首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The TIME-EA4, from silkworm diapause eggs of pure strain C108, Bombyx mori, has glycosylated chain as tetrasaccharide (Man(2)GlcNAc(2)) attaching to the Asn(22) of T3 peptide from tryptic digests. On the other hand, from Showa silkworm strain we additionally observed a pentasaccharide (Man(3)GlcNAc(2)) on T3 at the same linkage site. The linkage pattern of the 5-sugar chain was studied through Smith degradation combined with LC-MS and MS/MS analyses. These advanced methods led us to conclude that the pentasaccharide was branching as Man 1-->3(Man 1-->6)Man 1-->4GlcNAc 1-->4GlcNAc.  相似文献   

2.
Mass spectrometry (MS) has the potential to revolutionize structural glycobiology and help in the understanding of how post-translation events such as glycosylation affect protein activities. Several approaches to determine the structure of glycopeptides have been used successfully including fast atom bombardment, matrix-assisted laser desorption ionization, and electrospray ionization with a wide variety of mass analyzers. However, the identification of glycopeptides in a complex mixture still remains a challenge. The source of this challenge is primarily due to the poor ionization efficiency and rapid degradation of glycopeptides. In this report we describe the use of a chip-based infusion nanoelectrospray ionization technique in combination with a recently developed linear ion trap for identification and characterization of glycosylation in complex mixtures. Two standard synthetic glycans were analyzed using multiple-stage fragmentation analysis in both positive and negative ionization modes. In addition, the high mannose type N-glycosylation in ribonuclease B (RNase B) was used to map the glycosylation site and obtain the glycan structures. We were able to map the glycosylation site and obtain the glycan structures in RNase B in a single analysis. The results reported here demonstrate that the fully automated chip-based nanoelectrospray linear ion trap platform is a valuable system for oligosaccharide analyses due to the unique MS/MS and MS(n) capability of the linear ion trap and the extended analysis time provided by the ionization technique.  相似文献   

3.
Protein glycosylation was explored by direct nanoESI MS and MS/MS analysis of ZIC-HILIC-enriched proteolytic glycopeptides without further separation or purification. In a previous publication, we demonstrated that a direct MS-based analysis of proteolytic glycopeptides is feasible for a number of proteins (Henning , S. J. Mass Spectrom. 2007 , 42 , 1415 - 21). This method has now been refined for two aspects: (1) separation of glycopeptides by use of ZIC-HILIC SPE and (2) the use of unspecific proteases like thermolysin, elastase, or a trypsin/chymotrypsin mixture leading per se to a mass-based separation, that is, small nonglycosylated peptides and almost exclusively glycopeptides at higher m/z values. Furthermore, the glycopeptides produced by the above proteases in general contain short peptide backbones thus improving-probably due to their higher hydrophilicity--the ZIC-HILIC-based separation. The combination of unspecific proteolysis, glycopeptide separation, and their direct MS analysis was successfully accomplished for probing glycoproteins carrying high-mannose type (ribonuclease B), neutral (asialofetuin), and acidic (haptoglobin and α1-acid glycoprotein) complex type glycans as well as for glycopeptides derived from glycoprotein mixtures and, finally, for exploring the glycosylation of a human IgG preparation. Our results show that the presented method is a fast, facile, and inexpensive procedure for the elucidation of protein N-glycosylation.  相似文献   

4.
Complete 1H and 13C NMR assignments are reported for two glycopeptides representing the carbohydrate-protein linkage region of connective tissue proteoglycans. These glycopeptides are the octasaccharide hexapeptide, Ser(GlcpAbeta(1-->3) Galpbeta(1-->3)Galpbeta(1-->4)Xylpbeta)-Gly-Ser-Gly-Se r (GlcpAbeta(1-->3)Galpbeta(1-->3)Galpbeta(1-->4)Xylp beta)-Gly (1), and the tetrasaccharide dipeptide, Ser(GlcpAbeta(1-->3)Galpbeta(1-->3)Galpbeta(1-->4)X ylpbeta)-Gly (2). The vicinal coupling constant data show that the monosaccharide residues adopt4 C 1 chair conformations. Distance geometry/simulated annealing calculations using 2D NOESY derived distance constraints yielded a single family of structures for the tetrasaccharide moiety, with well defined interglycosidic linkage conformations. The straight phi torsion angles of the glycosidic C1'-O1 bonds showed a strict preference for the -sc range whereas the psi torsion angles (O1-Cn) exhibited dependence upon the interglycosidic linkage position (-ac for beta(1-->3) linkage, +ac for beta(1-->4) linkage). The predominant conformation about the glycopeptide bond is straight phi = -sc and psi = +ac. The presence of strong daN (i, i+1) NOE contacts, and the general absence of dNN (i, i+1) contacts (except for a weak Ser-5/Gly-6 dNN contact) and the dbN (i, i+1) contacts (except for Ser-1/Gly-2) in the ROESY spectrum, suggest that the backbone for 1 is predominantly in an extended conformation. A comparison of the ROESY data for 1 with those obtained from the unglycosylated hexapeptide (3) of the same sequence suggests that glycosylation has only a marginal influence on the backbone conformation of the hexapeptide.  相似文献   

5.
Extensive site-specific glycosylation analysis of individual glycoproteins is difficult due to the nature and complexity of glycosylation in proteins. In protein mixtures, these analyses are even more difficult. We present an approach combining nonspecific protease digestion, nanoflow liquid chromatography, and tandem mass spectrometry (MS/MS) aimed at comprehensive site-specific glycosylation analysis in protein mixtures. The strategy described herein involves the analysis of a complex mixture of glycopeptides generated from immobilized-Pronase digestion of a cocktail of glycoproteins consisting of bovine lactoferrin, kappa casein, and bovine fetuin using nanoflow liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (nano-LC-Q-TOF MS). The resulting glycopeptides were chromatographically separated on a micro fluidic chip packed with porous graphitized carbon and analyzed via MS and MS/MS analyses. In all, 233 glycopeptides (identified based on composition and including isomers) corresponding to 18 glycosites were observed and determined in a single mixture. The glycopeptides were a mixture of N-linked glycopeptides (containing high mannose, complex and hybrid glycans) and O-linked glycopeptides (mostly sialylated). Results from this study were comprehensive as detailed glycan microheterogeneity information was obtained. This approach presents a platform to simultaneously characterize N- and O-glycosites in the same mixture with extensive site heterogeneity.  相似文献   

6.
N Kojima  Y Araki    E Ito 《Journal of bacteriology》1985,161(1):299-306
The structure of the linkage regions between ribitol teichoic acids and peptidoglycan in the cell walls of Staphylococcus aureus H and 209P and Bacillus subtilis W23 and AHU 1390 was studied. Teichoic acid-linked saccharide preparations obtained from the cell walls by heating at pH 2.5 contained mannosamine and glycerol in small amounts. On mild alkali treatment, each teichoic acid-linked saccharide preparation was split into a disaccharide identified as N-acetylmannosaminyl beta(1----4)N-acetylglucosamine and the ribitol teichoic acid moiety that contained glycerol residues. The Smith degradation of reduced samples of the teichoic acid-linked saccharide preparations from S. aureus and B. subtilis gave fragments characterized as 1,2-ethylenediol phosphate-(glycerolphosphate)3-N-acetylmannosaminyl beta(1----4)N- -acetylxylosaminitol and 1,2-ethylenediolphosphate-(glycerol phosphate)2-N-acetylmannosaminyl beta(1----4)N-acetylxylosaminitol, respectively. The binding of the disaccharide unit to peptidoglycan was confirmed by the analysis of linkage-unit-bound glycopeptides obtained from NaIO4 oxidation of teichoic acid-glycopeptide complexes. Mild alkali treatment of the linkage-unit-bound glycopeptides yielded disaccharide-linked glycopeptides, which gave the disaccharide and phosphorylated glycopeptides on mild acid treatment. Thus, it is concluded that the ribitol teichoic acid chains in the cell walls of the strains of S. aureus and B. subtilis are linked to peptidoglycan through linkage units, (glycerol phosphate)3-N-acetylmannosaminyl beta(1----4)N-acetylglucosamine and (glycerol phosphate)2-N-acetylmannosaminyl beta(1----4)N-acetylglucosamine, respectively.  相似文献   

7.
The surface layer glycoprotein of Aneurinibacillus thermoaerophilus DSM 10155 has a total carbohydrate content of 15% (by mass), consisting of O-linked oligosaccharide chains. After proteolytic digestion of the S-layer glycoprotein byPronase E and subsequent purification of the digestion products by gel permeation chromatography, chromatofocusing and high-performance liquid chromatography two glycopeptide pools A and B with identical glycans and the repeating unit structure -->4)-alpha-l-Rha p -(1-->3)-beta-d- glycero -d- manno -Hep p -(1--> (Kosma et al., 1995b, Glycobiology, 5, 791-796) were obtained. Combined evidence from modified Edman-degradation in combination with liquid chromatography electrospray mass-spectrometry and nuclear magnetic resonance spectroscopy revealed that both glycopeptides contain equal amounts of the complete core structure alpha-l-Rha p -(1-->3)-alpha-l-Rha p -(1-->3)-beta-d-Gal p NAc-(1-->O)-Thr/Ser and the truncated forms alpha-l-Rha p -(1-->3)-beta-d-Gal p NAc-(1-->O)-Thr/Ser and beta-d-Gal p NAc-(1-->O)-Thr/Ser. All glycopeptides possessed the novel linkage types beta-d-Gal p NAc-(1-->O)-Thr/Ser. The different cores were substituted with varying numbers of disaccharide repeating units. By 300 MHz proton nuclear magnetic resonance spectroscopy the complete carbohydrate core structure of the fluorescently labeled glyco-peptide B was determined after Smith-degradation of its glycan chain. The NMR data confirmed and complemented the results of the mass spectroscopy experiments. Based on the S-layer glycopeptide structure, a pathway for its biosynthesis is suggested.  相似文献   

8.
Dong Q  Yao J  Fang JN  Ding K 《Carbohydrate research》2007,342(10):1343-1349
Two major polysaccharide fractions, CDA-1A and CDA-3B, were isolated from the cold-water extract of Cistanche deserticola Y. C. Ma, a holoparasitic plant and a valuable traditional Chinese medicine, using anion-exchange chromatography on DEAE-cellulose and gel-permeation chromatography on Sephacryl S-300 and Sephadex G-150. Their major structural features were elucidated using component and linkage analyses, periodate oxidation, Smith degradation, partial acid hydrolysis, and NMR spectroscopy. The results indicated that CDA-1A is an alpha-(1-->4)-D-glucan with alpha-(1-->6)-linked branches attached to the O-6 of branch points and that CDA-3B is an RG-I polysaccharide containing a typical rhamnogalacturonan backbone and arabinogalactan or arabinan branches. Bioactivity tests showed that CDA-1A is inert for T-cell proliferation stimulation but active for B-cell proliferation, while CDA-3B is potent for the stimulation of both T- and B-cell proliferation.  相似文献   

9.
The O-polysaccharide was obtained by mild acid degradation of the lipopolysaccharide of Providencia stuartii O43:H28 and studied by sugar and methylation analyses, Smith degradation and 1H and 13C NMR spectroscopy, including 2D ROESY, and H-detected 1H, 13C HSQC and HMBC experiments, as well as a NOESY experiment in a 9:1 H2O/D2O mixture to reveal correlations for NH protons. It was found that the polysaccharide is built up of linear tetrasaccharide repeating units containing an amide of D-galacturonic acid with L-serine [D-GalA6(L-Ser)] and has the following structure:[3)-beta-D-GalpA6(L-Ser)-(1-->3)-beta-D-GlcpNAc-(1-->2)-alpha-D-Rhap4NAc-(1-->4)-beta-D-GlcpA-(1-->]n.  相似文献   

10.
In the present study the structures of two glycopeptides (G1 and G1'), isolated from FU RvH(1)-b and two glycopeptides (G2 and G3), isolated from the structural subunit RvH(1) of Rapana venosa hemocyanin, were determined. To structurally characterize the site-specific carbohydrate heterogeneity and binding site of the N-linked glycopeptide(s), a combination of capillary reversed-phase chromatography and ion trap mass spectrometry was used. The amino acid sequences of glycopeptides G1 and G1' determined by Edman degradation and MS/MS sequencing demonstrated that the oligosaccharides are linked to N-glycosylation sites. Two peptides (a glycosylated (G1) and non-glycosylated one) were identified in this fraction and no linkage sites were observed in the latter one. Based on the sequencing of the glycosylated fractions G1, G1', G2 and G3, the carbohydrate structure Man(alpha1-6)Man(alpha1-3)Man(beta1-4)GlcNAc(beta1-4)[Fuc(alpha1-6)]GlcNAc-R could be identified for glycopeptides G1 and G3, and only the typical core structure Man(alpha1-6)Man(alpha1-3)Man(beta1-4)GlcNAc(beta1-4)GlcNAc-R was found for G1' and G2. The Fuc residue found in glycopeptides G1 and G3 is attached to N-acetyl-glucosamine of the carbohydrate core, as often found in other glycoproteins.  相似文献   

11.
Six lambda genomic clones containing polymorphic microsatellite (MS) markers were assigned to bovine chromosomes 1, 3, 5, 7, 13 and 24 by fluorescence in situ hybridization (FISH). Linkage data for four MS markers were presented earlier and linkage data for the remaining two on chromosome 7 and 24 are presented here. All assignments either orient or confirm the orientation of linkage groups relative to the centromere. A comparison of physical assignments and linkage intervals was possible on chromosome 5 (three loci, 38 cM) and 13 (two loci, 6 cM).  相似文献   

12.
We present complete1H NMR assignments for two synthetic glycopeptides representative of the carbohydrateprotein linkage region of serglycin proteoglycans. The peptides are: Ser(Galp-Xylp)-Gly-Ser-Gly-Ser(Galp-Xylp)-Gly and, Ser(Galp-Xylp)-Gly-Ser(Galp-Xylp)-Gly-Ser(Galp-Xylp)-Gly. A number of 2D NMR spectra together with a 3D NOESY-TOCSY spectrum were acquired at 600 MHz to complete the assignments of the glycopeptides dissolved in water with 40% trifluoroethanol. Preliminary analysis of the NMR data suggests folded structures for the glycopeptides.A preliminary account of this work was presented at an International Symposium held at the University of Alabama at Birmingham in November, 1994 on the occasion of the 65th birthday of Professor Lennart Rodén.  相似文献   

13.
Glucans of basidiomycetes are considered to be an important class of polysaccharides, as they can act as biological response modifiers. We now isolate a gel-forming, water-soluble beta-glucan, with a molecular mass of 1.2 x 10(6)g/mol (HPSEC), from the fruit bodies of the edible mushroom Pleurotus florida, via alkaline extraction, followed by fractionation by freeze-thawing. Structural assignments were carried out using mono- and bi-dimensional nuclear magnetic resonance spectroscopy, monosaccharide composition, methylation analyses, and a controlled Smith degradation. It was a branched beta-glucan, with a main chain of (1-->3)-linked-Glcp residues, substituted at O-6 by single-unit Glcp side chains, on average to every fourth residue of the backbone.  相似文献   

14.
Structural analyses were performed on the intact glycopeptides and on the linkage region oligosaccharide-peptides derived from the keratan sulfate proteoglycan from monkey cornea (Nakazawa, K., Newsome, D.A., Nilsson, B., Hascall, V.C., and Hassell, J.R. (1983) J. Biol. Chem. 258, 6051-6055) using trifluoroacetolysis, Smith degradation, chromium trioxide oxidation, and gas-liquid chromatography-mass spectrometry. The following structure was found for the linkage region (formula; see text) The following structures were found for the intact oligosaccharide peptides (formula; see text) and (formula; see text) The structure of the linkage region for keratan sulfate on corneal proteoglycans is clearly derived from a complex type of N-linked glycoprotein oligosaccharide precursor, indicating that only the oligosaccharides that have been processed to the complex type are used as primers for synthesizing keratan sulfate chains. The high mannose oligosaccharide in Formula 3 is an intermediate in the normal pathway for biosynthesis of complex type oligosaccharides. The structure in Formula 2, in which a single Man alpha 1-2 is retained on the Man alpha 1-3 branch while the Man alpha 1-6 branch is unsubstituted, can be an intermediate for an alternate, presumably minor pathway for complex oligosaccharide formation (Kornfeld, S., Gregory, W., and Chapman, A. (1979) J. Biol. Chem. 254, 11649-11654) in certain cases. This structure has not previously been shown to be present on normal glycoproteins.  相似文献   

15.
alpha-L-Fucosidase was purified from human liver to apparent homogeneity and subjected to exhaustive digestion with Pronase. The resulting glycopeptides were isolated by gel filtration on Sephadex G-50 and further fractionated by Bio-Gel P-4 chromatography. Five glycopeptide fractions were obtained. The structures of the carbohydrate portions of all glycopeptide components were fully characterized by a combination of 500-MHz 1H NMR spectroscopy and carbohydrate composition analysis. Fraction I contained disialyl diantennary glycopeptides of the N-acetyllactosamine type. Fractions II and III contained predominantly mono(sialyl-N-acetyllactosaminyl) diantennary glycopeptides with the NeuAc alpha(2----6)Gal beta(1----4)GlcNAc beta(1----2) branch attached to alpha(1----3)-linked Man in II and to alpha(1----6)-linked Man in III. The N-acetyllactosamine-type glycopeptides in fractions I to III have a small portion (10-15%) of their Asn-linked GlcNAc residues substituted by additional alpha(1----6)-linked Fuc. Also, a minor portion of the NeuAc residues appeared to be attached to Gal in alpha(2----3) rather than alpha(2----6) linkage. Fraction IV contained a mixture of larger-size oligomannoside-type glycopeptides with a variable number (6 to 9) of Man residues. Smaller-size oligomannoside-type glycopeptides were found in fraction V, containing 3 or 5 Man residues; a small portion (10%) of the Man3GlcNAc2Asn component appeared to contain in addition a Fuc residue in alpha(1----6) linkage to the Asn-bound GlcNAc. The overall ratio of oligomannoside-type to N-acetyllactosamine-type carbohydrate structures was found to be 5:4. This article is the first account of the complete characterization of the oligomannoside-type structures in alpha-L-fucosidase; furthermore, the occurrence in alpha-L-fucosidase of mono(sialyl-N-acetyllactosaminyl) structures, Fuc-containing oligosaccharides, and NeuAc alpha(2----3) linked to Gal are reported for the first time.  相似文献   

16.
The two main polysaccharides from the basidiomycetous fungus Laetiporus sulphureus were isolated, purified and characterized. The structural assignments were carried out using (13)C, (1)H, and (1)H,(13) HSQC nuclear magnetic resonance spectroscopy, methylation analysis, and Smith degradation. One was a linear beta-glucan having a (1-->3)-linked main chain, namely laminaran. The other was a fucomannogalactan, which consisted of a main chain of (1-->6)-linked alpha-D-galactopyranosyl residues, a part of them being substituted at O-2 by 3-O-D-mannopyranosyl-L-fucopyranosyl, alpha-D-mannopyranosyl and in a minor proportion, alpha-L-fucopyranosyl groups. This heteropolysaccharide is related to those of other Basidiomycetes heterogalactans, although it differs distinctly in its side-chain structures. Whereas part of the single-unit L-fucopyranosyl and/or 3-O-alpha-mannopyranosyl-L-fucopyranosyl residues are present as side chains of the other heterogalactans, additional alpha-D-mannopyranosyl units are present in our fucomannogalactan of L. sulphureus.  相似文献   

17.
The unit A-type glycopeptides were purified from porcine thyroglobulin by Pronase digestion followed by chromatography on a DEAE-Sephadex A-25 column. These glycopeptides were separated into five fractions (UA-I, -II, -IV and -V) by Dowex 50W (X2) column chromatography. Fractions UA-I, -II, -III, -IV and -V were found to have the compositions (Man)9(GlcNAc)2-Asn, (Man)8(GlcNAc)2-Asn, (Man)7(GlcNAc)2-Asn, (Man)6(GlcNAc)2-Asn and (Man)5(GlcNAc)2-Asn respectively. The structures of these five fractions were investigated by the combination of exo- and endo-glycosidase digestions, methylation analysis. Smith periodate degradation and acetolysis. The results showed that fraction UA-V had the simplest structure: see formula in text. The larger glycopeptides (fractions UA-I, -II, -III and -IV) contained additional mannose residues alpha (1 leads to 2)-linked to the terminal mannose residues in the above core structure. These unit A-type glycopeptides appear to be biosynthetic intermediates that are to be processed to form complex-type glycopeptides (unit B-type sugar chains).  相似文献   

18.
The structure of the linkage unit between ribitol teichoic acid and peptidoglycan in the cell walls of Listeria monocytogenes EGD was studied. A teichoic-acid--glycopeptide preparation isolated from lysozyme digests of the cell walls of this strain contained mannosamine, glycerol, glucose and muramic acid 6-phosphate in an approximate molar ratio of 1:1:2:1, together with large amounts of glucosamine and other components of teichoic acid and glycopeptides. A teichoic-acid-linked sugar preparation, obtained by heating the cell walls at pH 2.5, also contained glucosamine, mannosamine, glycerol and glucose in an approximate molar ratio of 25:1:1:2. Part of the glucosamine residues were shown to be involved in the linkage unit. Thus, on mild alkaline hydrolysis, the teichoic-acid-linked sugar preparation gave a disaccharide characterized as N-acetylmannosaminyl(beta 1----4)-N-acetylglucosamine [ManNAc(beta 1----4)GlcNAc] in addition to the ribitol teichoic acid moiety, whereas the teichoic-acid - glycopeptide was separated into disaccharide-linked glycopeptide and the ribitol teichoic acid moiety by the same procedure. Furthermore, Smith degradation of the cell walls gave a characteristic fragment, EtO2-P-Glc(beta 1----3)Glc(beta 1----1/3)Gro-P-ManNAc(beta 1----4)GlcNAc (where EtO2 = 1,2-ethylenediol and Gro = glycerol). The results lead to the conclusion that in the cell walls of this organism, the ribitol teichoic acid chain is linked to peptidoglycan through a novel linkage unit, Glc(beta 1----3)Glc(beta 1----1/3)Gro-P-(3/4)ManNAc-(beta 1----4)GlcNAc.  相似文献   

19.
The exopolysaccharide, Botryosphaeran, produced by the ligninolytic, ascomyceteous fungus Botryosphaeria sp., was isolated from the extracellular fluid by precipitation with ethanol, and purified by gel permeation chromatography to yield a carbohydrate-rich fraction (96%) composed mainly of glucose (98%). Infra-red and 13C NMR spectroscopy showed that all the glucosidic linkages were in the beta-configuration. Data from methylation analysis and Smith degradation indicated that Botryosphaeran was a (1-->3)-beta-D-glucan with approx 22% side branching at C-6. The products obtained from partial acid hydrolysis demonstrated that the side branches consisted of single (1-->6)-beta-linked glucosyl, and (1-->6)-beta-linked gentiobiosyl residues.  相似文献   

20.
Reversed-phase liquid chromatography (LC) directly coupled with electrospray-tandem mass spectrometry (MS/MS) is a successful choice to obtain a large number of product ion spectra from a complex peptide mixture. We describe a search validation program, ScoreRidge, developed for analysis of LC-MS/MS data. The program validates peptide assignments to product ion spectra resulting from usual probability-based searches against primary structure databases. The validation is based only on correlation between the measured LC elution time of each peptide and the deduced elution time from the amino acid sequence assigned to product ion spectra obtained from the MS/MS analysis of the peptide. Sufficient numbers of probable assignments gave a highly correlative curve. Any peptide assignments within a certain tolerance from the correlation curve were accepted for the following arrangement step to list identified proteins. Using this data validation program, host protein candidates responsible for interaction with human hepatitis B virus core protein were identified from a partially purified protein mixture. The present simple and practical program complements protein identification from usual product ion search algorithms and reduces manual interpretation of the search result data. It will lead to more explicit protein identification from complex peptide mixtures such as whole proteome digests from tissue samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号