首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Abstract: Schwann cell cultures were established from adult human sural nerve biopsies. 2'3'-Cyclic nucleotide 3'-phosphohydrolase (CNPase) activity was estimated in the homogenates of those cells by a sensitive isotope assay using [3H]2',3'-cyclic AMP as substrate. A high level of CNPase activity was observed in cultured Schwann cells, whereas cultured human muscle and skin fibroblasts contained negligible levels of CNPase activity. CNPase of human Schwann cells followed typical enzyme-substrate kinetics, with an apparent K m of 1.6 m M for 2',3'-cyclic AMP, and the enzyme was stimulated by detergents such as Triton X-100 and deoxycholate. It was inhibited by p -chloromercuricbenzoate and 2'-AMP. These properties are typical of CNPase isolated from adult brain and spinal cord. CNPase can serve as a new biochemical marker of normal cultured human Schwann cells and can be useful in analyzing the properties of cultured Schwann cells from patients with dysschwannian neuropathies.  相似文献   

2.
Abstract: Conventional histological examination of the pituitary does not distinguish Snell dwarf mutants (dw/dw) from their normal littermates (+/?) in the neonatal stage. However, immunohistochemical examination of pituitaries of litters born to heterozygous Snell parents revealed that in approximately 25% of the glands examined, the number of positive cells was very low in the neonatal stage. We attempted to delineate the events resulting in the poor myelination in the brain of the Snell dwarf mouse, and to devise an immunohistochemical method for identifying the mutant neonate. Differences in the brain weights of the dw/dw and +/? mice first became apparent on the 10th day of age, and from this time on no further increase in the weight of the dwarf mouse brain was recorded. Increase in CNPase activity was found to be suppressed in the cerebrum and brain stem throughout the developmental stage, but not in the other parts of the brain. The yield of isolated myelin decreased by 58% in the mutant mouse, but CNPase activity was equivalent to that of control myelin. Differences in DNA content per cerebrum from the dw/dw and +/? mice first became apparent on the 10th day of age. Henceforth, the dw/dw mice showed no further increase, although the +/? mice continued to increase. [3H]Thymidine incorporation into the DNA fraction in vivo on the 7th day of age, when glial cell proliferation in the cerebrum is most active, was suppressed to about 50% of the control level in all parts of the dwarf brain. These findings indicate that the poor myelination found in the mutant cerebrum is a hypomyelination due to reduced oligodendroglial proliferation caused by lack of circulating growth hormone.  相似文献   

3.
Immunohistochemical reactions were conducted, using the antibodies against GFA and S-100 proteins on sections of cerebellum from the homozygous (jj) and the heterozygous (Jj) Gunn rats. Hypertrophy of the fibrous astrocytes was observed but hyperplasia of the glial cells was not. Although the molecular layer was very thin, the Bergmann fibre appeared normal. Among the free amino acids in the cerebellum from the jj rat, glutamate concentration decreased to two-thirds of the control level. The protein profile of the cerebellum from the jj rat obtained by SDS-polyacrylamide gel electrophoresis revealed that the amount of P400 protein that is characteristic of Purkinje cells decreased considerably and there were also some changes of the other unidentified proteins. By two-dimensional electrophoresis, it was observed that in the supernatant from the jj rat cerebellum one protein spot diminished and in the particulate fraction from the jj rat one spot was enormously increased. The activity of 2',3'-cyclic nucleotide 3'-phosphohydrolase (CNPase) in the cerebellum from the jj rat did not differ significantly from that of the control; however, activities of choline acetyltransferase and acetylcholinesterase of the jj rat were about twice as high as those of the control. 2-Deoxyglucose incorporation was maximum in the granular layer from both the jj and the Jj rat cerebella. However, the incorporation in the jj cerebellum was not higher than in the Jj control and even lower in some parts of the jj cerebellum than in the control Jj cerebellum.  相似文献   

4.
Cyclic AMP (cAMP) is known to induce the activity of the myelin enzyme 2',3'-cyclic nucleotide 3'-phosphohydrolase (CNP; EC 3.1.4.37) in C6 rat glioma cells. This report shows that CNP is also inducible in oligodendrocytes explanted from 1-day-old rat cerebrum and grown in tissue culture. Induction was observed after a 1-day treatment with 1 mM N6, O2-dibutyryl cyclic AMP (dbcAMP) and was maximal after 5 days, reaching 200-240% of control. Induction was observed both in mixed cerebral cell cultures containing oligodendrocytes and astrocytes, and in purified cultures of oligodendrocytes prepared by a differential shakeoff procedure. Addition of dbcAMP to the cultures 3-9 days after the cells were explanted from rat brain induced CNP activity, but no induction was observed when dbcAMP treatment was begun 13 or more days after explanation. These results demonstrate that one component of myelin, CNP, is inducible in oligodendrocytes by a cAMP-mediated mechanism, and suggest a role for cAMP in the regulation of the myelin-associated functions of oligodendrocytes.  相似文献   

5.
Abstract: The relationship of the cytoskeleton to a biochemical expression of oligodendroglial differentiation was studied in cultured C-6 glial cells. Specifically, we investigated the effect of the cytoskeletal perturbants, colchicine and cytochalasin D, on the induction of the oligodendroglial marker enzyme. 2',3'-cyclic nucleotide 3'-phosphohydrolase (CNP), caused by removal of serum from the culture medium. Each drug inhibited CNP induction in a concentration-dependent manner, and essentially complete inhibition of induction was observed with 0.25 μ M colchicine or 2.0μ M cytochalasin D. Detailed study of the effect of colchicine was carried out. This antimicrotubular agent not only totally prevented induction if added at the onset of serum removal, but also prevented further induction when added at various times after serum removal. That the effect of colchicine related to the drug's effect on microtubules was supported by the demonstration that lumicolchicine, a colchicine isomer which has no effect on microtubules, had no effect on the CNP induction. Moreover, colchicine, but not lumicolchicine, prevented the morphological signs of differentiation provoked by serum removal. The effect of colchicine was reversible and relatively specific. Thus, no concomitant effect of colchicine on the activity of another plasma membrane enzyme of C-6 cells, i.e., (Na++ K +)-acti-vated ATPase, or on the rate of incorporation of [3H]leucine into total protein of intact cells could be discerned. The possibility that the site of the effect of colchicine is on intracellular events was suggested by the observation that the drug inhibited the induction of CNP by dibutyryl cyclic AMP. The data suggest that the cytoskeleton is involved in oligodendroglial differentiation.  相似文献   

6.
Abstract: Cultured murine oligodendrocytes elaborate extensive membrane sheets that, unlike multilamellar myelin in vivo, allow the study of interactions between myelin proteins and cytoskeletal elements. This article describes the events that occur due to the interaction of specific antibodies with their respective antigens, myelin/oligodendrocyte-specific protein (MOSP) and myelin/oligodendrocyte glycoprotein (MOG), which are expressed uniquely by oligodendrocytes. After antibody binding, surface anti-MOSP:MOSP complexes redistribute over those cytoplasmic microtubular veins that have 2',3'-cyclic nucleotide 3'-phosphohydrolase colocalized along them. In contrast, surface anti-MOG-MOG complexes redistribute over internal myelin basic protein domains. Long-term anti-MOSP IgM exposure results in an apparent increase in number as well as thickness of microtubular structures in oligodendrocyte membrane sheets, whereas long-term anti-MOG exposure causes depolymerization of microtubular veins in membrane sheets. These data suggest that antibody binding to these two surface proteins elicits signals that have opposite effects on the cytoskeleton in oligodendroglial membrane sheets. Thus, it is possible that signals transduced via antibody binding may contribute to the pathogenesis of diseases affecting CNS myelin.  相似文献   

7.
A monoclonal antibody (8-18C5) directed against myelin/oligodendrocyte glycoprotein (MOG) induced demyelination in aggregating brain cell cultures. With increasing doses of anti-MOG antibody in the presence of complement, myelin basic protein (MBP) concentration decreased in a dose-related manner. A similar, albeit less pronounced, effect was observed on specific activity of 2',3'-cyclic nucleotide 3'-phosphohydrolase. In the absence of complement, anti-MOG antibody did not induce detectable demyelination. In contrast to the effect of anti-MOG antibody and as expected, anti-MBP antibody did not demyelinate aggregating brain cell cultures in the presence of complement. These results provide additional support to the suggestion that MOG, a quantitatively minor myelin component located on the external side of the myelin membrane, is a good target antigen for antibody-induced demyelination. Indeed, they show that a purified anti-MOG antibody directed against a single epitope on the glycoprotein can produce demyelination, not only in vivo as previously shown, but also in cultures. Such an observation has not been made with polyclonal antisera raised against purified myelin proteins like MBP and proteolipid protein, the major protein components of the myelin membrane, or myelin-associated glycoprotein. These observations may have important implications regarding the possible role of anti-MOG antibodies in demyelinating diseases.  相似文献   

8.
The effects of treatment with L-thyroxine (subcutaneously 0.3 microgram/g body weight daily from birth, i.e., day 1) and 2.5S nerve growth factor (NGF; intraventricularly 2 micrograms on 1, 3, 5, 7, and 9 postnatal days), separately and together, were studied on the biochemical development of different cell types in the basal forebrain of 10-day-old rats. The development of cholinergic, gamma-aminobutyric acid-ergic (GABAergic), and glutamatergic neurons was monitored respectively in terms of choline acetyltransferase (ChAT), glutamate decarboxylase (GAD), and glutaminase activities, whereas glutamine synthetase (GS) and 2',3'-cyclic nucleotide-3'-phosphohydrolase (CNPase) activities were used to judge the maturation of astroglial and oligodendroglial cells. Treatment with either thyroid hormone or NGF from birth significantly increased the expression of ChAT activity in the basal forebrain of neonatal rats. When both agents were administered to the same animal, in agreement with our earlier in vitro findings, the stimulation in ChAT activity was much greater than the sum of the individual effects. In hypothyroid rats, significant effects of NGF at the low doses used were not detectable, although the increase of ChAT activity induced by thyroxine was potentiated by NGF in these animals. Under the present experimental conditions neither thyroxine nor NGF treatment had an appreciable effect on the activities of glutaminase, GS, and lactate dehydrogenase. However, the administration of thyroxine markedly increased CNPase activity in normal rats, whereas in hypothyroid rats the effect on both CNPase and GAD was also significant. Similar elevations in CNPase and GAD activities were not observed after NGF treatment, suggesting that the effect of NGF was specific to the cholinergic cells.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
Primary cultures of cells dissociated from fetal rat brain were utilized to define the developmental changes in cholesterol biosynthesis and the role of 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase in the regulation of these changes. Cerebral hemispheres of fetal rats of 15-16 days of gestation were dissociated mechanically into single cells and grown in the surface-adhering system. Cholesterol biosynthesis, studied as the rate of incorporation of [14C]acetate into digitonin-precipitable sterols, was shown to exhibit two distinct increases in synthetic rates, a prominent increase after 6 days in culture and a smaller one after 14 days in culture. Parallel measurements of HMG-CoA reductase activity also demonstrated two discrete increases in enzymatic activity, and the quantitative and temporal aspects of these increases were virtually identical to those for cholesterol synthesis. These data indicate that cholesterol biosynthesis undergoes prominent alterations with maturation and suggest that these alterations are mediated by changes in HMG-CoA reductase activity. The timing of the initial prominent peak in both cholesterol biosynthesis and HMG-CoA reductase activity at 6 days was found to be the same as the timing of the peak in DNA synthesis, determined as the rate of incorporation of [3H]thymidine into DNA. The second, smaller peak in reductase activity and sterol biosynthesis at 14 days occurred at the time of the most rapid rise in activity of the oligodendroglial enzyme, 2':3'-cyclic nucleotide 3'-phosphohydrolase (CNP). These latter observations suggest an intimate relationship of the sterol biosynthetic pathway with cellular proliferation and with oligodendroglial differentiation in developing mammalian brain.  相似文献   

10.
The rates of synthesis of dolichol-linked oligosaccharide intermediates and protein N-glycosylation increased substantially during a developmental period corresponding to glial differentiation in primary cultures of embryonic rat brain. In this study developmental changes in three enzymes involved in dolichyl phosphate (Dol-P) metabolism have been examined by in vitro assays and correlated with the induction pattern for lipid intermediate synthesis and protein N-glycosylation. Dolichyl pyrophosphate (Dol-P-P) phosphatase activity was relatively low during the first 9 days in culture, but it increased significantly between days 9 and 25. Dol-P-P phosphatase did not change appreciably between days 22 and 30 in culture. A kinetic analysis of the developmental change in Dol-P-P phosphatase activity revealed that the Vmax increased 10-fold between days 4 and 22, and there was also a significant change in the apparent Km for Dol-P-P. Dolichol kinase activity increased during the period (9-15 days) when there was a significant induction in oligosaccharide-lipid synthesis and protein N-glycosylation, and then declined in parallel with lipid intermediate synthesis and protein N-glycosylation. Dol-P phosphatase activity was present at relatively low levels for the first 9 days in culture, but it increased steadily between days 9 and 30. A kinetic comparison of the activity in membrane fractions from brain cells cultured for 9 and 25 days indicated that there was a 10-fold increase in enzyme protein with unaltered affinity for Dol-P.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
Effect of Triethyl Tin on Myelination in the Developing Rat   总被引:3,自引:2,他引:1  
Myelinogenesis in developing rats was studied following chronic dosing with triethyl tin (TET), at a level of 1.0 mg TET/kg body wt/day. Experiments included starved controls with body weights depressed by 17 to 40% to equal those of the TET-treated groups. Rats at ages of 16, 21, and 30 days showed decreases relative to well-nourished controls in body weight, forebrain weight, myelin yield, cerebroside level, and specific activity of brain 2',3'-cyclic nucleotide-3'-phosphohydrolase when dosed with TET. At 30 days, myelin and cerebroside yields were reduced by approximately 55%, while CNP activity was reduced by less than 20%. No differences in the forebrain myelin protein composition between control, starved, and TET animals were noted. The rate of myelin protein synthesis relative to brain total protein (assayed by incorporation of intracranially injected [3H]glycine into brain homogenate and myelin proteins) was decreased in the TET rats in proportion to the decreased yield of myelin, but no particular myelin protein was preferentially affected. Matching starved controls exhibited similar body weight decreases, less pronounced forebrain weight decreases, and little or no decrease in myelin concentration. There was a relative increase in the myelin protein synthesis rate in the starved rats, indicating preferential utilization of limited protein precursors for myelin protein synthesis. Spinal cord myelin was also decreased in the TET rats, but less severely than in the forebrain. At all ages optic, but not sciatic, nerves showed decreases in myelin concentration with TET treatment. We conclude that TET inhibits forebrain growth and CNS myelination more severely than can be accounted for by a general metabolic insult.  相似文献   

12.
Abstract: Separate analyses were made of gray matter and white matter from rat brain after neonatal undernutrition. Newborn rats were redistributed into control, large-litter, and protein-deficient groups. Large litters had 16 rather than 8 pups with a dam. Protein-deficient dams were fed a 4%, instead of a 24%, casein diet. For controls at 21 days of age, the 2',3'-cyclic nucleotide-3'-phosphohydrolase activity was more than fivefold greater in white matter than in gray matter. Severe undernutrition (protein-deficient) gave 2',3'-cyclic nucleotide-3'-phosphohydrolase activities that were 36% lower in gray matter and 56% lower in white matter. Lipid galactose concentrations were 17% less than control in both gray matter and white matter. In protein-deficient white matter, phospholipid concentrations were 15% lower than control. Ethanolamine plasmalogens and phosphatidyl serine were affected most. Moderate undernutrition (large litter) had no effect on 2',3'-cyclic nucleotide-3'-phosphohydrolase activity. A 14% deficit of galactolipids was the only difference from controls in large-litter white matter. In large-litter gray matter, phospholipid concentrations were 16% higher than controls. Nearly all glycerophos-pholipids, including plasmalogens, were affected. With the exception of the myelination markers, 2',3'-cyclic nucleotide-3'-phosphohydrolase and lipid galactose, the development of lipids in gray matter is almost completely spared from the effects of undernutrition. The primary effect of undernutrition is on myelination, especially in white matter.  相似文献   

13.
The 2',3'-cyclic nucleotide 3'-phosphodiesterases (CNPs) are closely related oligodendrocyte proteins whose in vivo function is unknown. To identify subcellular sites of CNP function, the distribution of CNP and CNP mRNA was determined in tissue sections from rats of various developmental ages. Our results indicate that CNP gene products were expressed exclusively by oligodendrocytes in the CNS. CNP mRNA was concentrated around oligodendrocyte perinuclear regions during all stages of myelination. Developmentally, initial detection of CNP mRNA closely paralleled initial detection of its translation products. In electron micrographs of immunostained ultrathin cryosections, CNP was associated with oligodendrocyte membranes during the earliest phase of axonal ensheathment. In more mature fibers, immunocytochemistry established that the CNPs are not major components of compact myelin but are concentrated within specific regions of the oligodendrocyte and myelin internode. These include (a) the plasma membrane of oligodendrocytes and their processes, (b) the periaxonal membrane and inner mesaxon, (c) the outer tongue process, (d) the paranodal myelin loops, and (e) the "incisure-like" membranes found in many larger CNS myelin sheaths. A cytoplasmic pool of CNP was also detected in oligodendrocyte perikarya and larger oligodendrocyte processes. CNP was also enriched in similar locations in myelinated fibers of the PNS.  相似文献   

14.
The relation of the polar head group composition of cellular phospholipids to a biochemical expression of oligodendroglial differentiation was studied in cultured C-6 glial cells. Induction of the oligodendroglial enzyme, 2',3'-cyclic nucleotide 3'-phosphohydrolase (CNP), was determined after alteration of the polar head group composition of phospholipids by exposure of the cells to choline analogues, especially N,N'-dimethylethanolamine. To accomplish the phospholipid alteration, cells were grown in the presence of the analogue in medium free of exogenous lipid, i.e., first for 24 h in 10% delipidated serum and then for 48 h in serum-free medium. The 48-h exposure to serum-free medium resulted in untreated C-6 cells in a several fold increase in CNP activity, but in cells treated with 2.5 mM N,N'-dimethylethanolamine, total inhibition of this induction was observed. A graded, concentration-dependent inhibitory effect of the analogue on the induction of CNP was defined. The effect of the analogue was relatively specific, e.g., the activity of another plasma membrane enzyme of C-6 cells, (Na+ + K+)-activated ATPase, was not affected. Morever, there was no evidence of a toxic effect of the analogue; thus, total protein synthesis and cell growth were not altered, and the induction of CNP in serum-free medium recurred after removal of the analogue. N,N'-Dimethylethanolamine was shown to be incorporated into cellular phospholipids, primarily at the expense of phosphatidylcholine. The data define an important role for the polar head group composition of membrane phospholipids in oligodendroglial differentiation in this model system.  相似文献   

15.
A new class of procedures, previously shown to permit the isolation of pure oligodendroglia from whole rat cerebrum, has been applied with equal or greater success for the bulk isolation of this cell type from bovine white matter. Thus, the generality of this approach has been demonstrated. The bovine preparations have a purity of greater than 90% intact, phase-bright oligodendroglia and are obtained in a yield of 8 x 10(6) cells per gram of white matter. Within 1 day it is possible to obtain a preparation containing 60 mg of protein from a single cell type. These cells show a higher degree of ultrastructural preservation of all cytoplasmic constituents than previously obtained. The values for protein (33 pg/cell), DNA (5.4 pg/cell), and lipid (5-6 pg/cell) are very similar to those obtained with an earlier procedure. The cell lipids are rich in galactolipid, which comprises 20% of the total. The activity of the "myelin-specific" enzyme, 2',3'-cyclic nucleotide 3'-phosphohydrolase (EC 3.1.4.37), is 4.7 mumol/min/mg protein, similar to that obtained previously for isolated oligodendroglia and about 25-40% of that found in myelin. The activity of 5'-nucleotidase (EC 3.1.3.5) in the cells is about 10% of that in myelin or white matter.  相似文献   

16.
In an effort to determine the factors that stimulate myelin synthesis, we investigated the mechanism by which dibutyryl cyclic AMP induces the activity of the myelin enzyme, 2',3'-cyclic nucleotide 3'-phosphohydrolase (CNP; EC 3.1.4.37), in C6 glioma cells. Immunotitration experiments and measurements of the accumulation of [35S]methionine-labeled CNP showed that dibutyryl cyclic AMP increased the amount of CNP in the cells but not the catalytic activity per molecule of the enzyme. Moreover, inhibition of protein synthesis with cycloheximide abolished induction of enzyme activity. Dibutyryl cyclic AMP doubled the rate of CNP synthesis but had no effect on the half-life of the enzyme (approximately 33 h). The induction was partially blocked by the inhibitors of mRNA synthesis, cordycepin or alpha-amanitin. Thus, cyclic AMP induces the synthesis of CNP.  相似文献   

17.
The effect of adrenalectomy on CNS myelin accumulation was investigated to determine whether glucocorticoids play a role in regulating myelination. When 14-day-old rats were adrenalectomized and sacrificed 7-8 days later, the amount of bulk-isolated myelin in whole brain, as expressed per gram wet weight of brain or per milligram DNA-phosphate, was reduced to about 75% that of sham-operated controls. Both brain weight and DNA content were unchanged by adrenalectomy. Examination of individual brain regions also revealed decreased amounts of myelin in adrenalectomized animals. Brain glycerol 3-phosphate dehydrogenase specific activity was reduced in adrenalectomized animals to 40-60% that of controls, and serum corticosterone levels were less than 0.6% of control levels. The amount of cerebral myelin in animals adrenalectomized on day 21 and sacrificed 9 days later was not significantly reduced. This suggests a possible role of glucocorticoids during the early period of rapid myelination.  相似文献   

18.
Cultures of myelinated SJL/J fetal mouse spinal cord were incubated with serum and lymphoid cells from syngeneic animals with experimental allergic encephalomyelitis (EAE) induced by syngeneic spinal cord homogenate (SSCH) in complete Freund's adjuvant or others injected with complete Freund's adjuvant alone. After 24 or 48 h of exposure, demyelination was determined by light microscopic examination and quantification of 2',3'-cyclic nucleotide 3'-phosphohydrolase activity. Cultures exposed to spleen or lymph node cells from SSCH-sensitized animals showed the greatest alterations in myelin and decreases in 2',3'-cyclic nucleotide 3'-phosphohydrolase activity whereas serum from these animals had less effect. Cells and serum from complete Freund's adjuvant-injected control animals also induced structural changes in myelin that were significantly less than changes induced by cells and serum from animals with EAE. These experiments show that lymphoid cells and serum obtained from SJL/J mice with acute EAE affected myelin biochemistry and morphology in syngeneic CNS cultures.  相似文献   

19.
Hypomyelination in the Cerebrum of the Congenitally Hypothyroid Mouse (hyt)   总被引:4,自引:2,他引:2  
2',3'-Cyclic nucleotide 3'-phosphohydrolase activity in the cerebrum of the inherited primary hypothyroid mouse (hyt/hyt) is reduced in comparison with the normal heterozygate (hyt/+). No differences were observed with regard to DNA and RNA content and the RNA/DNA ratio. The results of this study indicate that hypomyelination in the hypothyroid mouse is restricted to the cerebrum, and is not related to arrested glial proliferation.  相似文献   

20.
Monoclonal antibody against 2',3'-cyclic nucleotide 3'-phosphohydrolase (CNP) was generated by fusing mouse myeloma cells with spleen cells from BALB/c mice immunized with delipidated white matter from rat corpus callosum. The antibody was characterized by solid-phase radioimmunoassay, immunoblot of sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), immunoprecipitation from C6 glioma cells, and indirect immunofluorescence staining of monolayer cultures containing oligodendrocytes. The monoclonal antibody bound specifically to an intracellular antigen of oligodendrocytes, but not to Schwann cells, astrocytes, neurons, or fibroblast cytoplasm. The immunoblot of SDS-PAGE of CNS myelin showed that the antibody identified two protein bands at 48,000 and 50,000 molecular weight. These proteins were not identified in peripheral nervous system myelin. The monoclonal antibody immunoprecipitated CNP enzyme activity from extracts of C6 glioma cells. This monoclonal antibody should prove useful in further study of this myelin-specific enzyme in CNS myelin and in cells responsible for myelin production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号