首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Recent research has highlighted the occurrence of Escherichia coli in natural habitats not directly influenced by sewage inputs. Most studies on E. coli in recreational water typically focus on discernible sources (e.g., effluent discharge and runoff) and fall short of integrating riparian, nearshore, onshore, and outfall sources. An integrated “beachshed” approach that links E. coli inputs and interactions would be helpful to understand the difference between background loading and sewage pollution; to develop more accurate predictive models; and to understand the differences between potential, net, and apparent culturable E. coli. The objective of this study was to examine the interrelatedness of E. coli occurrence from various coastal watershed components along southern Lake Michigan. The study shows that once established in forest soil, E. coli can persist throughout the year, potentially acting as a continuous non-point source of E. coli to nearby streams. Year-round background stream loading of E. coli can influence beach water quality. E. coli is present in highly variable counts in beach sand to depths just below the water table and to distances at least 5 m inland from the shore, providing a large potential area of input to beach water. In summary, E. coli in the fluvial-lacustrine system may be stored in forest soils, sediments surrounding springs, bank seeps, stream margins and pools, foreshore sand, and surface groundwater. While rainfall events may increase E. coli counts in the foreshore sand and lake water, concentrations quickly decline to prerain concentrations. Onshore winds cause an increase in E. coli in shallow nearshore water, likely resulting from resuspension of E. coli-laden beach sand. When examining indicator bacteria source, flux, and context, the entire “beachshed” as a dynamic interacting system should be considered.  相似文献   

2.
Dunes Creek, a small Lake Michigan coastal stream that drains sandy aquifers and wetlands of Indiana Dunes, has chronically elevated Escherichia coli levels along the bathing beach near its outfall. This study sought to understand the sources of E. coli in Dunes Creek's central branch. A systematic survey of random and fixed sampling points of water and sediment was conducted over 3 years. E. coli concentrations in Dunes Creek and beach water were significantly correlated. Weekly monitoring at 14 stations during 1999 and 2000 indicated chronic loading of E. coli throughout the stream. Significant correlations between E. coli numbers in stream water and stream sediment, submerged sediment and margin, and margin and 1 m from shore were found. Median E. coli counts were highest in stream sediments, followed by bank sediments, sediments along spring margins, stream water, and isolated pools; in forest soils, E. coli counts were more variable and relatively lower. Sediment moisture was significantly correlated with E. coli counts. Direct fecal input inadequately explains the widespread and consistent occurrence of E. coli in the Dunes Creek watershed; long-term survival or multiplication or both seem likely. The authors conclude that (i) E. coli is ubiquitous and persistent throughout the Dunes Creek basin, (ii) E. coli occurrence and distribution in riparian sediments help account for the continuous loading of the bacteria in Dunes Creek, and (iii) ditching of the stream, increased drainage, and subsequent loss of wetlands may account for the chronically high E. coli levels observed.  相似文献   

3.
Swimming advisories due to excessive Escherichia coli concentrations are common at 63rd Street Beach, Chicago, Ill. An intensive study was undertaken to characterize the source and fate of E. coli in beach water and sand at the beach. From April through September 2000, water and sand samples were collected daily or twice daily at two depths on three consecutive days per week (water samples, n = 1,747; sand samples, n = 858); hydrometeorological conditions and bird and bather distributions were also recorded. E. coli concentrations in sand and water were significantly correlated, with the highest concentration being found in foreshore sand, followed by those in submerged sediment and water of increasing depth. Gull contributions to E. coli densities in sand and water were most apparent on the day following gull activity in a given area. E. coli recolonized newly placed foreshore sand within 2 weeks. Analysis of variance, correlation, cluster analyses, concentration gradients, temporal-spatial distribution, demographic patterns, and DNA fingerprinting suggest that E. coli may be able to sustain population density in temperate beach sand during summer months without external inputs. This research presents evidence that foreshore beach sand (i) plays a major role in bacterial lake water quality, (ii) is an important non-point source of E. coli to lake water rather than a net sink, (iii) may be environmentally, and perhaps hygienically, problematic, and (iv) is possibly capable of supporting an autochthonous, high density of indicator bacteria for sustained periods, independent of lake, human, or animal input.  相似文献   

4.
Dunes Creek, a small Lake Michigan coastal stream that drains sandy aquifers and wetlands of Indiana Dunes, has chronically elevated Escherichia coli levels along the bathing beach near its outfall. This study sought to understand the sources of E. coli in Dunes Creek's central branch. A systematic survey of random and fixed sampling points of water and sediment was conducted over 3 years. E. coli concentrations in Dunes Creek and beach water were significantly correlated. Weekly monitoring at 14 stations during 1999 and 2000 indicated chronic loading of E. coli throughout the stream. Significant correlations between E. coli numbers in stream water and stream sediment, submerged sediment and margin, and margin and 1 m from shore were found. Median E. coli counts were highest in stream sediments, followed by bank sediments, sediments along spring margins, stream water, and isolated pools; in forest soils, E. coli counts were more variable and relatively lower. Sediment moisture was significantly correlated with E. coli counts. Direct fecal input inadequately explains the widespread and consistent occurrence of E. coli in the Dunes Creek watershed; long-term survival or multiplication or both seem likely. The authors conclude that (i) E. coli is ubiquitous and persistent throughout the Dunes Creek basin, (ii) E. coli occurrence and distribution in riparian sediments help account for the continuous loading of the bacteria in Dunes Creek, and (iii) ditching of the stream, increased drainage, and subsequent loss of wetlands may account for the chronically high E. coli levels observed.  相似文献   

5.
Research was undertaken to characterize Escherichia coli isolates in interstitial water samples of a sandy beach on the southeastern shore of Lake Huron, Ontario, Canada. A survey of the beach area revealed the highest abundance of E. coli in interstitial water of the foreshore beach sand next to the swash zone. Higher concentrations of E. coli (up to 1.6 x 10(6) CFU/100 ml of water) were observed in the interstitial water from the sampling holes on the beach itself compared to lake water and sediment. Repetitive extragenic palindromic PCR (REP-PCR) was used to characterize the genetic diversity of E. coli isolates from interstitial water samples on the beach. E. coli isolates from the same sampling location frequently exhibited the same REP-PCR pattern or were highly similar to each other. In contrast, E. coli isolates from different sampling locations represented populations distinct from each other. This study has identified a unique ecological niche within the foreshore area of the beach where E. coli may survive and possibly multiply outside of host organisms. The results are of interest as increasing concentrations of E. coli in recreational waters are often considered to be an indication of recent fecal pollution.  相似文献   

6.
Swimming advisories due to excessive Escherichia coli concentrations are common at 63rd Street Beach, Chicago, Ill. An intensive study was undertaken to characterize the source and fate of E. coli in beach water and sand at the beach. From April through September 2000, water and sand samples were collected daily or twice daily at two depths on three consecutive days per week (water samples, n = 1,747; sand samples, n = 858); hydrometeorological conditions and bird and bather distributions were also recorded. E. coli concentrations in sand and water were significantly correlated, with the highest concentration being found in foreshore sand, followed by those in submerged sediment and water of increasing depth. Gull contributions to E. coli densities in sand and water were most apparent on the day following gull activity in a given area. E. coli recolonized newly placed foreshore sand within 2 weeks. Analysis of variance, correlation, cluster analyses, concentration gradients, temporal-spatial distribution, demographic patterns, and DNA fingerprinting suggest that E. coli may be able to sustain population density in temperate beach sand during summer months without external inputs. This research presents evidence that foreshore beach sand (i) plays a major role in bacterial lake water quality, (ii) is an important non-point source of E. coli to lake water rather than a net sink, (iii) may be environmentally, and perhaps hygienically, problematic, and (iv) is possibly capable of supporting an autochthonous, high density of indicator bacteria for sustained periods, independent of lake, human, or animal input.  相似文献   

7.
Recent studies have reported high levels of fecal indicator enterococci in marine beach sand. This study aimed to determine the spatial and temporal variation of enterococcal abundance and to evaluate its relationships with microbial community parameters in Hawaii beach sand and water. Sampling at 23 beaches on the Island of Oahu detected higher levels of enterococci in beach foreshore sand than in beach water on a mass unit basis. Subsequent 8-week consecutive samplings at two selected beaches (Waialae and Kualoa) consistently detected significantly higher levels of enterococci in backshore sand than in foreshore/nearshore sand and beach water. Comparison between the abundance of enterococci and the microbial communities showed that enterococci correlated significantly with total Vibrio in all beach zones but less significantly with total bacterial density and Escherichia coli. Samples from the different zones of Waialae beach were sequenced by 16S rRNA gene pyrosequencing to determine the microbial community structure and diversity. The backshore sand had a significantly more diverse community and contained different major bacterial populations than the other beach zones, which corresponded to the spatial distribution pattern of enterococcal abundance. Taken together, multiple lines of evidence support the possibility of enterococci as autochthonous members of the microbial community in Hawaii beach sand.  相似文献   

8.
The common occurrence of Escherichia coli in temperate soils has previously been reported, however, there are few studies to date to characterize its source, distribution, persistent capability and genetic diversity. In this study, undisturbed, forest soils within six randomly selected 0.5 m2 exclosure plots (covered by netting of 2.3 mm2 mesh size) were monitored from March to October 2003 for E. coli in order to describe its numerical and population characteristics. Culturable E. coli occurred in 88% of the samples collected, with overall mean counts of 16 MPN g(-1), ranging from < 1 to 1657 (n = 66). Escherichia coli counts did not correlate with substrate moisture content, air, or soil temperatures, suggesting that seasonality were not a strong factor in population density control. Mean E. coli counts in soil samples (n = 60) were significantly higher inside than immediately outside the exclosures; E. coli distribution within the exclosures was patchy. Repetitive extragenic palindromic polymerase chain reaction (Rep-PCR) demonstrated genetic heterogeneity of E. coli within and among exclosure sites, and the soil strains were genetically distinct from animal (E. coli) strains tested (i.e. gulls, terns, deer and most geese). These results suggest that E. coli can occur and persist for extended periods in undisturbed temperate forest soils independent of recent allochthonous input and season, and that the soil E. coli populations formed a cohesive phylogenetic group in comparison to the set of fecal strains with which they were compared. Thus, in assessing E. coli sources within a stream, it is important to differentiate background soil loadings from inputs derived from animal and human fecal contamination.  相似文献   

9.
Repetitive element anchored PCR was used to evaluate the genetic profiles of Escherichia coli isolated from surface water contaminated with urban stormwater, sanitary sewage, and gull feces to determine if strains found in environmental samples reflect the strain composition of E. coli obtained from host sources. Overall, there was less diversity in isolates collected from river and beach sites than with isolates obtained from human and nonhuman sources. Unique strain types comprised 28.8, 29.2, and 15.0% of the isolate data sets recovered from stormwater, river water, and beach water, respectively. In contrast, 50.4% of gull isolates and 41.2% of sewage isolates were unique strain types. River water, which is expected to contain E. coli strains from many diffuse sources of nonpoint source pollution, contained strains most closely associated with other river water isolates that were collected at different sites or on different days. However, river sites impacted by sewage discharge had approximately 20% more strains similar to sewage isolates than did sites impacted by stormwater alone. Beach sites with known gull fecal contamination contained E. coli most similar to other beach isolates rather than gull isolates collected at these same sites, indicating underrepresentation of possible gull strains. These results suggest large numbers of strains are needed to represent contributing host sources within a geographical location. Additionally, environmental survival may influence the composition of strains that can be recovered from contaminated waters. Understanding the ecology of indicator bacteria is important when interpreting fecal pollution assessments and developing source detection methodology.  相似文献   

10.
A series of investigations are underway which have quantified the contribution of faecal indicators delivered to nearshore coastal waters from the sewerage system and riverine inputs. Studies have been completed in Jersey, Staithes, Yorkshire, South Wales and the North-west. The research protocols have involved quantification of high and low flow faecal indicator delivery from the sewerage system and riverine sources as well as construction of nonpoint source models designed to predict faecal indicator delivery from diffuse, catchment sources. These investigations suggest a dynamic, but predictable, balance between inputs from the sewerage system and from 'catchment' sources. The sewerage system dominates during low flow conditions but is often overtaken by riverine inputs during high flow conditions after rainfall. Many bathing beach locations exhibit non-compliance after rainfall when stream inputs, rather than sewerage inputs, commonly dominate. The implications of this input pattern is that routine monitoring data may not provide information relevant to new infrastructure planning designed to achieve bathing beach compliance. This suggests that the present scientific information base is insufficient to underpin the extensive UK infra-structure investment programmes designed to ensure compliance with existing EU Directive 76/160/EEC standards. Furthermore, results to date, suggest that management attention must expand from its historical focus on infra-structure provision to incorporate diffuse sources of faecal indicator loading which present a new set of management and modelling challenges.  相似文献   

11.
Legionella spp. are ubiquitous in most environmental water sources; however, sewage treatment plants have not been examined as potential environmental reservoirs for these bacteria. This study used polymerase chain reaction, direct fluorescent-antibody staining, and culture methods to examine raw and treated sewage, ocean-receiving waters, and nearshore coastal environments for the presence of Legionella pneumophila and other Legionella spp. The study concluded that Legionella spp. are present in all phases of sewage treatment and that population numbers do not significantly decline through the treatment process. Ocean-receiving waters located 5 miles offshore, where the treated sewage is discharged, were found to contain Legionella spp., but ocean water between the discharge site and coastal bathing beaches was negative. This suggests that the Legionella spp. from the ocean discharge site were not reaching the nearshore beach waters. A flood control channel and river that entered the ocean were found to contain Legionella spp., and a nearby beach swimming area was also found to be positive, suggesting that land runoff from the flood control channel and river were the source of the Legionella spp. in the beach water samples that tested positive.  相似文献   

12.
Research was undertaken to characterize Escherichia coli isolates in interstitial water samples of a sandy beach on the southeastern shore of Lake Huron, Ontario, Canada. A survey of the beach area revealed the highest abundance of E. coli in interstitial water of the foreshore beach sand next to the swash zone. Higher concentrations of E. coli (up to 1.6 × 106 CFU/100 ml of water) were observed in the interstitial water from the sampling holes on the beach itself compared to lake water and sediment. Repetitive extragenic palindromic PCR (REP-PCR) was used to characterize the genetic diversity of E. coli isolates from interstitial water samples on the beach. E. coli isolates from the same sampling location frequently exhibited the same REP-PCR pattern or were highly similar to each other. In contrast, E. coli isolates from different sampling locations represented populations distinct from each other. This study has identified a unique ecological niche within the foreshore area of the beach where E. coli may survive and possibly multiply outside of host organisms. The results are of interest as increasing concentrations of E. coli in recreational waters are often considered to be an indication of recent fecal pollution.  相似文献   

13.
Each summer, the nuisance green alga Cladophora (mostly Cladophora glomerata) amasses along Lake Michigan beaches, creating nearshore anoxia and unsightly, malodorous mats that can attract problem animals and detract from visitor enjoyment. Traditionally, elevated counts of Escherichia coli are presumed to indicate the presence of sewage, mostly derived from nearby point sources. The relationship between fecal indicator bacteria and Cladophora remains essentially unstudied. This investigation describes the local and regional density of Escherichia coli and enterococci in Cladophora mats along beaches in the four states (Wisconsin, Illinois, Indiana, and Michigan) bordering Lake Michigan. Samples of Cladophora strands collected from 10 beaches (n = 41) were assayed for concentrations of E. coli and enterococci during the summer of 2002. Both E. coli and enterococci were ubiquitous (up to 97% occurrence), with overall log mean densities (+/- standard errors) of 5.3 (+/- 4.8) and 4.8 (+/- 4.5) per g (dry weight). E. coli and enterococci were strongly correlated in southern Lake Michigan beaches (P < 0.001, R(2) = 0.73, n = 17) but not in northern beaches (P = 0.892, n = 16). Both E. coli and enterococci survived for over 6 months in sun-dried Cladophora mats stored at 4 degrees C; the residual bacteria in the dried alga readily grew upon rehydration. These findings suggest that Cladophora amassing along the beaches of Lake Michigan may be an important environmental source of indicator bacteria and call into question the reliability of E. coli and enterococci as indicators of water quality for freshwater recreational beaches.  相似文献   

14.
The effects of nutrients on the survival of Escherichia coli in lake water   总被引:7,自引:5,他引:2  
Escherichia coli was shown to survive without decline in viable counts for at least 12 d in filtered-autoclaved lake water. In unfiltered lake water there was a rapid decline in the viable count of E. coli. The addition of synthetic sewage to filtered-autoclaved lake water led to an increase in the viable count of E. coli at 15°C and 37°C and to an increase in the survival time of the E. coli in unfiltered water. The addition of phosphate and carbon sources (glucose, glycerol, succinate, acetate and lactose) did not significantly increase the survival time of E. coli in unfiltered water over the controls. The addition of ammonium sulphate and some amino acids (as nitrogen sources) to the unfiltered lake water did lead to an increase in the survival times for E. coli and this increase was proportional to the concentration of the added nitrogen source.  相似文献   

15.
The effects of nutrients on the survival of Escherichia coli in lake water   总被引:3,自引:0,他引:3  
Escherichia coli was shown to survive without decline in viable counts for at least 12 d in filtered-autoclaved lake water. In unfiltered lake water there was a rapid decline in the viable count of E. coli. The addition of synthetic sewage to filtered-autoclaved lake water led to an increase in the viable count of E. coli at 15 degrees C and 37 degrees C and to an increase in the survival time of the E. coli in unfiltered water. The addition of phosphate and carbon sources (glucose, glycerol, succinate, acetate and lactose) did not significantly increase the survival time of E. coli in unfiltered water over the controls. The addition of ammonium sulphate and some amino acids (as nitrogen sources) to the unfiltered lake water did lead to an increase in the survival times for E. coli and this increase was proportional to the concentration of the added nitrogen source.  相似文献   

16.
Aim:  Factors affecting faecal indicator bacteria (FIB) and pathogen survival/persistence in sand remain largely unstudied. This work elucidates how biological and physical factors affect die-off in beach sand following sewage spills.
Methods and Results:  Solar disinfection with mechanical mixing was pilot-tested as a disinfection procedure after a large sewage spill in Los Angeles. Effects of solar exposure, mechanical mixing, predation and/or competition, season, and moisture were tested at bench scale. First-order decay constants for Escherichia coli ranged between −0·23 and −1·02 per day, and for enterococci between −0·5 and −1·0 per day. Desiccation was a dominant factor for E. coli but not enterococci inactivation. Effects of season were investigated through a comparison of experimental results from winter, spring, and fall.
Conclusions:  Moisture was the dominant factor controlling E. coli inactivation kinetics. Initial microbial community and sand temperature were also important factors. Mechanical mixing, common in beach grooming, did not consistently reduce bacterial levels.
Significance and Impact of the Study:  Inactivation rates are mainly dependent on moisture and high sand temperature. Chlorination was an effective disinfection treatment in sand microcosms inoculated with raw influent.  相似文献   

17.
AIMS: The Escherichia coli burden at a Great Lakes urban beach was evaluated during the summer months to determine if sand served as a reservoir for E. coli, and if there was evidence of cell replication in situ. Field and laboratory studies investigated the effects of moisture, temperature and UV on E. coli densities in the sand. METHODS AND RESULTS: Sand samples (n = 481) were collected across three distinct transects of the beach, the top, a middle streamline, and the berm, over 15 sample days. The highest levels were found in the middle streamline, which was affected by stormwater discharge from nearby outfalls and roosting gulls; daily geometric mean levels of these seven sites ranged from 6700 to 40,900 CFU per 100 g of sand. Escherichia coli levels were greatest in samples with moisture levels between 15% and 19%, and were significantly higher than 0-4 and 20-24% ranges (P < 0.05). Pre- and post-rain samples at the beach demonstrated an increase in E. coli levels nearly 100-fold within 30 min, suggesting sand washout as a major mechanism for loading of E. coli into the beach waters. Rep PCR analysis of 160 isolates obtained from eight sites demonstrated that 21% of the isolates fell into one of the six clonal patterns, suggesting that bacteria may be able to replicate and possibly colonize beach sand. Sand field plots inoculated with E. coli cells containing pGFPuv that expresses GFP (green fluorescent protein) as a marker showed an initial two- to 100-fold increase at 24 h, depending on the temperature condition. The sand appeared to provide considerable protection from UV exposure as no significant difference was seen in cell densities within the first 2-4 cm of sand between exposed and unexposed plots (P < 0.05). CONCLUSIONS: Beach sand may act as a reservoir for E. coli. Replication of cells appears to be one possible contributing factor to the persistently high levels, as indicated by both field studies and laboratory studies, and warrants further investigation. Moisture content of sand may also be a determinant of cell persistence in the sand environment. SIGNIFICANCE AND IMPACT OF THE STUDY: Escherichia coli is used as an indicator organism for faecal pollution at most Great Lakes coastal beaches; therefore, a better understanding of how E. coli might survive, or possibly replicate, in the environment would improve interpretation of beach monitoring results.  相似文献   

18.
Antibiotic resistance was examined in 462 Escherichia coli isolates from surface waters and fecal pollution sources around Hamilton, Ontario. Escherichia coli were resistant to the highest concentrations of each of the 14 antibiotics studied, although the prevalence of high resistance was mostly low. Two of 12 E. coli isolates from sewage in a CSO tank had multiple resistance to ampicillin, ciprofloxacin, gentamicin, and tetracycline above their clinical breakpoints. Antibiotic resistance was less prevalent in E. coli from bird feces than from municipal wastewater sources. A discriminant function calculated from antibiotic resistance data provided an average rate of correct classification of 68% for discriminating E. coli from bird and wastewater fecal pollution sources. The preliminary microbial source tracking results suggest that, at times, bird feces might be a more prominent contributor of E. coli to Bayfront Park beach waters than municipal wastewater sources.  相似文献   

19.
Repetitive element anchored PCR was used to evaluate the genetic profiles of Escherichia coli isolated from surface water contaminated with urban stormwater, sanitary sewage, and gull feces to determine if strains found in environmental samples reflect the strain composition of E. coli obtained from host sources. Overall, there was less diversity in isolates collected from river and beach sites than with isolates obtained from human and nonhuman sources. Unique strain types comprised 28.8, 29.2, and 15.0% of the isolate data sets recovered from stormwater, river water, and beach water, respectively. In contrast, 50.4% of gull isolates and 41.2% of sewage isolates were unique strain types. River water, which is expected to contain E. coli strains from many diffuse sources of nonpoint source pollution, contained strains most closely associated with other river water isolates that were collected at different sites or on different days. However, river sites impacted by sewage discharge had approximately 20% more strains similar to sewage isolates than did sites impacted by stormwater alone. Beach sites with known gull fecal contamination contained E. coli most similar to other beach isolates rather than gull isolates collected at these same sites, indicating underrepresentation of possible gull strains. These results suggest large numbers of strains are needed to represent contributing host sources within a geographical location. Additionally, environmental survival may influence the composition of strains that can be recovered from contaminated waters. Understanding the ecology of indicator bacteria is important when interpreting fecal pollution assessments and developing source detection methodology.  相似文献   

20.
The incidence pattern of cadmium tolerance and antibiotics resistance by Escherichia coli was examined periodically from the samples of water, sludge and intestine of fish raised in waste stabilization ponds in a sewage treatment plant. Samples of water and sludge were collected from all the selected ponds and were monitored for total counts of fecal coliform (FC), total coliform (TC) and the population of Escherichia coli, which was also obtained from the intestine of fishes. Total counts of both FC and TC as well as counts of E. coli were markedly reduced from the facultative pond to the last maturation pond. Tolerance limit to cadmium by E. coli tended to decline as the distance of the sewage effluent from the source increased; the effective lethal concentration of cadmium ranged from 0.1 mM in split chamber to 0.05 mM in first maturation pond. E. coli isolated from water, sludge and fish gut were sensitive to seven out of ten antibiotics tested. It appears that holistic functions mediated through the mutualistic growth of micro algae and heterotrophic bacteria in the waste stabilization ponds were responsible for the promotion of water quality and significant reduction of coliform along the sewage effluent gradient.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号