首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Lettre G 《Human genetics》2011,129(5):465-472
Adult height is a classic polygenic trait of high narrow-sense heritability (h 2 = 0.8). In the late nineteenth to early twentieth century, variation in adult height was used as a model to set the foundation of the fields of statistics and quantitative genetics. More recently, with our increasing knowledge concerning the extent of genetic variation in the human genome, human geneticists have used genome-wide association studies to identify hundreds of loci robustly associated with adult height, providing new insights into human growth and development, and into the architecture of complex human traits. In this review, I highlight the progress made in the last 2 years in understanding how genetic variation controls height variation in humans, including non-Caucasian populations and children.  相似文献   

2.
Polygenic scores link the genotypes of ancient individuals to their phenotypes, which are often unobservable, offering a tantalizing opportunity to reconstruct complex trait evolution. In practice, however, interpretation of ancient polygenic scores is subject to numerous assumptions. For one, the genome-wide association (GWA) studies from which polygenic scores are derived, can only estimate effect sizes for loci segregating in contemporary populations. Therefore, a GWA study may not correctly identify all loci relevant to trait variation in the ancient population. In addition, the frequencies of trait-associated loci may have changed in the intervening years. Here, we devise a theoretical framework to quantify the effect of this allelic turnover on the statistical properties of polygenic scores as functions of population genetic dynamics, trait architecture, power to detect significant loci, and the age of the ancient sample. We model the allele frequencies of loci underlying trait variation using the Wright-Fisher diffusion, and employ the spectral representation of its transition density to find analytical expressions for several error metrics, including the expected sample correlation between the polygenic scores of ancient individuals and their true phenotypes, referred to as polygenic score accuracy. Our theory also applies to a two-population scenario and demonstrates that allelic turnover alone may explain a substantial percentage of the reduced accuracy observed in cross-population predictions, akin to those performed in human genetics. Finally, we use simulations to explore the effects of recent directional selection, a bias-inducing process, on the statistics of interest. We find that even in the presence of bias, weak selection induces minimal deviations from our neutral expectations for the decay of polygenic score accuracy. By quantifying the limitations of polygenic scores in an explicit evolutionary context, our work lays the foundation for the development of more sophisticated statistical procedures to analyze both temporally and geographically resolved polygenic scores.  相似文献   

3.
人类身高的遗传学研究进展   总被引:1,自引:0,他引:1  
陈开旭  王为兰  张富春  郑秀芬 《遗传》2015,37(8):741-755
人类身高是由环境和遗传因素共同决定的,遗传学研究发现遗传因素对身高差异的影响更大。身高是典型的多基因遗传性状,科研人员试图运用传统的连锁分析和关联分析寻找和发现对人类身高具有显著影响的常见DNA序列变异,但进展缓慢。近年来,随着基因分型和DNA测序技术的发展,人类身高的遗传学研究取得了很多突破性进展。全基因组关联分析(GWAS)的应用,发现和证实了上百个与人类身高相关的单核苷酸多态性位点(SNPs),拓展了人们对人类生长和发育的相关遗传学认识,同时也为研究人类其他复杂性状提供了理论依据和借鉴。本文综述了人类身高的遗传学研究进展,探讨了目前该研究领域所存在的问题和未来发展方向,以期为今后人类身高相关的遗传学研究提供参考和借鉴。  相似文献   

4.
Why do populations remain genetically variable despite strong continuous natural selection? Mutation reconstitutes variation eliminated by selection and genetic drift, but theoretical and experimental studies each suggest that mutation‐selection balance insufficient to explain extant genetic variation in most complex traits. The alternative hypothesis of balancing selection, wherein selection maintains genetic variation, is an aggregate of multiple mechanisms (spatial and temporal heterogeneity in selection, frequency‐dependent selection, antagonistic pleiotropy, etc.). Most of these mechanisms have been demonstrated for Mendelian traits, but there is little comparable data for loci affecting quantitative characters. Here, we report a 3‐year field study of selection on intrapopulation quantitative trait loci (QTL) of flower size, a highly polygenic trait in Mimulus guttatus. The QTL exhibit antagonistic pleiotropy: alleles that increase flower size, reduce viability, but increase fecundity. The magnitude and direction of selection fluctuates yearly and on a spatial scale of metres. This study provides direct evidence of balancing selection mechanisms on QTL of an ecologically relevant trait.  相似文献   

5.
Many decades of scientific investigation have proved the role of selective pressure in Homo Sapiens at least at the level of individual genes or loci. Nevertheless, there are examples of polygenic traits that are bound to be under selection, but studies devoted to apply population genetics methods to unveil such occurrence are still lacking. Stature provides a relevant example of well-studied polygenic trait for which is now available a genome-wide association study which has identified the genes involved in this trait, and which is known to be under selection. We studied the behavior of FST in a simulated toy model to detect population differentiation on a generic polygenic phenotype under selection. The simulations showed that the set of alleles involved in the trait has a higher mean FST value than those undergoing genetic drift only. In view of this we looked for an increase in the mean FST value of the 180 variants associated to human height. For this set of alleles we found FST to be significantly higher than the genomic background (p = 0.0356). On the basis of a statistical analysis we excluded that the increase was just due to the presence of outliers. We also proved as marginal the role played by local adaptation phenomena, even on different phenotypes in linkage disequilibrium with genetic variants involved in height. The increase of FST for the set of alleles involved in a polygenic trait seems to provide an example of symmetry breaking phenomenon concerning the population differentiation. The splitting in the allele frequencies would be driven by the initial conditions in the population dynamics which are stochastically modified by events like drift, bottlenecks, etc, and other stochastic events like the born of new mutations.  相似文献   

6.
We investigated the genetic architecture of courtship song and cuticular hydrocarbon traits in two phygenetically distinct populations of Drosophila montana. To study natural variation in these two important traits, we analysed within-population crosses among individuals sampled from the wild. Hence, the genetic variation analysed should represent that available for natural and sexual selection to act upon. In contrast to previous between-population crosses in this species, no major quantitative trait loci (QTLs) were detected, perhaps because the between-population QTLs were due to fixed differences between the populations. Partitioning the trait variation to chromosomes suggested a broadly polygenic genetic architecture of within-population variation, although some chromosomes explained more variation in one population compared with the other. Studies of natural variation provide an important contrast to crosses between species or divergent lines, but our analysis highlights recent concerns that segregating variation within populations for important quantitative ecological traits may largely consist of small effect alleles, difficult to detect with studies of moderate power.  相似文献   

7.
Turelli M  Barton NH 《Genetics》2004,166(2):1053-1079
We investigate three alternative selection-based scenarios proposed to maintain polygenic variation: pleiotropic balancing selection, G x E interactions (with spatial or temporal variation in allelic effects), and sex-dependent allelic effects. Each analysis assumes an additive polygenic trait with n diallelic loci under stabilizing selection. We allow loci to have different effects and consider equilibria at which the population mean departs from the stabilizing-selection optimum. Under weak selection, each model produces essentially identical, approximate allele-frequency dynamics. Variation is maintained under pleiotropic balancing selection only at loci for which the strength of balancing selection exceeds the effective strength of stabilizing selection. In addition, for all models, polymorphism requires that the population mean be close enough to the optimum that directional selection does not overwhelm balancing selection. This balance allows many simultaneously stable equilibria, and we explore their properties numerically. Both spatial and temporal G x E can maintain variation at loci for which the coefficient of variation (across environments) of the effect of a substitution exceeds a critical value greater than one. The critical value depends on the correlation between substitution effects at different loci. For large positive correlations (e.g., rho(ij)2>3/4), even extreme fluctuations in allelic effects cannot maintain variation. Surprisingly, this constraint on correlations implies that sex-dependent allelic effects cannot maintain polygenic variation. We present numerical results that support our analytical approximations and discuss our results in connection to relevant data and alternative variance-maintaining mechanisms.  相似文献   

8.
9.

Background

Human height is a classical example of a polygenic quantitative trait. Recent large-scale genome-wide association studies (GWAS) have identified more than 200 height-associated loci, though these variants explain only 2∼10% of overall variability of normal height. The objective of this study was to investigate the variance explained by these loci in a relatively isolated population of European descent with limited admixture and homogeneous genetic background from the Adriatic coast of Croatia.

Methodology/Principal Findings

In a sample of 1304 individuals from the island population of Hvar, Croatia, we performed genome-wide SNP typing and assessed the variance explained by genetic scores constructed from different panels of height-associated SNPs extracted from five published studies. The combined information of the 180 SNPs reported by Lango Allen el al. explained 7.94% of phenotypic variation in our sample. Genetic scores based on 20∼50 SNPs reported by the remaining individual GWA studies explained 3∼5% of height variance. These percentages of variance explained were within ranges comparable to the original studies and heterogeneity tests did not detect significant differences in effect size estimates between our study and the original reports, if the estimates were obtained from populations of European descent.

Conclusions/Significance

We have evaluated the portability of height-associated loci and the overall fitting of estimated effect sizes reported in large cohorts to an isolated population. We found proportions of explained height variability were comparable to multiple reference GWAS in cohorts of European descent. These results indicate similar genetic architecture and comparable effect sizes of height loci among populations of European descent.  相似文献   

10.
The genetic basis of species differences provides insight into the mode and tempo of phenotypic divergence. We investigate the genetic basis of floral differences between two closely related plant taxa with highly divergent mating systems, Mimulus guttatus (large-flowered outcrosser) and M. nasutus (small-flowered selfer). We had previously constructed a framework genetic linkage map of the hybrid genome containing 174 markers spanning approximately 1800 cM on 14 linkage groups. In this study, we analyze the genetics of 16 floral, reproductive, and vegetative characters measured in a large segregating M. nasutus x M. guttatus F2 population (N = 526) and in replicates of the parental lines and F1 hybrids. Phenotypic analyses reveal strong genetic correlations among floral traits and epistatic breakdown of male and female fertility traits in the F2 hybrids. We use multitrait composite interval mapping to jointly locate and characterize quantitative trait loci (QTLs) underlying interspecific differences in seven floral traits. We identified 24 floral QTLs, most of which affected multiple traits. The large number of QTLs affecting each trait (mean = 13, range = 11-15) indicates a strikingly polygenic basis for floral divergence in this system. In general, QTL effects are small relative to both interspecific differences and environmental variation within genotypes, ruling out QTLs of major effect as contributors to floral divergence between M. guttatus and M. nasutus. QTLs show no pattern of directional dominance. Floral characters associated with pollinator attraction (corolla width) and self-pollen deposition (stigma-anther distance) share several pleiotropic or linked QTLs, but unshared QTLs may have allowed selfing to evolve independently from flower size. We discuss the polygenic nature of divergence between M. nasutus and M. guttatus in light of theoretical work on the evolution of selfing, genetics of adaptation, and maintenance of variation within populations.  相似文献   

11.
The genetic basis of traits shapes and constrains how adaptation proceeds in nature; rapid adaptation can proceed using stores of polygenic standing genetic variation or hard selective sweeps, and increasing polygenicity fuels genetic redundancy, reducing gene re-use (genetic convergence). Guppy life history traits evolve rapidly and convergently among natural high- and low-predation environments in northern Trinidad. This system has been studied extensively at the phenotypic level, but little is known about the underlying genetic architecture. Here, we use four independent F2 QTL crosses to examine the genetic basis of seven (five female, two male) guppy life history phenotypes and discuss how these genetic architectures may facilitate or constrain rapid adaptation and convergence. We use RAD-sequencing data (16,539 SNPs) from 370 male and 267 female F2 individuals. We perform linkage mapping, estimates of genome-wide and per-chromosome heritability (multi-locus associations), and QTL mapping (single-locus associations). Our results are consistent with architectures of many loci of small-effect for male age and size at maturity and female interbrood period. Male trait associations are clustered on specific chromosomes, but female interbrood period exhibits a weak genome-wide signal suggesting a potentially highly polygenic component. Offspring weight and female size at maturity are also associated with a single significant QTL each. These results suggest rapid, repeatable phenotypic evolution of guppies may be facilitated by polygenic trait architectures, but subsequent genetic redundancy may limit gene re-use across populations, in agreement with an absence of strong signatures of genetic convergence from recent analyses of wild guppies.Subject terms: Evolutionary genetics, Quantitative trait  相似文献   

12.
J. Z. Lin  K. Ritland 《Genetics》1997,146(3):1115-1121
Theoretical predictions about the evolution of selfing depend on the genetic architecture of loci controlling selfing (monogenic vs. polygenic determination, large vs. small effect of alleles, dominance vs. recessiveness), and studies of such architecture are lacking. We inferred the genetic basis of mating system differences between the outbreeding Mimulus guttatus and the inbreeding M. platycalyx by quantitative trait locus (QTL) mapping using random amplified polymorphic DNA and isozyme markers. One to three QTL were detected for each of five mating system characters, and each QTL explained 7.6-28.6% of the phenotypic variance. Taken together, QTL accounted for up to 38% of the variation in mating system characters, and a large proportion of variation was unaccounted for. Inferred QTL often affected more than one trait, contributing to the genetic correlation between those traits. These results are consistent with the hypothesis that quantitative variation in plant mating system characters is primarily controlled by loci with small effect.  相似文献   

13.
Restriction fragment length polymorphism and isoenzyme markers were used to investigate quantitative trait loci involved in sunflower resistance to mycelial extension of Sclerotinia sclerotiorum on leaves and capitula. Seed weight, oil content and flowering data were also evaluated. Four quantitative trait loci were demonstrated for leaf resistance and two for capitulum resistance. One of these zones appears involved in resistance to both types of S. sclerotiorum attack while the others appear specific for resistance of one part of the plant. Two quantitative trait loci were detected for seed weight, three for oil content and three for flowering date. Individual quantitative trait loci explained 9% to 48% of the phenotypic variability, confirming the polygenic basis of the quantitative traits studied. Overall, the quantitative trait loci explain 60% of the genetic variation for leaf resistance and 38% for capitulum resistance to S. sclerotiorum. One linkage group is particularly interesting since it includes quantitative trait loci for all the five quantitative traits measured. Hypotheses for linkage versus pleiotropy and consequences of all the results in resistance breeding are discussed.  相似文献   

14.
Using genome scans of DNA polymorphism to infer adaptive population divergence   总被引:21,自引:0,他引:21  
Storz JF 《Molecular ecology》2005,14(3):671-688
Elucidating the genetic basis of adaptive population divergence is a goal of central importance in evolutionary biology. In principle, it should be possible to identify chromosomal regions involved in adaptive divergence by screening genome-wide patterns of DNA polymorphism to detect the locus-specific signature of positive directional selection. In the case of spatially separated populations that inhabit different environments or sympatric populations that exploit different ecological niches, it is possible to identify loci that underlie divergently selected traits by comparing relative levels of differentiation among large numbers of unlinked markers. In this review I first address the question of whether diversifying selection on polygenic traits can be expected to produce predictable patterns of allelic variation at the underlying quantitative trait loci (QTL), and whether the locus-specific effects of selection can be reliably detected against the genome-wide backdrop of stochastic variability. I then review different approaches that have been developed to identify loci involved in adaptive population divergence and I discuss the relative merits of model-based approaches that rely on assumptions about population structure vs. model-free approaches that are based on empirical distributions of summary statistics. Finally, I consider the evolutionary and functional insights that might be gained by conducting genome scans for loci involved in adaptive population divergence.  相似文献   

15.
We study genetic variation in phenotypic plasticity maintained by a balance between mutation and weak stabilizing selection. We consider linear reaction norms allowing for spatial and/or temporal variation in the environments of development and selection. We show that the overall genetic variation maintained does not depend on whether the trait is plastic or not. The genetic variances in height and slope of a linear reaction norm, and their covariance, are predicted to decrease with the variation in the environment. Non-pleiotropic loci influencing either height or slope are expected to decrease the genetic variance in slope relative to that in height. Decrease in the ratio of genetic variance in slope to genetic variance in height with increasing variation in the environment presents a test for the presence of loci that only influence the slope, and not the height. We use data on Drosophila to test the theory. In seven of eight pair-wise comparisons genetic variation in reaction norm is higher in a less variable environment than in a more variable environment, which is in accord with the model's predictions.  相似文献   

16.
Vasil'eva LA  Ratner VA 《Genetika》2000,36(4):493-499
Results of two experiments dealing with positive and negative selection on the quantitative trait radius incompletus in an isogenic line of Drosophila melanogaster after heavy heat shock (HHS) are presented. Selection was not effective in the control without HHS. In experiment 1, in which offspring of HHS-exposed males lacked transposition induction, selection also was ineffective. By contrast, selection was highly effective in offspring of males that responded to HHS exposure by transposition induction. Thus, HHS, which is not mutagenic, generates genetic variation in a polygenic system of a quantitative trait via transpositions and excisions of mobile genetic elements. In experiment 2, positive and negative selection was conducted in three replicates, which showed concerted dynamics of the selected trait. This means that the trait dynamics is mainly related to the nearly deterministic process of accumulation of active polygenic alleles rather than to genetic drift. The induced variation of polygenic systems promotes rapid selection of "champion" genotypes. This variation is probably associated with "soft" modification of polygene expression by adjacent MGE copies.  相似文献   

17.
Genomewide association studies have contributed immensely to our understanding of the genetic basis of complex traits. One major conclusion arising from these studies is that most traits are controlled by many loci of small effect, confirming the infinitesimal model of quantitative genetics. A popular approach to test for polygenic architecture involves so‐called “chromosome partitioning” where phenotypic variance explained by each chromosome is regressed on the size of the chromosome. First developed for humans, this has now been repeatedly used in other species, but there has been no evaluation of the suitability of this method in species that can differ in their genome characteristics such as number and size of chromosomes. Nor has the influence of sample size, heritability of the trait, effect size distribution of loci controlling the trait or the physical distribution of the causal loci in the genome been examined. Using simulated data, we show that these characteristics have major influence on the inferences of the genetic architecture of traits we can infer using chromosome partitioning analyses. In particular, small variation in chromosome size, small sample size, low heritability, a skewed effect size distribution and clustering of loci can lead to a loss of power and consequently altered inference from chromosome partitioning analyses. Future studies employing this approach need to consider and derive an appropriate null model for their study system, taking these parameters into consideration. Our simulation results can provide some guidelines on these matters, but further studies examining a broader parameter space are needed.  相似文献   

18.
Body size is a classic quantitative trait with evolutionarily significant variation within many species. Locating the alleles responsible for this variation would help understand the maintenance of variation in body size in particular, as well as quantitative traits in general. However, successful genome-wide association of genotype and phenotype may require very large sample sizes if alleles have low population frequencies or modest effects. As a complementary approach, we propose that population-based resequencing of experimentally evolved populations allows for considerable power to map functional variation. Here, we use this technique to investigate the genetic basis of natural variation in body size in Drosophila melanogaster. Significant differentiation of hundreds of loci in replicate selection populations supports the hypothesis that the genetic basis of body size variation is very polygenic in D. melanogaster. Significantly differentiated variants are limited to single genes at some loci, allowing precise hypotheses to be formed regarding causal polymorphisms, while other significant regions are large and contain many genes. By using significantly associated polymorphisms as a priori candidates in follow-up studies, these data are expected to provide considerable power to determine the genetic basis of natural variation in body size.  相似文献   

19.
Genetic variation in many biological processes and evolutionary adaptations is caused by polygenes – genes that act in combination to affect a particular trait. Despite the recent identification of several polygenes, many remain to be found, suggesting that new experimental and analytical methods are needed to facilitate their discovery. Here we discuss sensitized polygenetic trait analysis, a method that has emerged recently for simplifying the genetic analysis of polygenic traits. The method uses a known single gene mutation in linkage testing crosses to ‘sensitize’ the analysis. By increasing the frequency of affected individuals in segregating populations, linkages are more readily detected. This method has considerable potential, especially given the increasing variety of mutations that can be used to sensitize the genetic analysis of polygenic traits.  相似文献   

20.
Pavlidis P  Metzler D  Stephan W 《Genetics》2012,192(1):225-239
We study the trajectory of an allele that affects a polygenic trait selected toward a phenotypic optimum. Furthermore, conditioning on this trajectory we analyze the effect of the selected mutation on linked neutral variation. We examine the well-characterized two-locus two-allele model but we also provide results for diallelic models with up to eight loci. First, when the optimum phenotype is that of the double heterozygote in a two-locus model, and there is no dominance or epistasis of effects on the trait, the trajectories of selected mutations rarely reach fixation; instead, a polymorphic equilibrium at both loci is approached. Whether a polymorphic equilibrium is reached (rather than fixation at both loci) depends on the intensity of selection and the relative distances to the optimum of the homozygotes at each locus. Furthermore, if both loci have similar effects on the trait, fixation of an allele at a given locus is less likely when it starts at low frequency and the other locus is polymorphic (with alleles at intermediate frequencies). Weaker selection increases the probability of fixation of the studied allele, as the polymorphic equilibrium is less stable in this case. When we do not require the double heterozygote to be at the optimum we find that the polymorphic equilibrium is more difficult to reach, and fixation becomes more likely. Second, increasing the number of loci decreases the probability of fixation, because adaptation to the optimum is possible by various combinations of alleles. Summaries of the genealogy (height, total length, and imbalance) and of sequence polymorphism (number of polymorphisms, frequency spectrum, and haplotype structure) next to a selected locus depend on the frequency that the selected mutation approaches at equilibrium. We conclude that multilocus response to selection may in some cases prevent selective sweeps from being completed, as described in previous studies, but that conditions causing this to happen strongly depend on the genetic architecture of the trait, and that fixation of selected mutations is likely in many instances.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号