcNPV) encoding EGFP at various multiplicities of infection (MOI). We monitored the progress of infection with regard to viability, viable cell density and change in average cell diameter with a Cedex HiRes analyzer and compared the results to the EGFP produced. Peak protein production was reached one to two days after the point of maximum average diameter in all conditions. Thus, optimal harvest time could be determined by monitoring the change in average cell diameter during the course of an infection of a cell culture.  相似文献   

7.
The baculovirus expression vector system (BEVS) is a versatile and powerful platform for protein expression in insect cells. With the ability to approach similar post-translational modifications as in mammalian cells, the BEVS offers a number of advantages including high levels of expression as well as an inherent safety during manufacture and of the final product. Many BEVS products include proteins and protein complexes that require expression from more than one gene. This review examines the expression strategies that have been used to this end and focuses on the distinguishing features between those that make use of single polycistronic baculovirus (co-expression) and those that use multiple monocistronic baculoviruses (co-infection). Three major areas in which researchers have been able to take advantage of co-expression/co-infection are addressed, including compound structure-function studies, insect cell functionality augmentation, and VLP production. The core of the review discusses the parameters of interest for co-infection and co-expression with time of infection (TOI) and multiplicity of infection (MOI) highlighted for the former and the choice of promoter for the latter. In addition, an overview of modeling approaches is presented, with a suggested trajectory for future exploration. The review concludes with an examination of the gaps that still remain in co-expression/co-infection knowledge and practice.  相似文献   

8.
Adaptation of the vaccinia virus expression system to HeLa S3 suspension bioreactor culture for the production of recombinant protein was conducted. Evaluation of hollow fiber perfusion of suspension culture demonstrated its potential for increased cell density prior to infection. The hollow fiber was also used for medium manipulations prior to infection. Two process parameters, multiplicity of infection (MOI) and temperature during the protein production phase, were evaluated to determine their effect on expression of the reporter protein, enhanced green fluorescent protein (EGFP). An MOI of 1.0 was sufficient for infection and led to the highest level of intracellular EGFP expression. Reducing the temperature to 34 degrees C during the protein production phase increased production of the protein two-fold compared to 37 degrees C in spinner flask culture. Scaling up the process to a 1.5-liter bioreactor with hollow fiber perfusion led to an overall production level of 9.9 microg EGFP/10(6) infected cells, or 27 mg EGFP per liter.  相似文献   

9.
A recombinant vaccinia virus was engineered to express enhanced green fluorescent protein (EGFP) under control of the T7 promoter using the VOTE expression system in HeLa cells. Infection of HeLa cells with this virus and induction with IPTG demonstrated the utility of this construct for easily measuring protein expression. This construct was used to evaluate several production parameters, specifically, multiplicity of infection (MOI), volume during infection, and serum concentration during the infection phase. In static culture, increasing multiplicity of infection was found to increase expression of EGFP up to a plateau around MOI of 1.0. Expression was also shown to increase with decreasing volume during the infection phase. Serum concentration during the infection phase was only marginally significant from 0 to 7.5%. Cytodex 3 microcarriers were found to have the best characteristics for HeLa cell growth. These cells were grown and infected in microcarrier spinner flask culture, and the maximum expression was 2.2 microg EGFP/(million cells at the time of infection), demonstrating the ability of this system to successfully express recombinant proteins at larger scale.  相似文献   

10.
The expression efficiency of the insect cells-baculovirus system used for insecticidal virus production and the expression of medically useful foreign genes is closely related with the dynamics of infection. The present studies develop a model of the dynamic process of insect cell infection with baculovirus at low multiplicity of  相似文献   

11.
A BacMam baculovirus was designed in our laboratory to express the reporter protein secreted alkaline phosphatase (SEAP) driven by the immediate early promoter of human cytomegalovirus promoter (CMV). In vitro tests have been carried out using this recombinant baculovirus to study the secreted protein in two cell lines and under various culture conditions. The transductions were carried out on two commonly used mammalian cell lines namely the human embryonic kidney (HEK 293A) and Chinese hamster ovary (CHO-K1). Initial studies clearly demonstrated that the transient expression of SEAP was at least 10-fold higher in the HEK 293 cells than the CHO cells under equivalent experimental conditions. Factorial design experiments were done to study the effect of different parameters such as cell density, MOI, and the histone deacetylase inhibitor, trichostatin A concentration. The multiplicity of infection (MOI) and the cell density were found to have the most impact on the process. The enhancer trichostatin A also showed some positive effect. The production of secreted protein in a batch reactor was studied using the Wave disposable bioreactor system. A semi-continuous perfusion process was developed to extend the period of gene expression in mammalian cells using a hollow fiber bioreactor system (HFBR). The growth of cells and viability in both systems was monitored by offline analyses of metabolites. The expression of recombinant protein could be maintained over an extended period of time up to 30 days in the HFBR.  相似文献   

12.
The baculovirus vector systems has been extensively used for the expression of foreign gene products in insect and mammalian cells. New advances increase the possibilities and applications of the baculovirus expression system, which has the capability to express multiple genes simultaneously within a single infected insect cells and to use recombinant virus with mammalian cell-active expression cassettes to permit expression of recombinant proteins in mammalian cells in vitro and in vivo. Future investigations of the baculovirus expression system designed for specific target cells, can open wide variety of applications. This review summarizes the recent achievements in applications the baculovirus vector systems and optimization recombinant protein expression in both insect and mammalian cell lines.  相似文献   

13.
Determination of the baculovirus transducing titer in mammalian cells   总被引:1,自引:0,他引:1  
Baculovirus has emerged as a promising vector for in vivo or ex vivo gene therapy. To date, the infectious titer and multiplicity of infection (MOI) based on the ability of baculovirus to infect insect cells are commonly adopted to indicate the virus dosage. However, the infectious titer and MOI do not reliably represent the baculovirus transducing ability, making the comparison of baculovirus-mediated gene transfer difficult. To determine the baculovirus transducing ability more rapidly and reliably, we developed a protocol to evaluate the transducing titers of baculovirus stocks. The virus was diluted twofold serially and used to transduce HeLa cells. The resultant transduction efficiencies were measured by flow cytometry for the calculation of transducing titers. Compared to the infectious titer, the determination of transducing titer is more reproducible as the standard deviations among measurements are smaller. Also, the transducing titers can be obtained in 24 h, which is significantly faster as opposed to 4-7 days to obtain the infectious titer. More importantly, we demonstrated that baculoviruses with higher transducing titers could transduce cells at higher efficiency and yield stronger and longer transgene expression, confirming that the transducing titer was representative of the baculovirus transducing ability. This finding is particularly significant for ex vivo gene delivery whereby unconcentrated viruses are used for transduction and long-term transgene expression is desired. In this regard, our titration protocol provides a simple, fast, and reliable measure to evaluate the quality of virus stocks during virus production and purification, and is helpful to predict the performance of vector supernatants and ensure reproducible gene delivery experiments.  相似文献   

14.
15.
Adaptation of the vaccinia virus expression system to HeLa S3 suspension bioreactor culture for the production of recombinant protein was conducted. Evaluation of hollow fiber perfusion of suspension culture demonstrated its potential for increased cell density prior to infection. The hollow fiber was also used for medium manipulations prior to infection. Two process parameters, multiplicity of infection (MOI) and temperature during the protein production phase, were evaluated to determine their effect on expression of the reporter protein, enhanced green fluorescent protein (EGFP). An MOI of 1.0 was sufficient for infection and led to the highest level of intracellular EGFP expression. Reducing the temperature to 34 °C during the protein production phase increased production of the protein two-fold compared to 37 °C in spinner flask culture. Scaling up the process to a 1.5-liter bioreactor with hollow fiber perfusion led to an overall production level of 9.9 μg EGFP/106 infected cells, or 27 mg EGFP per liter.  相似文献   

16.
One of the major concerns regarding the use of insect cells and baculovirus expression vectors for the production of recombinant proteins is the drop in production observed when infecting cultures at high cell densities; this work attempts to understand this so-called cell density effect in the scope of baculovirus production for gene therapy purposes. A Spodoptera frugiperda insect cell line (Sf-9) was cultured and infected in serum-free medium, and the patterns of production of a recombinant baculovirus expressing the green fluorescent protein (GFP) were analyzed at different cell concentrations at infection (CCIs) and multiplicities of infection (MOIs). The results confirm that a cell density effect on productivity occurs which is dependent on the MOI used, with a high MOI “delaying” the drop in production to higher cell densities. Medium replacement at the time of infection using a high MOI considerably improved baculovirus production, with the different production indicators, namely the titer, specific yield, amplification factor, and time of harvesting, increasing with cell concentration for the CCI range tested. Virus titers as high as 2.6 × 1010 IP.mL−1 were obtained in cultures infected at 3.5 × 106 cells.mL−1, while the amplification factor was roughly 19 times higher than the highest value obtained without medium exchange.  相似文献   

17.
The baculovirus Autographa californica nucleopolyhedrovirus (AcNPV) has been widely used to achieve a high level of foreign gene expression in insect cells, as well as for efficient gene transduction into mammalian cells without any replication. In addition to permitting efficient gene delivery, baculovirus has been shown to induce host innate immune responses in various mammalian cells and in mice. In this study, we examined the effects of the innate immune responses on gene expression by recombinant baculoviruses in cultured cells. The reporter gene expression in IRF3-deficient mouse embryonic fibroblasts (MEFs) infected with the recombinant baculovirus was shown to be enhanced in accordance with the suppression of beta interferon (IFN-β) production. Furthermore, efficient gene transduction by the recombinant baculovirus was achieved in MEFs deficient for stimulator of interferon genes (STING), TANK binding kinase 1 (TBK1), IFN regulatory factor 3 (IRF3), or IFN-β promoter stimulator 1 (IPS-1), but not in those deficient for IRF7, MyD88, or Z-DNA binding protein 1 (ZBP1)/DAI. Enhancement of gene expression by the recombinant baculovirus was also observed in human hepatoma cell lines replicating hepatitis C virus (HCV), in which innate immunity was impaired by the cleavage of IPS-1 by the viral protease. In addition, infection with the recombinant baculovirus expressing the BH3-only protein, BIMS, a potent inducer of apoptosis, resulted in a selective cell death in the HCV replicon cells. These results indicate that innate immune responses induced by infection with baculovirus attenuate transgene expression, and this characteristic might be useful for a selective gene transduction into cells with impaired innate immunity arising from infection with various viruses.  相似文献   

18.
As a protein expression vector,the baculovirus demonstrates many advantages over other vectors.With the development of biotechnology,baculoviral vectors have been genetically modified to facilitate hig...  相似文献   

19.
Human interleukin-2 (hIL-2) production in Escherichia coli and insect cell/baculovirus expression systems can be inefficient. Here we investigated secreted production of hIL-2 fused with green fluorescent protein (GFP) as a versatile fusion partner in optimized stably transfected insect Drosophila melanogaster S2 cells. This nonlytic S2 insect cell expression system employs a plasmid vector and allows for secretion of functional human proteins. We report that, following stable transfection and induction, S2 cells secreted hIL-2 as a fusion protein (approximately 2.3 microg/mL yield), with a secretion efficiency of approximately 90%. Regression analysis indicated a single linear relationship existed between GFP fluorescence and hIL-2 mass in both whole cell and secreted medium samples, indicating that in vivo monitoring and quantification of target foreign protein expression and even secretion is possible using this system. The simple comparative measurement of GFP fluorescence also allowed monitoring of secretion efficiency during periods of high GFP/hIL-2 expression.  相似文献   

20.
The baculovirus expression system has been used to produce large amounts of biologically active proteins by infecting insect cells with a recombinant baculovirus expressing the target protein. For an efficient expression of the target protein, it is necessary to infect insect cells with an adequate amount of virus. However, current methods are time-consuming and either have technical difficulties or are limited as a result of virus expression mechanism using a reporter gene. A novel method is developed to yield virus titers in 10 h that is easy to perform using 96-well plates and applicable to both any Autographa californica nucleopolyhyderovirus (AcNPV) and Bombyx mori nucleopolyhedrovirus (BmNPV)-based recombinant baculovirus. This assay uses an antibody to a DNA-binding protein to detect the infected cells via immunostaining. The titer is determined by counting foci produced as a result of infection of the virus under a fluorescent microscope. The required incubation period was shortened considerably because infected cells expressed viral antigens at the post-infection time of 4 h. Therefore, 10 h was enough to estimate the virus titer including virus infection time, insect cell culture, and estimation of virus titer. Titers determined using this immunological assay are comparable, both in value and validity, to those obtained using a traditional method, provided that the stocks have titers above 10(3) pfu/mL.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号