首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The participation of a low-barrier hydrogen bond (LBHB) in the mechanism of action of chymotrypsin introduces a new role for Asp 102 and His 57 in catalysis [C. S. Cassidy, J. Lin, and P. A. Frey (1997) Biochemistry 36, 4576-4584]. It is postulated that the LBHB increases the basicity of His 57-N(epsilon2) in the transition state, thereby facilitating the abstraction of a proton from Ser 195, and stabilizes the tetrahedral intermediate in the acylation step. Evidence for this mechanism includes the downfield chemical shift of the proton bridging His 57 and Asp 102 in transition-state analog complexes and the low deuterium fractionation factors for this proton in the same complexes. We present additional spectroscopic evidence supporting the assignment of an LBHB between His 57 and Asp 102. The tetrahedral addition complex between Ser 195 of chymotrypsin and N-acetyl-l-leucyl-l-phenylalanyl trifluoromethylketone is regarded as a close structural analog of a tetrahedral intermediate. The deuterium NMR signal for the downfield deuteron bridging His 57 and Asp 102 in D(2)O has now been observed as a broad band centered at 17.8 +/- 0.5 ppm. The proton NMR signal in H(2)O is centered at 18.9 +/- 0.05 ppm. The two signals are clearly separated corresponding to a deuterium isotope effect of Delta[delta(H) - delta(D)] = 1.1 +/- 0.5 ppm. Deuterium isotope effects in this range are characteristic of LBHBs, and this observation provides further support for the assignment of the proton bridging His 57 and Asp 102 in transition-state analog complexes as an LBHB.  相似文献   

2.
The hydroxynitrile lyase from Hevea brasiliensis (HbHNL) uses a catalytic triad consisting of Ser(80)-His(235)-Asp(207) to enhance the basicity of Ser(80)-O gamma for abstracting a proton from the OH group of the substrate cyanohydrin. Following the observation of a relatively short distance between a carboxyl oxygen of Asp(207) and the N delta(1)(His(235)) in a 1.1 A crystal structure of HbHNL, we here show by (1)H and (15)N-NMR spectroscopy that a short, strong hydrogen bond (SSHB) is formed between the two residues upon binding of the competitive inhibitor thiocyanate to HbHNL: the proton resonance of H-N delta 1(His(235)) moves from 15.41 ppm in the free enzyme to 19.35 ppm in the complex, the largest downfield shift observed so far upon inhibitor binding. Simultaneously, the D/H fractionation factor decreases from 0.98 to 0.35. In the observable pH range, i.e. between pH 4 and 10, no significant changes in chemical shifts (and therefore hydrogen bond strength) were observed for free HbHNL. For the complex with thiocyanate, the 19.35 ppm signal returned to 15.41 ppm at approximately pH 8, which indicates a pK(a) near this value for the H-N epsilon(2)(His(235)). These NMR results were analyzed on the basis of finite difference Poisson-Boltzmann calculations, which yielded the relative free energies of four protonation states of the His(235)-Asp(207) pair in solution as well as in the protein environment with and without bound inhibitor. The calculations explain all the NMR features, i.e. they suggest why a short, strong hydrogen bond is formed upon inhibitor binding and why this short, strong hydrogen bond reverts back to a normal one at approximately pH 8. Importantly, the computations also yield a shift of the free energy of the anionic state relative to the zwitterionic reference state by about 10.6 kcal/mol, equivalent to a shift in the apparent pK(a) of His(235) from 2.5 to 10. This huge inhibitor-induced increase in basicity is a prerequisite for His(235) to act as general base in the HbHNL-catalyzed cyanohydrin reaction.  相似文献   

3.
The amino acid sequences of three variants of the Kunitz-type trypsin inhibitors, Tia, Tib, and Tic, obtained from some cultivars of soybean were determined by conventional methods. All three inhibitors consisted of 181 amino acid residues. The differences in the amino acid sequences are as follows: Tia E12 G55 Y62 H71 S74 M114 L120 P137 L176; Tib S F N R V I T V; Tic E. The amino acid sequences of Pro(60)-Ser(61) and Asp(154)-Asp(155)-Gly(156)-His(157) of Tia reported previously (Koide & Ikenaka (1973) Eur. J. Biochem. 32, 417-431) were amended to Ser(60)-Pro(61) and His(154)-Asp-Asp-Gly(157), respectively.  相似文献   

4.
Khayat R  Batra R  Massariol MJ  Lagacé L  Tong L 《Biochemistry》2001,40(21):6344-6351
Herpesvirus proteases belong to a new class of serine proteases and contain a novel Ser-His-His catalytic triad, while classical serine proteases have an acidic residue as the third member. To gain a better understanding of the molecular basis for the functional role of the third-member His residue, we have carried out structural and biochemical investigations of human cytomegalovirus (HCMV) protease that bears mutations of the His157 third member. Kinetic studies showed that all the mutants have reduced catalytic activity. Structural studies revealed that a solvent molecule is hydrogen-bonded to the His63 second member and Ser134 in the H157A mutant, partly rescuing the activity of this mutant. This is confirmed by our kinetic and structural observations on the S134A/H157A double mutant, which showed further reductions in the catalytic activity. The structure of the H157A mutant is also in complex with the PMSF inhibitor. The H157E mutant has the best catalytic activity among the mutants; its structure, however, showed conformational readjustments of the His63 and Ser132 residues. The Ser132-His63 diad of HCMV protease has similar activity as the diads in classical serine proteases, whereas the contribution of the His157 third member to the catalysis is much smaller. Finally, structural comparisons revealed the presence of two conserved structural water molecules at the bottom of the S(1) pocket, suggesting a possible new direction for the design of HCMV protease inhibitors.  相似文献   

5.
Ishida T 《Biochemistry》2006,45(17):5413-5420
To elucidate the catalytic advantage of the low-barrier hydrogen bond (LBHB), we analyze the hydrogen bonding network of the catalytic triad (His57-Asp102-Ser195) of serine protease trypsin, one of the best examples of the LBHB reaction mechanism. Especially, we focus on the correlation between the change of the chemical shifts and the structural rearrangement of the active site in the acylation process. To clarify LBHB, we evaluate the two complementary properties. First, we calculate the NMR chemical shifts of the imidazole ring of His57 by the gauge-including atomic orbital (GIAO) approach within the ab initio QM/MM framework. Second, the free energy profile of the proton transfer from His57 to Asp102 in the tetrahedral intermediate is obtained by ab initio QM/MM calculations combined with molecular dynamics free energy perturbation (MD-FEP) simulations. The present analyses reveal that the calculated shifts reasonably reproduce the observed values for (1)H chemical shift of H(epsilon)(1) and H(delta)(1) in His57. The (15)N and (13)C chemical shifts are also consistent with the experiments. It is also shown that the proton between His57 and Asp102 is localized at the His57 side. This largely downfield chemical shift is originated from the strong electrostatic interaction, not a covalent-like bonding character between His57 and Asp102. Also, it is proved that a slight downfield character of H(epsilon)(1) is originated from a electrostatic interaction between His57 and the backbone carbonyl group of Val213 and Ser214. These downfield chemical shifts are observed only when the tetrahedral intermediate is formed in the acylation process.  相似文献   

6.
Parr CL  Tanaka T  Xiao H  Yada RY 《The FEBS journal》2008,275(8):1698-1707
Alanine mutations of the proposed catalytically essential residues in histoaspartic protease (HAP) (H34A, S37A and D214A) were generated to investigate whether: (a) HAP is a serine protease with a catalytic triad of His34, Ser37 and Asp214 [Andreeva N, Bogdanovich P, Kashparov I, Popov M & Stengach M (2004) Proteins55, 705-710]; or (b) HAP is a novel protease with Asp214 acting as both the acid and the base during substrate catalysis with His34 providing critical stabilization [Bjelic S & Aqvist J (2004) Biochemistry43, 14521-14528]. Our results indicated that recombinant wild-type HAP, S37A and H34A were capable of autoactivation, whereas D214A was not. The inability of D214A to autoactivate highlighted the importance of Asp214 for catalysis. H34A and S37A mutants hydrolyzed synthetic substrate indicating that neither His34 nor Ser37 was essential for substrate catalysis. Both mutants did, however, have reduced catalytic efficiency (P < or = 0.05) compared with wild-type HAP, which was attributed to the stabilizing role of His34 and Ser37 during catalysis. The mature forms of wild-type HAP, H34A and S37A all exhibited high activity over a broad pH range of 5.0-8.5 with maximum activity occurring between pH 7.5 and 8.0. Inhibition studies indicated that wild-type HAP, H34A and S37A were strongly inhibited by the serine protease inhibitor phenylmethanesulfonyl fluoride, but only weakly inhibited by pepstatin A. The data, in concert with molecular modeling, suggest a novel mode of catalysis with a single aspartic acid residue performing both the acid and base roles.  相似文献   

7.
Escherichia coli thioesterase/protease I (TEP-I) is a member of a novel subclass of the lipolytic enzymes with a distinctive GDSLS motif. In addition to possessing thioesterase and protease activities, TEP-I also exhibits arylesterase activity. We have determined the (15)N nuclear magnetic spin relaxation rates, R(1) and R(2), and the steady state (1)H-(15)N heteronuclear Overhauser effect, measured at both 11.74 T and 14.09 T, of (u-(15)N) TEP-I. These data were analyzed using model-free formalism (with axially symmetric rotational diffusion anisotropy) to extract the backbone dynamics of TEP-I. The results reveal that the core structure of the central beta-sheet and the long alpha-helices are rigid, while the binding pocket appears to be rather flexible. The rigid core serves as a scaffold to anchor the essential loops, which form the binding pocket. The most flexible residues display large amplitude fast (ps/ns time-scale) motion and lie on one stripe whose orientation is presumed to be the ligand-binding orientation. We also detected the presence of several residues displaying slow (microseconds/ms time-scale) conformational exchanging processes. These residues lie around the binding pocket and are oriented perpendicularly to the orientation of the flexible stripe. Two of the putative catalytic triads, Ser10 and His157, and their neighbors show motion on the microseconds/ms time-scale, suggesting that their slow motion may have a role in catalysis, in addition to their possible roles in ligand binding. The presence of a flexible substrate-binding pocket may also facilitate binding to a wide range of substrates and confer the versatile functional property of this protein.  相似文献   

8.
Escherichia coli thioesterase I (TAP) is a multifunctional enzyme possessing activities of thioesterase, esterase, arylesterase, protease, and lysophospholipase. In particular, TAP has stereoselectivity for amino acid derivative substrates, hence it is useful for the kinetic resolution of racemic mixtures of industrial chemicals. In the present work, the crystal structure of native TAP was determined at 1.9A, revealing a minimal SGNH-hydrolase fold. The structure of TAP in complex with a diethyl phosphono moiety (DEP) identified its catalytic triad, Ser10-Asp154-His157, and oxyanion hole, Ser10-Gly44-Asn73. The oxyanion hole of TAP consists of three residues each separated from the other by more than 3.5A, implying that all of them are highly polarized when substrate bound. The catalytic (His)C(epsilon1)-H...O=C hydrogen bond usually plays a role in the catalytic mechanisms of most serine hydrolases, however, there were none present in SGNH-hydrolases. We propose that the existence of the highly polarized tri-residue-constituted oxyanion hole compensates for the lack of a (His)C(epsilon1)-H...O=C hydrogen bond. This suggests that members of the SGNH-hydrolase family may employ a unique catalytic mechanism. In addition, most SGNH-hydrolases have low sequence identities and presently there is no clear criterion to define consensus sequence blocks. Through comparison of TAP and the three SGNH-hydrolase structures currently known, we have identified a unique hydrogen bond network which stabilizes the catalytic center: a newly discovered structural feature of SGNH-hydrolases. We have defined these consensus sequence blocks providing a basis for the sub-classification of SGNH-hydrolases.  相似文献   

9.
The 3C-like protease of the Chiba virus, a Norwalk-like virus, is one of the chymotrypsin-like proteases. To identify active-site amino acid residues in this protease, 37 charged amino acid residues and a putative nucleophile, Cys139, within the GDCG sequence were individually replaced with Ala in the 3BC precursor, followed by expression in Escherichia coli, where the active 3C-like protease would cleave 3BC into 3B (VPg) and 3C (protease). Among 38 Ala mutants, 7 mutants (R8A, H30A, K88A, R89A, D138A, C139A, and H157A) completely or nearly completely lost the proteolytic activity. Cys139 was replaceable only with Ser, suggesting that an SH or OH group in the less bulky side chain was required for the side chain of the residue at position 139. His30, Arg89, and Asp138 could not be replaced with any other amino acids. Although Arg8 was also not replaceable for the 3B/3C cleavage and the 3C/3D cleavage, the N-terminal truncated mutant devoid of Arg8 significantly cleaved 3CD into 3C and 3D (polymerase), indicating that Arg8 itself was not directly involved in the proteolytic cleavage. As for position 88, a positively charged residue was required because the Arg mutant showed significant activity. As deduced by the X-ray structure of the hepatitis A virus 3C protease, Arg8, Lys88, and Arg89 are far away from the active site, and the side chain of Asp138 is directed away from the active site. Therefore, these are not catalytic residues. On the other hand, all of the mutants of His157 in the S1 specificity pocket tended to retain very slight activity, suggesting a decreased level of substrate recognition. These results, together with a sequence alignment with the picornavirus 3C proteases, indicate that His30 and Cys139 are active-site residues, forming a catalytic dyad without a carboxylate directly participating in the proteolysis.  相似文献   

10.
Escherichia coli thioesterase/protease I (TEP-I) belongs to a new subclass of lipolytic enzymes of the serine hydrolase superfamily. Here we report the first direct NMR observation of the formation of the Michaelis complex (MC) between TEP-I and diethyl p-nitrophenyl phosphate (DENP), an active site directed inhibitor of serine protease, and its subsequent conversion to the tetrahedral complex (TC). NMR, ESI-MS, and kinetic data showed that DENP binds to TEP-I in a two-step process, a fast formation of MC followed by a slow conversion to TC. NMR chemical shift perturbation further revealed that perturbations were confined mainly to four conserved segments comprising the active site. Comparable magnitudes of chemical shift perturbations were detected in both steps. The largest chemical shift perturbation occurred around the catalytic Ser(10). In MC, the conformation of the mobile Ser(10) was stabilized, and its amide resonance became observable. From the large chemical shift perturbation upon conversion from MC to TC, we propose that the amide protons of Ser(10) and Gly(44) serve as the oxyanion hole proton donors that stabilize the tetrahedral adduct. The pattern of residues perturbed in both steps suggests a sequential, stepwise structural change upon binding of DENP. The present study also demonstrates the important catalytic roles of conserved residues in the SGNH family of proteins.  相似文献   

11.
Ser236位于横贯枯草蛋白酶E的α螺旋末端,远离催化活性中心,Ser236的突变不会对酶的活性产生大的影响。用定点突变的方法对枯草蛋白酶E的基因进行改造引入Ser236Cys,可能会形成分子间二硫键,有利于提高酶的稳定性。Ser236Cys变体酶(BP1)活性是野生型蛋白酶E的15倍,热稳定性提高3倍;进一步在其他位点引入突变的变体酶BU1(A1a15Asp/Gly20His/Ser236Cys)和BW1(Ser24His/Lys27Asp/Ser236Cys)活性都比野生型蛋白酶E低,但BW1的稳定性稍高于野生型蛋白酶E。  相似文献   

12.
L Polgár 《FEBS letters》1992,311(3):281-284
In prolyl oligopeptidase and its homologues, which constitute a new serine protease family, the order of the catalytic Ser and His residues in the amino acid sequence is the reverse of what is found in the trypsin and subtilisin families. The exact position of the third member of the catalytic triad, an Asp residue, has not yet been identified in the new family. Recent determination of the three-dimensional structures of pancreatic and microbial lipases has shown that the order of their catalytic residues is Ser, Asp, His, and this fits the order Ser, His of prolyl oligopeptidase. However, there is no sequence homology between lipases and peptidases, except for a 10-residue segment, which encompasses the essential Ser, and for the immediate vicinity of the catalytic Asp and His residues. This comparison identifies the catalytic Asp residue in the prolyl oligopeptidase family. The relative positions of the three catalytic residues in peptidases and microbial lipases were the same and this indicated structural and possibly evolutionary relationship between the two families.  相似文献   

13.
The CuA center is a dinuclear Cu2S2(Cys) electron transfer center found in cytochrome c oxidase and nitrous oxide reductase. In a previous investigation of the equatorial histidine ligands' effect on the reduction potential, electron transfer and spectroscopic properties of the CuA center, His120 in the engineered CuA azurin was mutated to Asn, Asp, and Ala. The identical absorption and EPR spectra of these mutants indicate that a common ligand is bound to the copper center. To identify this replacement ligand, the His120Gly CuA azurin mutant was constructed and purified. Absorption and X-band EPR spectra show that His120Gly is similar to the other His120X (X = Asn, Asp, Ala) mutant proteins. Titrations with chloride, imidazole, and azide suggest that the replacement ligand is not exchangeable with exogenous ligands. The possibility of an internal amino acid acting as the replacement ligand for His120 in the His120X mutant proteins was investigated by analyzing the CuA azurin crystal structure and then converting the likely internal ligand, Asn 119, to Asp, Ser, or Ala in the His120Gly mutant. The double mutants H120G/Asn 119X (X = Asp, Ser, or Ala) displayed UV-Vis absorption and EPR spectra that are identical to His120Gly and the other His120X mutants, indicating that Asn119 is not the internal ligand replacing His120 in the His120X mutant proteins. These results demonstrate the remarkable stability of the dinuclear His120 mutants of CuA azurin.  相似文献   

14.
L W Fung  C Ho 《Biochemistry》1975,14(11):2526-2535
Proton nuclear magnetic resonance spectra of human hemoglobins in water reveal several exchangeable protons which are indicators of the quaternary structures of both the liganded and unliganded molecules. A comparison of the spectra of normal human adult hemoglobin with those of mutant hemoglobins Chesapeake (FG4alpha92 Arg yields Leu), Titusville (G1alpha94 Asp yields Asn), M Milwaukee (E11beta67 Val yields Glu), Malmo (FG4beta97 His yields Gln), Kempsey (G1beta99 Asp yields Asn), Yakima (G1beta99 Asp yields His), and New York (G15beta113 Val yields Glu), as well as with those of chemically modified hemoglobins Des-Arg(alpha141), Des-His(beta146), NES (on Cys-beta93)-Des-Arg(alpha141), and spin-labeled hemoglobin [Cys-beta93 reacted with N-(1-oxyl-2,2,6,6-tetramethyl-4-piperidinyl)iodoacetamide], suggests that the proton in the important hydrogen bond between the tyrosine at C7alpha42 and the aspartic acid at G1beta99, which anchors the alpha1beta2 subunits of deoxyhemoglobin (a characteristic feature of the deoxy quaternary structure), is responsible for the resonance at -9.4 ppm from water at 27 degrees. Another exchangeable proton resonance which occurs at -6.4 ppm from H2O is a spectroscopic indicator of the deoxy structure. A resonance at -5.8 ppm from H2O, which is an indicator of the oxy conformation, is believed to originate from the hydrogen bond between the aspartic acid at G1alpha94 and the asparagine at G4beta102 in the alpha1beta2 subunit interface (a characteristic feature of the oxy quaternary structure). In the spectrum of methemoglobin at pH 6.2 both the -6.4- and the -5.8ppm resonances are present but not the -9.4-ppm resonance. Upon the addition of inositol hexaphosphate to methemoglobin at pH 6.2, the usual resonance at -9.4 ppm is shifted to -10 ppm and the resonance at 6.4 ppm is not observed. In the spectrum of methemoglobin at pH greater than or equal to 7.6 with or without inositol hexaphosphate, the resonance at -5.8 ppm is present, but not those at -10 and -6.4 ppm, suggesting that methemoglobin at high pH has an oxy-like structure. Two resonances (at -8.2 and -7.3 ppm) which remain invariant in the two quaternary structures could come from exchangeable protons in the alpha1beta1 subunit interface and/or other exchangeable protons in the hemoglobin molecule which undergo no conformational changes during the oxygenation process. These exchangeable proton resonances serve as excellent spectroscopic probes of the quaternary structures of the subunit interfaces in studies of the molecular mechanism of cooperative ligand binding to hemoglobin.  相似文献   

15.
Bacillus circulans xylanase contains two histidines, one of which (His 156) is solvent exposed, whereas the other (His 149) is buried within its hydrophobic core. His 149 is involved in a network of hydrogen bonds with an internal water and Ser 130, as well as a potential weak aromatic-aromatic interaction with Tyr 105. These three residues, and their network of interactions with the bound water, are conserved in four homologous xylanases. To probe the structural role played by His 149, NMR spectroscopy was used to characterize the histidines in BCX. Complete assignments of the 1H, 13C, and 15N resonances and tautomeric forms of the imidazole rings were obtained from two-dimensional heteronuclear correlation experiments. An unusual spectroscopic feature of BCX is a peak near 12 ppm arising from the nitrogen bonded 1H epsilon 2 of His 149. Due to its solvent inaccessibility and hydrogen bonding to an internal water molecule, the exchange rate of this proton (4.0 x 10(-5) s-1 at pH*7.04 and 30 degrees C) is retarded by > 10(6)-fold relative to an exposed histidine. The pKa of His 156 is unperturbed at approximately 6.5, as measured from the pH dependence of the 15N- and 1H-NMR spectra of BCX. In contrast, His 149 has a pKa < 2.3, existing in the neutral N epsilon 2H tautomeric state under all conditions examined. BCX unfolds at low pH and 30 degrees C, and thus His 149 is never protonated significantly in the context of the native enzyme. The structural importance of this buried histidine is confirmed by the destablizing effect of substituting a phenylalanine or glutamine at position 149 in BCX.  相似文献   

16.
Hepatitis A virus (HAV) 3C proteinase is a member of the picornain cysteine proteases responsible for the processing of the viral polyprotein, a function essential for viral maturation and infectivity. This and its structural similarity to other 3C and 3C-like proteases make it an attractive target for the development of antiviral drugs. Previous solution NMR studies have shown that a Cys24Ser (C24S) variant of HAV 3C protein, which displays catalytic properties indistinguishable from the native enzyme, is irreversibly inactivated by N-benzyloxycarbonyl-l-serine-beta-lactone (1a) through alkylation of the sulfur atom at the active site Cys172. However, crystallization of an enzyme-inhibitor adduct from the reaction mixture followed by X-ray structural analysis shows only covalent modification of the epsilon2-nitrogen of the surface His102 by the beta-lactone with no reaction at Cys172. Re-examination of the heteronuclear multiple quantum coherence (HMQC) NMR spectra of the enzyme-inhibitor mixture indicates that dual modes of single covalent modification occur with a >/=3:1 ratio of S-alkylation of Cys172 to N-alkylation of His102. The latter product crystallizes readily, probably due to the interaction between the phenyl ring of the N-benzyloxycarbonyl (N-Cbz) moiety and a hydrophobic pocket of a neighboring protein molecule in the crystal. Furthermore, significant structural changes are observed in the active site of the 3C protease, which lead to the formation of a functional catalytic triad with Asp84 accepting one hydrogen bond from His44. Although the 3C protease modified at Cys172 is catalytically inactive, the singly modified His102 N(epsilon2)-alkylated protein displays a significant level of enzymatic activity, which can be further modified/inhibited by N-iodoacetyl-valine-phenylalanine-amide (IVF) (in solution and in crystal) or excessive amount of the same beta-lactone inhibitor (in solution). The success of soaking IVF into HAV 3C-1a crystals demonstrates the usefulness of this new crystal form in the study of enzyme-inhibitor interactions in the proteolytic active site.  相似文献   

17.
The glutamic acid-specific protease from Streptomyces griseus (SGPE) is an 18.4-kDa serine protease with a distinct preference for Glu in the P1 position. Other enzymes characterized by a strong preference for negatively charged residues in the P1 position, e.g., interleukin-1 beta converting enzyme (ICE), use Arg or Lys residues as counterions within the S1 binding site. However, in SGPE, this function is contributed by a His residue (His 213) and two Ser residues (Ser 192 and S216). It is demonstrated that proSGPE is activated autocatalytically and dependent on the presence of a Glu residue in the -1 position. Based on this observation, the importance of the individual S1 residues is evaluated considering that enzymes unable to recognize a Glu in the P1 position will not be activated. Among the residues constituting the S1 binding site, it is demonstrated that His 213 and Ser 192 are essential for recognition of Glu in the P1 position, whereas Ser 216 is less important for catalysis out has an influence on stabilization of the ground state. From the three-dimensional structure, it appears that His 213 is linked to two other His residues (His 199 and His 228), forming a His triad extending from the S1 binding site to the back of the enzyme. This hypothesis has been tested by substitution of His 199 and His 228 with other amino acid residues. The catalytic parameters obtained with the mutant enzymes, as well as the pH dependence, do not support this theory; rather, it appears that His 199 is responsible for orienting His 213 and that His 228 has no function associated with the recognition of Glu in P1.  相似文献   

18.
We report first-principles molecular dynamics calculations based on density functional theory performed on the entrance part of the D-path pathway in bovine cytochrome c oxidase. Our models, which are extracted from the fully reduced and oxidized X-ray structures, include His503 as a protonatable site. We find that the protonated His503 with the deprotonated Asp91 [H503-N(δ1)H(+) and D91-C(γ)OO(γ)] are more energetically favorable than other protonation states, [H503-N(δ1) and D91-C(γ)OOH], with an energy difference of about -5kcal/mol in reduced case, while the [H503-N(δ1)H+ and D91-C(γ)OO(-)] state is energetically unstable, about +3kcal/mol higher in energy in the oxidized case. The local interaction of His503 with the surrounding polar residues is necessary and sufficient for determining the energetics. The redox-coupled rotation of His503 is found to change the energetics of the protonation states. We also find that this rotation is coupled with the proton transfer from His503 and Asp91, which leads to the transition between the two different protonation states. This study suggests that His503 is involved in the proton supply to the D-path as a proton acceptor and that the redox-controlled proton-transfer-coupled rotation of His503 is a key process for an effective proton supply to the D-path from water bulk. This article is part of a Special Issue entitled: Allosteric cooperativity in respiratory proteins.  相似文献   

19.
Co-expression of the alpha(1b)-adrenoreceptor and Galpha(11) in cells derived from a Galpha(q)/Galpha(11) knock-out mouse allows agonist-mediated elevation of intracellular Ca(2+) levels that is transduced by beta/gamma released from the G protein alpha subunit. Mutation of Tyr(356) of Galpha(11) to Phe, within a receptor contact domain, had little effect on function but this was reduced greatly by alteration to Ser and virtually eliminated by conversion to Asp. This pattern was replicated following incorporation of each form of Galpha(11) into fusion proteins with the alpha(1b)-adrenoreceptor. Following a [(35)S]guanosine 5'-O-(3-thiotriphosphate) (GTPgammaS) binding assay, immunoprecipitation of the wild type alpha(1b)-adrenoreceptor-Galpha(11) fusion protein indicated that the agonist phenylephrine stimulated guanine nucleotide exchange on Galpha(11) more than 30-fold. Information transfer by agonist was controlled in residue 356 Galpha(11) mutants with rank order Tyr > Phe > Trp > Ile > Ala = Gln = Arg > Ser > Asp, although these alterations did not alter the binding affinity of either phenylephrine or an antagonist ligand. Mutation of a beta/gamma contact interface in the alpha(1b)-adrenoreceptor-Tyr(356) Galpha(11) fusion protein did not alter ligand binding affinity but did reduce greatly beta/gamma binding and phenylephrine stimulation of [(35)S]GTPgammaS binding. It also prevented agonist elevation of intracellular Ca(2+) levels, as did a mutation in Galpha(11) that prevents G protein subunit dissociation. These results indicate that a bulky aromatic group is required four amino acids from the C terminus of Galpha(11) to maximize information transfer from an agonist-occupied receptor and disprove the hypothesis that tyrosine phosphorylation of this residue is required for G protein activation (Umemori, H., Inoue, T., Kume, S., Sekiyama, N., Nagao, M., Itoh, H., Nakanishi, S., Mikoshiba, K., and Yamamoto, T. (1997) Science 276, 1878-1881). This is distinct from Galpha(i1), where hydrophobicity of the amino acid is the key determinant at this location. They also further demonstrate a key role for the beta/gamma complex in enhancing receptor to G protein alpha subunit information transfer.  相似文献   

20.
H(+)-transporting, F(1)F(o)-type ATP synthases utilize a transmembrane H(+) potential to drive ATP formation by a rotary catalytic mechanism. ATP is formed in alternating beta subunits of the extramembranous F(1) sector of the enzyme, synthesis being driven by rotation of the gamma subunit in the center of the F(1) molecule between the alternating catalytic sites. The H(+) electrochemical potential is thought to drive gamma subunit rotation by first coupling H(+) transport to rotation of an oligomeric rotor of c subunits within the transmembrane F(o) sector. The gamma subunit is forced to turn with the c-oligomeric rotor due to connections between subunit c and the gamma and epsilon subunits of F(1). In this essay we will review recent studies on the Escherichia coli F(o) sector. The monomeric structure of subunit c, determined by NMR, shows that subunit c folds in a helical hairpin with the proton carrying Asp(61) centered in the second transmembrane helix (TMH). A model for the structural organization of the c(10) oligomer in F(o) was deduced from extensive cross-linking studies and by molecular modeling. The model indicates that the H(+)-carrying carboxyl of subunit c is occluded between neighboring subunits of the c(10) oligomer and that two c subunits pack in a "front-to-back" manner to form the H(+) (cation) binding site. In order for protons to gain access to Asp(61) during the protonation/deprotonation cycle, we propose that the outer, Asp(61)-bearing TMH-2s of the c-ring and TMHs from subunits composing the inlet and outlet channels must turn relative to each other, and that the swiveling motion associated with Asp(61) protonation/deprotonation drives the rotation of the c-ring. The NMR structures of wild-type subunit c differs according to the protonation state of Asp(61). The idea that the conformational state of subunit c changes during the catalytic cycle is supported by the cross-linking evidence in situ, and two recent NMR structures of functional mutant proteins in which critical residues have been switched between TMH-1 and TMH-2. The structural information is considered in the context of the possible mechanism of rotary movement of the c(10) oligomer during coupled synthesis of ATP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号