首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The prevailing view of intracellular RNA trafficking in eukaryotic cells is that RNAs transcribed in the nucleus either stay in the nucleus or cross the nuclear envelope, entering the cytoplasm for function. However, emerging evidence illustrates that numerous functional RNAs move in the reverse direction, from the cytoplasm to the nucleus. The mechanism underlying RNA nuclear import has not been well elucidated. Viroids are single-stranded circular noncoding RNAs that infect plants. Using Nicotiana benthamiana, tomato (Solanum lycopersicum), and nuclear-replicating viroids as a model, we showed that cellular IMPORTIN ALPHA-4 (IMPa-4) is likely involved in viroid RNA nuclear import, empirically supporting the involvement of Importin-based cellular pathway in RNA nuclear import. We also confirmed the involvement of a cellular protein (viroid RNA-binding protein 1 [VIRP1]) that binds both IMPa-4 and viroids. Moreover, a conserved C-loop in nuclear-replicating viroids serves as a key signal for nuclear import. Disrupting C-loop impairs VIRP1 binding, viroid nuclear accumulation, and infectivity. Further, C-loop exists in a subviral satellite noncoding RNA that relies on VIRP1 for nuclear import. These results advance our understanding of subviral RNA infection and the regulation of RNA nuclear import.

RNA C-loop motif is a key signal recognized by the VIRP1 for the nuclear import of pathogenic noncoding RNAs (i.e. nuclear-replicating viroids and possibly a viral satellite RNA), via the IMPORTIN ALPHA-4-based cellular pathway.

IN A NUTSHELL Background: During the course of evolution, eukaryotic cells gained a nuclear envelope to protect their genomes. However, to coordinate diverse biological processes, cellular contents need to communicate between the nucleus and the cytoplasm. The nuclear/cytoplasmic shuttling of proteins has been well studied, but only the nuclear export of RNAs has been analyzed in detail. Nevertheless, increasing evidence has shown that multiple functional RNAs traffic from the cytoplasm to the nucleus, by a yet-to-be-elucidated mechanism. Questions: How can RNA be recognized for nuclear import? Which cellular proteins serve as vehicles for RNA nuclear import? Findings: We used a pathogenic noncoding RNA (potato spindle tuber viroid [PSTVd]) as a model to study RNA nuclear import and found a particular RNA structure (C-loop) that is critical for PSTVd nuclear accumulation. PSTVd C-loop is recognized and bound by the cellular viroid RNA-binding protein 1 (VIRP1). Since nuclear import of proteins often relies on Importin, we performed a screen and identified IMPORTIN ALPHA-4 (IMPa-4) in a complex with PSTVd. Reducing the amount of IMPa-4 in cells inhibited PSTVd nuclear accumulation and infectivity. Interestingly, VIRP1 also relies on IMPa-4 for nuclear accumulation. Therefore, we propose a model that IMPa-4 transports the VIRP1–PSTVd complex into the nucleus. Notably, nearly all nuclear-replicating viroids and a viral satellite RNA contain a C-loop, suggesting that the C-loop is a conserved signal for RNA nuclear import. Next steps: We are interested in identifying the C-loop structure in cellular RNAs. Once we find cellular RNAs with a C-loop, we will test whether those cellular RNAs are transported into the nucleus and explore the biological significance of their nuclear import.  相似文献   

2.
Viroids are small, circular, single-stranded RNA molecules that, while not coding for any protein, cause several plant diseases. Viroids rely for their infectious cycle on host proteins, most of which are likely to be involved in endogenous RNA-mediated phenomena. Therefore, characterization of host factors interacting with the viroid may contribute to the elucidation of RNA-related pathways of the hosts. Potato spindle tuber viroid (PSTVd) infects several members of the Solanaceae family. In an RNA ligand screening we have previously isolated the tomato protein Virp1 by its ability to specifically interact with PSTVd positive-strand RNA. Virp1 is a bromodomain-containing protein with an atypical RNA binding domain and a nuclear localization signal. Here we investigate the role of Virp1 in the viroid infection cycle by the use of transgenic lines of Nicotiana tabacum and Nicotiana benthamiana that either overexpress the tomato Virp1 RNA or suppress the orthologous Nicotiana genes through RNA silencing. Plants of the Virp1-suppressed lines were not infected by PSTVd or Citrus exocortis viroid through mechanical inoculation, indicating a major role of Virp1 in viroid infection. On the other hand, overexpression of tomato Virp1 in N. tabacum and N. benthamiana plants did not affect PSTVd KF 440-2 infectivity or symptomatology in these species. Transfection experiments with isolated protoplasts revealed that Virp1-suppressed cells were unable to sustain viroid replication, suggesting that resistance to viroid infection in Virp1-suppressed plants is likely the result of cell-autonomous events.  相似文献   

3.
4.
5.
Strong viroid-caused pathogenesis was achieved in tomato cv. Rutgers by biolistic transfer of severe or lethal potato spindle tuber viroid (PSTVd) strains, while other tomato genotypes (e.g., Moneymaker) were tolerant. With reciprocal hybrids between sensitive and tolerant genotypes, we show that plant depression dominates over tolerance. Biolistic transfer of the most pathogenic PSTVd strain AS1 to Nicotiana benthamiana, which is considered to be a symptomless PSTVd host, led to a strong pathogenesis reaction and stunting, suggesting the presence of specific viroid pathogenesis-promoting target(s) in this plant species. Total levels of small siRNA-like PSTVd-specific RNAs were enhanced in strongly symptomatic tomato and N. benthamiana plants after biolistic infection with AS1 in comparison to the mild QFA strain. This indicates association of elevated levels of viroid-specific small RNA with production of strong symptoms. In symptom-bearing tomato leaves in comparison to controls, an RNase of approximately 18 kDa was induced and the activity of a nuclease of 34 kDa was elevated by a factor of seven in the vascular system. Sequence analysis of the nuclease cDNA designated TBN1 showed high homology with plant apoptotic endonucleases. The vascular-specific pathogenesis action is supported by light microscopic observations demonstrating a certain lack of xylem tissue and an arrest of the establishment of new vascular bundles in collapsed plants.  相似文献   

6.
Neural RNA recognition motif (RRM)-type RNA-binding proteins play essential roles in neural development. To search for a new member of neural RRM-type RNA-binding protein, we screened rat cerebral expression library with polyclonal antibody against consensus RRM sequences. We have cloned and characterized a rat cDNA that belongs to RRM-type RNA-binding protein family, which we designate as drb1. Orthologs of drb1 exist in human and mouse. The predicted amino acid sequence reveals an open reading frame of 476 residues with a corresponding molecular mass of 53kDa and consists of four RNA-binding domains. drb1 gene is specifically expressed in fetal (E12, E16) rat brain and gradually reduced during development. In situ hybridization demonstrated neuron-specific signals in fetal rat brain. RNA-binding assay indicated that human Drb1 protein possesses binding preference on poly(C)RNA. These results indicate that Drb1 is a new member of neural RNA-binding proteins, which expresses under spatiotemporal control.  相似文献   

7.
Viroids are noncoding circular single-stranded RNAs that are propagated systemically in plants. VirP1 is a protein from tomato, which is an excellent host for potato spindle tuber viroid (PSTVd), and it has been isolated by virtue of its specific in vitro binding to PSTVd RNA. We report on the specific in vivo interaction of VirP1 with full-length viroid RNA as well as with subfragments in the three-hybrid system. The terminal right domain (TR) of PSTVd was identified as a strong interacting partner for VirP1. A weaker partner is provided by a right-hand subfragment of hop stunt viroid (HSVd), a viroid that infects tomato poorly. We present a sequence and structural motif of the VirP1-interacting subfragments. The motif is disturbed in the replicative but nonspreading R+ mutant of the TR. According to our in vivo and in vitro binding assays, the interaction of this mutant with VirP1 is compromised. We propose that the AGG/CCUUC motif bolsters recognition of the TR by VirP1 to achieve access of the viroid to pathways that propagate endogenous RNA systemic signals in plants. Systemic trafficking has been suggested for miRNA precursors, of which the TR, as a stable bulged hairpin 71 nt long, is quite reminiscent.  相似文献   

8.
9.
Viroids are small non-coding parasitic RNAs that are able to infect their host plants systemically. This circular naked RNA makes use of host proteins to accomplish its proliferation. Here we analyze the specific binding of the tomato protein Virp1 to the terminal right domain of potato spindle tuber viroid RNA (PSTVd). We find that two asymmetric internal loops within the PSTVd (+) RNA, each composed of the sequence elements 5′-ACAGG and CUCUUCC-5′, are responsible for the specific RNA–protein interaction. In view of the nucleotide composition we call this structural element an ‘RY motif’. The RY motif located close to the terminal right hairpin loop of the PSTVd secondary structure has an ~5-fold stronger binding affinity than the more centrally located RY motif. Simultaneous sequence alterations in both RY motifs abolished the specific binding to Virp1. Mutations in any of the two RY motifs resulted in non-infectious viroid RNA, with the exception of one case, where reversion to sequence wild type took place. In contrast, the simultaneous exchange of two nucleotides within the terminal right hairpin loop of PSTVd had only moderate influence on the binding to Virp1. This variant was infectious and sequence changes were maintained in the progeny. The relevance of the phylogenetic conservation of the RY motif, and sequence elements therein, amongst various genera of the family Pospiviroidae is discussed.  相似文献   

10.
RNA-dependent RNA polymerase 1 (RDR1) is essential for plant antiviral defence, but its role in plant defence against viroid infection remains unknown. The present study aimed to identify the function and mechanism of RDR1 in plant resistance to viroid infection. Overexpression of Nicotiana tabacum RDR1 (NtRDR1) delayed the accumulation of potato spindle tuber viroid (PSTVd) genomic RNA and PSTVd-derived small RNA (sRNA) in Nicotiana benthamiana plants at the early invasion stage, but not in the late stage of infection. Conversely, virus-induced gene silencing of tomato RDR1 (SlRDR1a) increased the susceptibility to PSTVd infection (increased viroid accumulation). Salicylic acid (SA) pretreatment induced SlRDR1a expression and enhanced the defence against PSTVd infection in tomato plants. Our study demonstrated that RDR1 is involved in SA-mediated defence and restricts the early systemic invasion by PSTVd in plants. The decreased PSTVd accumulation in Nbenthamiana was not caused by efficient accumulation of PSTVd sRNAs. These results deepen our understanding of the mechanism of RDR1 in plant defence responses to viroid attack.  相似文献   

11.
Because of their highly ordered structure, mature viroid RNA molecules are assumed to be resistant to degradation by RNA interference (RNAi). In this article, we report that transgenic tomato plants expressing a hairpin RNA (hpRNA) construct derived from Potato spindle tuber viroid (PSTVd) sequences exhibit resistance to PSTVd infection. Resistance seems to be correlated with high-level accumulation of hpRNA-derived short interfering RNAs (siRNAs) in the plant. Thus, although small RNAs produced by infecting viroids [small RNAs of PSTVd (srPSTVds)] do not silence viroid RNAs efficiently to prevent their replication, hpRNA-derived siRNAs (hp-siRNAs) appear to effectively target the mature viroid RNA. Genomic mapping of the hp-siRNAs revealed an unequal distribution of 21- and 24-nucleotide siRNAs of both (+)- and (–)-strand polarities along the PSTVd genome. These data suggest that RNAi can be employed to engineer plants for viroid resistance, as has been well established for viruses.  相似文献   

12.
13.
14.
Potato spindle tuber viroid (PSTVd), an RNA plant pathogen encoding no known proteins, induces systemic symptoms on tomato plants. We report detection of small RNAs of approximately 25 nucleotides with sequence specificity to PSTVd in infected plants: an indication of the presence of RNA silencing. RNA silencing, however, did not appear to be responsible for the differing symptoms induced by a mild and a severe strain of PSTVd. The unique structural and biological features of viroids make them attractive experimental tools to investigate mechanisms of RNA silencing and pathogen counterdefense.  相似文献   

15.
Tomato (Lycopersicon esculentum cvs Rutgers and Lichun) plants were firstly pre-inoculated either with a cucumber mosaic virus (CMV) isolate containing satellite RNA (CMV-S52) or with a CMV isolate without satellite RNA, and then challenged 14 days later with a severe strain of potato spindle tuber viroid (PSTVd). Also, tomato plants transformed with CMV satellite cDNA and non-transgenic control plants were directly inoculated with PSTVd. Protection effects were assessed by the observation of symptoms and by assay of PSTVd accumulation in tomato plants using return polyacrylamide gel electrophoresis and silver staining. The results indicated that the satellite-transgenic plants and plants pre-inoculated with CMV-S52 showed much milder symptoms of PSTVd infection than the respective control plants. The concentration of PSTVd RNA in the satellite-transgenic plants and CMV-S52 pre-inoculated plants was reduced to about 0.02-0.03 of the controls. PSTVd infection did not increase the amount of satellite ds-RNA in plants. It is concluded that the plant resistance to PSTVd is induced by the presence of satellite RNA rather than the CMV infection. It is suggested that as there is considerable sequence similarity between satellite RNA and PSTVd, base pairings may be a cause of reduction of both symptoms and the accumulation of PSTVd.  相似文献   

16.
17.
Zhu Y  Qi Y  Xun Y  Owens R  Ding B 《Plant physiology》2002,130(1):138-146
Increasing evidence indicates that the phloem mediates traffic of selective RNAs within a plant. How an RNA enters, moves in, and exits the phloem is poorly understood. Potato spindle tuber viroid (PSTVd) is a pathogenic RNA that does not encode proteins and is not encapsidated, and yet it replicates autonomously and traffics systemically within an infected plant. The viroid RNA genome must interact directly with cellular factors to accomplish these functions and is, therefore, an excellent probe to study mechanisms that regulate RNA traffic. Our analyses of PSTVd traffic in Nicotiana benthamiana yielded evidence that PSTVd movement within sieve tubes does not simply follow mass flow from source to sink organs. Rather, this RNA is transported into selective sink organs. Furthermore, two PSTVd mutants can enter the phloem to spread systemically but cannot exit the phloem in systemic leaves of tobacco (Nicotiana tabacum). A viroid most likely has evolved structural motifs that mimic endogenous plant RNA motifs so that they are recognized by cellular factors for traffic. Thus, analysis of PSTVd traffic functions may provide insights about endogenous mechanisms that control phloem entry, transport, and exit of RNAs.  相似文献   

18.
Tomato (Lycopersicon esculentum cvs Rutgers and Lichun) plants were firstly pre-inoculated either with a cucumber mosaic virus (CMV) isolate containing satellite RNA (CMV-S52) or with a CMV isolate without satellite RNA, and then challenged 14 days later with a severe strain of potato spindle tuber viroid (PSTVd). Also, tomato plants transformed with CMV satellite cDNA and non-transgenic control plants were directly inoculated with PSTVd. Protection effects were assessed by the observation of symptoms and by assay of PSTVd accumulation in tomato plants using return polyacrylamide gel electrophoresis and silver staining. The results indicated that the satellite-transgenic plants and plants pre-inoculated with CMV-S52 showed much milder symptoms of PSTVd infection than the respective control plants. The concentration of PSTVd RNA in the satellite-transgenic plants and CMV-S52 pre-inoculated plants was reduced to about 0.02–0.03 of the controls. PSTVd infection did not increase the amount of satellite ds-RNA in plants. It is concluded that the plant resistance to PSTVd is induced by the presence of satellite RNA rather than the CMV infection. It is suggested that as there is considerable sequence similarity between satellite RNA and PSTVd, base pairings may be a cause of reduction of both symptoms and the accumulation of PSTVd.  相似文献   

19.
Viroids are the smallest plant pathogens. These RNAs do not encode proteins and are not encapsidated, and yet they can replicate autonomously, move systemically, and cause diseases in infected plants. Notably, strains of a viroid with subtle differences in nucleotide sequences can cause dramatically different symptoms in infected plants. These features make viroids unique probes to investigate the role of a pathogenic RNA genome in triggering host responses. We conducted a comprehensive analysis of the differential gene expression patterns of tomato plants at various stages of infection by a mild and severe strain of Potato spindle tuber viroid (PSTVd). We also compared tomato gene expression altered by the PSTVd strains with that altered by Tobacco mosaic virus (TMV). Our analyses revealed that the two PSTVd strains altered expression of both common and unique tomato genes. These genes encode products involved in defense/stress response, cell wall structure, chloroplast function, protein metabolism, and other diverse functions. Five genes have unknown functions. Four genes are novel. The expression of some but not all of these genes was also altered by TMV infection. Our results indicate that viroids, although structurally simple, can trigger complex host responses. Further characterization of viroid-altered gene expression in a host plant should help understand viroid pathogenicity and, potentially, the mechanisms of RNA-mediated regulation of plant gene expression.  相似文献   

20.
TAR RNA-binding protein TRBP was originally isolated by its binding affinity for radiolabeled HIV-1 leader RNA. Subsequent studies have suggested that this protein is one member of a family of double-stranded RNA-binding proteins. Recent findings indicate that TRBP might function to antagonize the translational inhibitory effect that can be mediated through cellular protein kinase, PKR. Here, we report on the over-expression of a cDNA coding for TRBP in eukaryotic SF9 cells using baculovirus. We characterized the nuclear localization of TRBP in insect cells, and we demonstrate that TRBP co-immunoprecipitates with a protein in these cells antigenically related to human PKR.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号