首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ca2+ binding to pig cardiac myosin, subfragment-1 (S-1), and g2 light chain were investigated by the equilibrium dialysis method. Two different S-1s, one of which can bind Ca2+ and another which cannot, were prepared. In order to calculate the free Ca2+ concentrations adequately, the amounts of Ca2+ included in various chemicals and proteins were measured by atomic absorption spectroscopy. Ca2+ contamination was greatest in KCl among the chemicals tested. In addition, the Ca2+ strongly bound to myosin and S-1 was released in the presence of Mg2+. When Mg2+ was not added, the Ca2+-binding constant of myosin was 4 x 10(5) M-1 and the maximum binding number was 1.8 mol per mol of myosin. Cooperativity between the 2 Ca2+ bindings could not be demonstrated. Mg2+ strongly inhibited the Ca2+ binding: at a free Ca2+ concentration of 1 x 10(-5) M, 1.3 mol Ca2+ was bound to myosin in the absence of Mg2+, but 0.6 and 0.2 mol were bound in the presence of 0.3 and 4.5 mM Mg2+, respectively. The Ca2+-binding constant of S-1, which contained a 15,000 dalton component, was 8.6 x 10(5) M-1, and the maximum binding number was 0.7 mol per mol of S-1. The 15,000 dalton component could be exchanged with extraneous g2. S-1 which lacked the 15,000 component could not bind Ca2+ at free Ca2+ concentrations less than 0.1 mM. The Ca2+ binding to free g2 light chain was about 100 times weaker than the binding to myosin, as indicated previously for skeletal myosin (Okamoto, Y. & Yagi, K. (1976) J. Biochem. 80, 111--120). The Ca2+-binding constant was obtained as 4.1 x 10(3) M-1 in the absence of added Mg2+. Phosphorylation of g2 light chain did not affect the Ca2+ binding to the free g2 light chain or to myosin. Ca2+ binding to cardiac native tropomyosin was also measured.  相似文献   

2.
The effects of the divalent cations Mg2+, Mn2+ and Ca2+ on the Brownian rotational motion of fluorescently labeled myosin, heavy meromyosin and myosin subfragment-1 were measured by the method of time-resolved fluorescence depolarization. When Mg2+ was added to solutions of myosin or heavy meromyosin and EDTA, their rotational mobility increased. Ca2+ had no effect. Mn2+ increased the mobility of heavy meromyosin but decreased that of myosin. None of these divalent cations effected the mobility of subfragment-1. The binding of heavy meromyosin to actin was affected very little by Mg2+ or EDTA over a wide range of conditions. Divalent cations appear to change the swivel about which the heads of myosin rotate, presumably by binding to light chain 2 (also called DTNB light chain). However, the heads are still able to bind actin in nearly the same way whether Mg2+ is present or not. The concentration of free Mg2+ for the mid-point of the change in heavy meromyosin mobility is in good agreement with that for EDTA activation of ATPase activity. This suggests that EDTA activation is due to removal of Mg2+ bound to myosin itself.  相似文献   

3.
Using glutaric dialdehyde, the muscle proteins myosin, actin, actomyosin and heavy meromyosin subfragment-1 (S-1) have been immobilized on capron fibers. The ATPase activity of myosin and its capability to interact with actin have been preserved whereas the ATPase activity of its subfragment decreased significnatly. Immobilization on capron fibers changes the pH dependence of the ATPase activity of myosin and of S-1 shifting the maximum towards the acid zone (pH 5.5) and increases the thermal stability of the enzyme. Calcium ions produce a stimulatory effect on ATPase; Mg2+ions yield no effect on myosin and S-1 but enhance the activity in the case of immobilized actomyosin though to a lesser degree than the ions of Ca2+. Immobilized actin retains its ability to form actomyosin complex.  相似文献   

4.
P D Wagner 《Biochemistry》1984,23(25):5950-5956
A low-speed centrifugation assay has been used to examine the binding of myosin filaments to F-action and to regulated actin in the presence of MgATP. While the cross-linking of F-actin by myosin was Ca2+ insensitive, much less regulated actin was cross-linked by myosin in the absence of Ca2+ than in its presence. Removal of the 19000-dalton, phosphorylatable light chain from myosin resulted in the loss of this Ca2+ sensitivity. Readdition of this light chain partially restored the Ca2+-sensitive cross-linking of regulated actin by myosin. Urea gel electrophoresis has been used to distinguish that fraction of heavy meromyosin which contains intact phosphorylatable light chain from that which contains a 17000-dalton fragment of this light chain. In the absence of Ca2+, heavy meromyosin which contained digested light chain bound to regulated actin in MgATP about 10-fold more tightly than did heavy meromyosin which contained intact light chain. The regulated actin-activated ATPases of heavy meromyosin also showed that cleavage of this light chain causes a substantial increase in the affinity of heavy meromyosin for regulated actin in the absence of Ca2+. Thus, the binding of both myosin and heavy meromyosin to regulated actin is Ca2+ sensitive, and this sensitivity is dependent on the phosphorylatable light chain.  相似文献   

5.
In order to obtain information about the actin-induced conformational change around the subfragment-1/subfragment-2 link region of myosin, measurements of the fluorescence quenching by acrylamide were made on cardiac myosin and its heavy meromyosin, in which the reactive lysyl residue located in the link region was labeled with an extrinsic fluorophore, the N-methyl-2-anilino-6-naphthalenesulfonyl group. The results with the model compound indicated the involvement of a collisional quenching mechanism for the fluorophore. The quenching rate constant calculated from measured quenching constants using available lifetime data was extremely low for the labeled myosin (0.59 X 10(8) M-1 . S-1), suggesting that the fluorophore bound to myosin is surrounded by segments of proteins. This value was independent of the solvent viscosity, indicating that the quenching reaction is limited by fluctuations in the protein matrix, which produce the inward movement of acrylamide. Chymotryptic digestion of the labeled myosin, which yielded the light chain-2-deficient heavy meromyosin, made the bound fluorophore slightly exposed. Addition of F-actin resulted in about 40% reduction in the quenching rate constants for the labeled myosin and heavy meromyosin. The actin effect was reversed by adding ATP. These results suggest that the binding of actin to myosin makes the protein matrix around the subfragment-1/subfragment-2 link region less mobile.  相似文献   

6.
We have produced and characterized monoclonal antibodies that label antigenic determinants distributed among three distinct, nonoverlapping peptide domains of the 200-kD heavy chain of avian smooth muscle myosin. Mice were immunized with a partially phosphorylated chymotryptic digest of adult turkey gizzard myosin. Hybridoma antibody specificities were determined by solid-phase indirect radioimmunoassay and immunoreplica techniques. Electron microscopy of rotary-shadowed samples was used to directly visualize the topography of individual [antibody.antigen] complexes. Antibody TGM-1 bound to a 50-kD peptide of subfragment-1 (S-1) previously found to be associated with actin binding and was localized by immunoelectron microscopy to the distal aspect of the myosin head. However, there was no antibody-dependent inhibition of the actin-activated heavy meromyosin ATPase, nor was antibody TGM-1 binding to actin-S-1 complexes inhibited. Antibody TGM-2 detected an epitope of the subfragment-2 (S-2) domain of heavy meromyosin but not the S-2 domain of intact myosin or rod, consistent with recognition of a site exposed by chymotryptic cleavage of the S-2:light meromyosin junction. Localization of TGM-2 to the carboxy-terminus of S-2 was substantiated by immunoelectron microscopy. Antibody TGM-3 recognized an epitope found in the light meromyosin portion of myosin. All three antibodies were specific for avian smooth muscle myosin. Of particular interest is that antibody TGM-1, unlike TGM-3, bound poorly to homogenates of 19-d embryonic smooth muscles. This indicates the expression of different myosin heavy chain epitopes during smooth muscle development.  相似文献   

7.
Human cardiac ventricular myosin subfragment-1 (S-1) was prepared by chymotryptic digestion of myosin purified from adult and fetal hearts. The enzymatic properties of adult S-1 were compared to those of two light chain isozymes of fetal S-1 which were separated by ion-exchange chromatography. One fetal isozyme contained a light chain (LC) indistinguishable from the adult ventricular LC1 and the other fetal isozyme contained the LC1 variant that is a component of intact fetal myosin. The fetal isozymes had identical actin-activated Mg2+ ATPase rates at all actin concentrations, as well as the same K+EDTA, Ca2+, and Mg2+ATPase rates. Furthermore, both fetal isozymes had the same actin-activated Mg2+ATPase rates as S-1 purified from adult hearts. The K+EDTA and Ca2+ATPase rates of adult S-1 were only slightly different from those of fetal S-1. These observations are consistent with other available data suggesting that human fetal and adult ventricular myosin differ only in light chain content, not in heavy chain composition, and indicate that isozymic LC1 variation does not alter the steady-state ATPase rate of human cardiac S-1.  相似文献   

8.
The role of arginine residues in the catalytic activity of cardiac myosin subfragment-1 (S-1) was investigated by selective modification with phenylglyoxal. Incorporation of about 2.8 mol of phenylglyoxal/mol of S-1 decreased Ca2+-ATPase activity about 50%. Gelation of the protein occurred at about 70% inactivation; however, extrapolation to complete inactivation indicated that loss of activity correlated with modification of about 4 arginyls/mol. Partial inactivation of S-1 with phenylglyoxal also decreased MgADP binding markedly. When S-1 was modified in the presence of 5 mM MgADP, only 2 arginyls/mol were blocked and there was almost complete protection against loss of Ca2+-ATPase activity and ability to bind MgADP. Similar protection against inactivation by phenylglyoxal was obtained with MgATP or sodium pyrophosphate, but not with MgAMP or magnesium adenosine. These results suggest that 2 arginyls/myosin head are important for enzymatic activity, possibly serving as attachment points between enzyme and substrate. These essential arginyls were localized to a 17,000-dalton cyanogen bromide peptide from the heavy chain fragment of S-1.  相似文献   

9.
Two bands in the Raman spectrum of myosin, at 1,304 cm-1 and 1,270 cm-1, are attributable to alpha-helical structure. The first of these, also present in the spectrum of light meromyosin (LMM) but not in that of subfragment-1 (S-1), is assigned to the coiled-coil tail region of myosin; the second, seen in spectra of S-1 or heavy meromyosin (HMM), is largely absent from the spectrum of light meromyosin and is likely to correspond to the alpha-helical segments of the head region. When myosin or LMM aggregates, spectral bands attributable to backbone and sidechain groups sharpen suggesting a reduction in motional freedom. This sharpening is particularly apparent in the 902 cm-1 C--C stretching mode. Mg2+ broadens and shifts the peak at 1,244 cm-1 to 1,237 cm-1 and diminishes the intensity from 1,230 to 1,240 cm-1, changes which appear to be associated the S-1 region. MgPPi produces changes in the 1,300 cm-1 region attributable to alpha-helical regions in coiled-coil structures suggesting that MgPPi affects not only S-1, but also some part of the myosin rod.  相似文献   

10.
The temperature-dependence of local melting within the subfragment-2 region of rabbit skeletal muscle myosin has been investigated using an enzyme-probe technique. Rate constants of fragmentation of two long subfragment-2 particles (61,000 Mr and 53,000 Mr per polypeptide chain) and a short subfragment-2 particle (34,000 Mr per polypeptide chain) by three different enzymes (alpha-chymotrypsin, trypsin and papain) have been determined over the temperature range 5 to 40 degrees C. We followed the time-course of digestion at specific sites at high (I = 0.50, pH 7.3) and low (physiological, I = 0.15, pH 7.3) ionic strengths by electrophoresis of the digestion products on sodium dodecyl sulfate-containing gels. All rate constants were corrected for the intrinsic temperature-dependence of the enzymes by comparison with model substrates. Normalized rate constant versus temperature profiles for the three enzyme-probes are similar in showing that local melting in long subfragment-2 (61,000 Mr) occurs in two distinct stages as was observed earlier for the intact myosin rod. Over the temperature range 5 to 25 degrees C a restricted region at Mr = 53,000 to 50,000 from the N terminus of the rod (the light meromyosin/heavy meromyosin junction) shows the highest susceptibility to proteolytic cleavage. At temperatures above 25 degrees C local melting was detected by all three enzymes at several specific sites within the hinge domain (Mr = 53,000 to 34,000). Activation energies for cleavage at the susceptible sites were similar for the three enzyme probes. They suggest that this region of the myosin rod has significantly lower thermal stability than the flanking light meromyosin and short subfragment-2 segments. These results, together with other physico-chemical studies, point to the hinge domain of the myosin cross-bridge as an important functional element in the mechanism of force generation in muscle.  相似文献   

11.
The interaction of C-protein with heavy meromyosin and subfragment-2.   总被引:13,自引:0,他引:13  
C-protein has previously been shown to bind to the light-meromyosin region of the myosin tail. Examination of mixtures of C-protein with heavy meromyosin or subfragment-2 or subfragment-1 in the analytical ultracentrifuge shows that there is also a binding site for C-protein in the subfragment-2 region of the tail.  相似文献   

12.
The S-1/S-2 swivel in myosin provides a flexible link between the head and tail portions of the molecule. We have investigated the properties of the swivel by employing limited proteolysis methods. Our results indicate that the binding of actin to heavy meromyosin inhibits both the chymotryptic and papain cleavage of the S-1/S-2 swivel, and that this effect is dependent on the presence of intact LC-2 light chains. Actin did not slow digestions carried out using heavy meromyosin previously treated with proteases to nick the LC-2 chains to 17,000 or 14,000 Mr fragments. Although the integrity of the LC-2 light chain appears to be required to transmit the effects of actin binding from the myosin head to the S-1/S-2 swivel, the binding of Ca2+ to the 17,000 Mr LC-2 fragment can still affect the chemical reactivity of SH1 thiol groups. Both chymotryptic and papain digestions of heavy meromyosin containing intact or fragmented LC-2 light chain show substantial temperature sensitivity between 5 degrees C and 35 degrees C. Calculated apparent activation energies for this process indicate that the S-1/S-2 swivel in myosin can undergo temperature-dependent structural changes independently of the state of the LC-2 light chain. Thus, both actin binding and temperature variations can induce structural transitions in the S-1/S-2 swivel.  相似文献   

13.
Incubation of rabbit skeletal myosin with an extract of light chain kinase plus ATP phosphorylated the L2 light chain and modified the steady state kinetics of the actomyosin ATPase. With regulated actin, the ATPase activity of phosphorylated myosin (P-myosin) was 35 to 181% greater than that of unphosphorylated myosin when assayed with 0.05 to 5 micro M Ca2+. Phosphorylation had no effect on the Ca2+ concentration required for half-maximal activity, but it did increase the ATPase activity at low Ca2+. With pure actin, the percentage of increase in the actomyosin ATPase activity correlated with the percentage of phosphorylation of myosin. Steady state kinetic analyses of the actomyosin system indicated that 50 to 82% phosphorylation of myosin decreased significantly the Kapp of actin for myosin with no significant effect on the Vmax. Phosphorylaton of heavy meromyosin similarly modified the steady state kinetics of the acto-heavy meromyosin system. Both the K+/EDTA- and Mg-ATPase activities of P-myosin and phosphorylated heavy meromyosin were within normal limits indicating that phosphorylaiion had not altered significantly the hydrolytic site. Phosphatase treatment of P-myosin decreased both the level of phosphorylation of L2 and the actomyosin ATPase activity to control levels for unphosphorylated myosin. It is concluded levels for unphosphorylated myosin. It is concluded from these results that the ability of P-myosin to modify the steady state kinetics of the actomyosin ATPase was: 1) specific for phosphorylation; 2) independent of the thin filament regulatory proteins.  相似文献   

14.
A method of minor protein P55 isolation from extract of soluble proteins of A-zone of the sarcomere from rabbit skeletal muscle is described. It is shown that this protein inhibits Ca2+-ATPase of myosin and Mg2+-ATPase of reconstructed actomyosin, but it does not affect superprecipitation of actomyosin. The molecular weight which is determined by mobility and its polypeptide chain polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate is about 35 000 dalton.  相似文献   

15.
Separation of heavy meromyosin subfragment-1 treated with N-ethyl maleimide (MalNEt) into native -SH1- and -(SH1, SH2)-blocked protein populations could be achieved by affinity chromatography on agarose-ATP columns in the presence of Mg2+ or Ca2+. Covalent bridging of the two -SH groups by p-phenylenedimaleimide gave a product which has the same affinity of binding to ATP columns as the doubly blocked MalNEt preparation. Treatment with p-phenylenedimaleimide abolished binding to immobilized F-actin columns, whereas modifications by MalNEt did not affect adsorption by this chromatographic medium. Affinity chromatography on immobilized nucleotide and actin columns is suggested as an analytical tool in the study of the involvement of thiol groups in the myosin active site and its conformation.  相似文献   

16.
Monoclonal antibodies against gizzard smooth muscle myosin were generated and characterized. One of these antibodies, designated MM-2, recognized the 17-kDa light chain and modulated the ATPase activities and hydrodynamic properties of smooth muscle myosin. Rotary shadowing electron microscopy showed that MM-2 binds 51 (+/- 25) A from the head-rod junction. The depression of Ca2+- and Mg2+-ATPase activities of myosin and Ca2+-ATPase activity of heavy meromyosin at low KCl concentration were abolished by MM-2. Viscosity measurement indicated that MM-2 inhibits the transition of 6 S myosin to 10 S myosin. While the rate of the production of subfragment-1 by papain proteolysis of 6 S myosin was inhibited by MM-2, the rate of proteolysis of the heavy chain of 10 S myosin was enhanced by MM-2 and reached the same rate as that of 6 S myosin plus MM-2. These results suggest that MM-2 inhibits the formation of 10 S myosin by binding to the 17-kDa light chain which is localized at the head-neck region of the myosin molecule. MM-2 increased the Vmax of actin-activated Mg2+-ATPase activities of both dephosphorylated myosin and dephosphorylated heavy meromyosin about 10- and 20-fold, respectively. MM-2 also activated the actin-activated Mg2+-ATPase activity of phosphorylated myosin at a low MgCl2 concentration and thus abolished the Mg2+-dependence of acto phosphorylated myosin ATPase activity. These results suggest that MM-2 inhibits the formation of 10 S myosin, and this results in the activation of actin-activated Mg2+-ATPase activity even in the absence of phosphorylation.  相似文献   

17.
1. Phenylglyoxal reacts rapidly with isolated myosin heads (subfragment 1) and induces two successive and distinguishable effects on their enzymic properties: first, a twofold activation of the Ca2+ and Mg2+-dependent ATPases with no effect onthe K+-ATPase followed by inhibition of the K+, Ca2+ and actin-activated Mg2+-ATPases. A specific protein-reagent reagent complex is formed during the second phase of the modification reaction (Ki approximately 5 x 10(-3) M). 2. ADP and ATP with or without cations provide efficient protection only against the loss of ATPase activities, suggesting that the second inhibitory process is occurring at or close to the active site. 3. On the basis of [14C]phenylglyoxal-labelling experiments and the composition of modified subfragment-1 derivatives, it is demonstrated that the sequential modification of two reactive arginyl residues is responsible for the observed activation-inhibition phenomena. Blocking of the first reactive residue produces a shift in the pH/activity curves related to the Ca2+ and Mg2+-dependent ATPases with an apparent activation effect. Modification of the second guanidino group does not destroy the affinity of the protein for the nucleotide substrates but does alter the nucleotide binding site as reflected in the inability of Mg2+. ATP to dissociate the modified subfragment-1--actin complex. It is concluded that electrostatic interactions between this positively charged group and the negatively charged ATP and ADP molecules may be critical for the hydrolytic efficiency of myosin heads. 4. After dissociation and separation of the polypeptide constituents of the protein in acetic acid medium, both labelled sites are found to reside in the heavy chain.  相似文献   

18.
Interaction of smooth muscle caldesmon with S-100 protein   总被引:1,自引:0,他引:1  
The interaction of caldesmon with certain Ca-binding proteins was investigated by means of electrophoresis under non-denaturating conditions. In the presence of Ca2+ calmodulin, troponin C and S-100 protein form a complex with caldesmon. No complex formation takes place in the absence of Ca2+. Lactalbumin and pike parvalbumin (pI4.2) do not interact with caldesmon independently of Ca-concentration. Both S-100 protein and calmodulin effectively inhibit phosphorylation of caldesmon by Ca-phospholipid-dependent protein kinase. At low ionic strength S-100 protein reverses the inhibitory action of caldesmon on the skeletal muscle acto-heavy meromyosin ATPase more effectively than calmodulin. It is supposed that in certain tissues and cell compartments the proteins belonging to the S-100 family are able to substitute for calmodulin in the caldesmon-dependent regulation of actin and myosin interaction.  相似文献   

19.
Chromatography of turkey gizzard extract on Sephacryl S-300 has been shown to fractionate the various smooth muscle phosphatases. We have previously reported the purification and characterization of three of these enzymes, termed smooth muscle phosphatase (SMP)-I, -II, and -IV. Recently, we have purified SMP-III to near homogeneity. Although all of the smooth muscle phosphatases dephosphorylate the isolated myosin light chains, only SMP-III and -IV are active toward intact myosin and, therefore, are most likely to play a direct role in the muscle contraction-relaxation process. SMP-III has a higher molecular weight (390,000), as determined by gel filtration, than the other smooth muscle phosphatases and migrates as single band with a molecular weight of 40,000 in a sodium dodecyl sulfate-polyacrylamide gel. SMP-III is immunologically distinct from SMP-I and -II. It dephosphorylates heavy meromyosin and the isolated myosin light chains at a rapid rate but has low activity toward phosphorylase alpha. The activity of SMP-III is not affected by Ca2+ but is activated by Mn2+.Mg2+ stimulates the activity toward heavy meromyosin but inhibits the myosin light chain phosphatase activity. Attempts to classify SMP-III according to the scheme proposed by Ingebritsen and Cohen (Ingebritsen T. S., and Cohen, P. (1983) Science 221, 331-338) revealed that it is resistant to the heat stable inhibitor-2, suggesting that it is a Type 2 protein phosphatase. However, SMP-III is inhibited by concentrations of okadaic acid which are characteristic of Type 1 protein phosphatases and it binds to heparin-Sepharose like other Type 1 phosphatases. But most interestingly, SMP-III does not dephosphorylate the alpha- or beta-subunits of phosphorylase kinase, a property not reported for any Ser/Thr protein phosphatase.  相似文献   

20.
To determine the localization of F-protein binding sites on myosin, the interaction of F-protein with myosin and its proteolytic fragments in 0.1 M KCl, 10 mM K-phosphate pH 6.5 was studied, using sedimentation, electron microscopic and optical diffraction methods. Sedimentation experiments showed that F-protein binds to myosin and myosin rod rather than to light meromyosin or S-1. The F-protein binding to myosin and rod is of a similar character. The calculated values of the constants of F-protein binding to myosin and rod are 2.6 X 10(5) M-1 and 2.1 X 10(5) M-1, respectively. The binding sites are probably located on the subfragment-2 portion of the myosin molecule. The number of F-protein binding sites on myosin calculated per chain weight of 80 000 is 5 +/- 1. The sedimentation results were confirmed by electron microscopic data. F-protein does not bind to light meromyosin paracrystals, but decorates myosin and rod filaments with the interval of 14.3 nm regardless of whether F-protein is added before or after filamentogenesis. A comparison of optical diffraction patterns obtained from myosin and rod filaments with those from decorated ones revealed a marked enhancement of meridional reflection at (14.3 nm)-1 in the latter case.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号