首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Daily s.c. injection of (-)deprenyl (2.0 mg/kg/day) for three weeks in young male rats caused a threefold increase in superoxide dismutase (SOD) activity in the striatum of the brain compared with the value in saline-injected control rats. Furthermore, the activity of catalase (but not of glutathione peroxidase) was also increased significantly by deprenyl treatment. The results confirmed the previous findings of Knoll on SOD activity and furthermore provided evidence that the activity of catalase is also significantly induced by the drug, which was not found in the previous study.  相似文献   

3.
Distribution of superoxide dismutase in rat brain   总被引:1,自引:2,他引:1  
  相似文献   

4.
Superoxide anions are highly reactive radicals overproduced in many pathological situations such as inflammation and ischemia. One of the major factors in the protection from superoxide anions is the enzyme superoxide dismutase (SOD), which catalyzes the dismutation of superoxide to hydrogen peroxide. This study presents a quantitative histochemical method to estimate SOD activity in rat brain tissue sections. This method is based on the cerium capture method and 3,3'-diaminobenzidine amplification of transition cerium compounds. Substrate for SOD was provided by reduction of oxygen during the autoxidation of riboflavin in the presence of UV light. This histochemical method reveals the overall activity of the three different forms of SOD described in mammalian tissues: cytosolic copper-zinc SOD, mitochondrial manganese SOD, and the high molecular weight extracellular SOD. Eventually, this method can be used to quantify SOD activity in tissue sections by image analysis.  相似文献   

5.
A sensitive and reliable assay method was developed to characterize crude cell homogenates and subcellular fractions with regard to their superoxide dismutase (SOD) activities. The determination of SOD activities was based on the well-known spectrophotometric assay introduced by McCord & Fridovich [(1969) J. Biol. Chem. 244, 6049-6055], with partially succinylated (3-carboxypropionylated) rather than native ferricytochrome c as indicating scavenger. Partial succinylation of cytochrome c resulted in minimization of interference associated with the interaction of cytochrome c with mitochondrial cytochrome c oxidase or cytochrome c reductases. The further increase in specificity, with regard to exclusion of cytochrome c oxidase interference, gained as a consequence of the high pH of 10 enabled the analysis of samples as rich in cytochrome c oxidase activity as the mitochondrial fraction in the presence or absence of membrane-disrupting detergents. Linear relationships for the dependence of the SOD activities with protein concentration were obtained with rat liver homogenate, mitochondrial and microsomal fractions, indicating negligible interference. Furthermore, by choosing a high pH for the assay medium, a 4-fold increase in sensitivity compared with the classical SOD assay, carried out at pH 7.8, was gained as well as a more precise resolution of Cu/Zn-SOD and Mn-SOD by 2 mM-KCN in samples with a high ratio of Mn-SOD to Cu/Zn-SOD, such as mitochondria. The complete trapping of the O2.- radicals, which was more feasible at pH 10 than at pH 7.8, enabled the application of a simple equation derived for the calculation of appropriately defined units of SOD activity from a single experiment.  相似文献   

6.
Free radical-mediated damages may play an important role in cancerogenesis. To investigate their relevance in the cancer process, malonyl dialdehyde (MDA) level, superoxide dismutase (SOD), and catalase (CAT) activities were determined in the normal brain tissue and brain tumor tissue. When compared with the normal brain tissue, we have detected: (i) significantly lower MDA concentration in brain tumor tissue (1.63 nmol/mg Pr vs 2.04 nmol/mg Pr; p = 0.03); (ii) SOD activity in brain tumor tissue was significantly lower (3.15 U/mg Pr vs 4.97 U/mg Pr; p = 0.0002); and (iii) CAT activity in brain tumor tissue was 106.3% higher than that in controls.  相似文献   

7.
Adjuvant arthritis was induced in rats by the injection of Mycobacterium tuberculosis, and its severity was scored according to the macroscopic findings of the legs, tail, and ears. The average score so obtained was lower in SOD-injected rats than in the control group. The depression of albumin/globulin ratio was inhibited significantly in rats treated with 10.0 mg/kg of SOD. The levels of acid phosphatase and beta-glucuronidase were elevated after the administration of an adjuvant, and these lysosomal enzymes showed a remarkable increase in the control rats, while the elevation was inhibited in rats injected with 10.0 mg/kg of SOD. The levels of TBA-reactive substances in the sera and synovia were elevated at 2 weeks after the injection of adjuvant and decreased thereafter. In rats injected with 5.0 mg/kg or 10.0 mg/kg of SOD, the increase in both serum and synovial levels of TBA reactants was inhibited significantly. These observations suggest that the aggravation of adjuvant arthritis may be associated with lipid peroxidation due to superoxide, and that SOD may be beneficial for the treatment of arthritis.  相似文献   

8.
Recombinant clones containing the manganese superoxide dismutase (MnSOD) gene of Bacillus stearothermophilus were isolated with an oligonucleotide probe designed to match a part of the previously determined amino acid sequence. Complementation analyses, performed by introducing each plasmid into a superoxide dismutase-deficient mutant of Escherichia coli, allowed us to define the region of DNA which encodes the MnSOD structural gene and to identify a promoter region immediately upstream from the gene. These data were subsequently confirmed by DNA sequencing. Since MnSOD is normally restricted to the mitochondria in eucaryotes, we were interested (i) in determining whether B. stearothermophilus MnSOD could function in eucaryotic cytosol and (ii) in determining whether MnSOD could replace the structurally unrelated copper/zinc superoxide dismutase (Cu/ZnSOD) which is normally found there. To test this, the sequence encoding bacterial MnSOD was cloned into a yeast expression vector and subsequently introduced into a Cu/ZnSOD-deficient mutant of the yeast Saccharomyces cerevisiae. Functional expression of the protein was demonstrated, and complementation tests revealed that the protein was able to provide tolerance at wild-type levels to conditions which are normally restrictive for this mutant. Thus, in spite of the evolutionary unrelatedness of these two enzymes, Cu/ZnSOD can be functionally replaced by MnSOD in yeast cytosol.  相似文献   

9.
Several parameters of the cytoplasmic enzymatic antioxidant system of the liver and brain of the rat have been investigated under conditions of immobilization stress and of an antioxidant preparation in the diet of animals. These included superoxide dismutase (SOD) and glutathione reductase (GR) activities and nonspecific NADPH oxidation. Only changes in the activity of SOD both in the liver and brain were revealed. In the liver of animals that receive no preparation, a decrease in the activity of SOD after 30-min immobilization and its restoration after a 360-min immobilization were observed. In the brain, the activity of SOD decreased only in preconditioned animals after 30 and 360 min of exposure to stress. In addition, the activity of SOD in the brain of preconditioned animals, both stressed and unstressed, was lower than in the corresponding groups of control animals. It is probable that, under the conditions of immobilization stress, the level of reactive oxygen species (ROS) and as a consequence the activity of SOD decrease. The intake of an antioxidant preparation under these conditions seems to be not correct.  相似文献   

10.
11.
In this paper we have investigated whether or not superoxide dismutase is localized in peroxisomes from rat liver. Using an improved method to prepare peroxisomes from clofibrate induced rat livers, we identified superoxide dismutase activity in peroxisomes. This activity was found to be predominantly of the copper-zinc type. The finding of superoxide dismutase activity in peroxisomes makes sense since peroxisomes also contain superoxide generating enzyme activities such as xanthine oxidase.  相似文献   

12.
Rasagiline [N-propargyl-l(R)-aminoindan] is a selective irreversible MAO-B inhibitor as is (-)deprenyl. The effect of the drug on antioxidant enzyme activities on dopaminergic tissue was examined in male F-344 rats (8.5-months-old). Two experimental groups were infused subcutaneously with rasagiline saline solutions by means of osmotic minipumps implanted subcutaneously in the back of the rats. Control animals were also similarly implanted with saline filled mini-pumps. Three-and-one-half weeks later, animals were sacrificed and selected tissue samples removed from brain, kidney and heart. Two doses of rasagiline (0.5 mg/kg/day, 1.0 mg/kg/day, both for 3.5 weeks) significantly increased catalase activities about 2-fold in substantia nigra and striatum but not in hippocampus. Interestingly, in both renal cortex and medulla. catalase (CAT) activities were significantly increased. Both Mn- and Cu,Zn-superoxide dismutase (SOD) activities were increased 2 to 4 fold in substantia nigra, striatum and renal cortex and heart. Several groups, including our own have reported an extension of survival of deprenyl-treated animals of different species. Although the mechanism(s) of the life extension by deprenyl remains unresolved, it would be interesting to investigate the effect of rasagiline on the survival of animals, since deprenyl also was shown to increase antioxidant enzyme activities in brain dopaminergic regions.  相似文献   

13.
Responses of superoxide dismutase (EC 1.15.1.1) and glutathione reductase (EC 1.6.4.2) activities were evaluated in leaf tissue from intact cotton plants (Cotton Branch 1697) which were exposed to 75% O2, 350 microliters per liter CO2 for 48 hours. Soluble protein was extracted from O2-treated and control tissue, and enzyme levels were determined. Superoxide dismutase activity in cotton leaf tissue was high (26 units per milligram protein) under normal conditions of 21% O2, saturating light, and limiting CO2, and neither qualitative nor quantitative differences in the cyanide-sensitive or -insensitive forms of the enzyme occurred in response to hyperoxic conditions. Glutathione reductase activity, however, was 2- to 3-fold higher in extracts from tissue exposed to 75% O2. No increase in activity was observed for the peroxisomal enzymes, glycolate oxidase (EC 1.1.3.1) and catalase (EC 1.11.1.6). Results are consistent with an integrated pathway involving superoxide dismutase and glutathione reductase for protection of sensitive leaf components against detrimental effects of intermediate reduction products of O2.  相似文献   

14.
Extracellular superoxide dismutase (EC-SOD) is a tetramer composed of either intact (Trp(1)-Ala(222)) or proteolytically cleaved (Trp(1)-Glu(209)) subunits. The latter form is processed intracellularly before secretion and lacks the C-terminal extracellular matrix (ECM)-binding region ((210)RKKRRRESECKAA(222)-COOH). We have previously suggested that the C-terminal processing of EC-SOD is either a one-step mechanism accomplished by a single intracellular endoproteolytic event cleaving the Glu(209)-Arg(210) peptide bond or a two-step mechanism involving two proteinases (Enghild, J. J., Thogersen, I. B., Oury, T. D., Valnickova, Z., Hojrup, P., and Crapo, J. D. (1999) J. Biol. Chem. 274, 14818-14822). In the latter case, an initial endoproteinase cleavage occurs somewhere in the region between Glu(209) and Glu(216). A carboxypeptidase specific for basic amino acid residues subsequently trims the remaining basic amino acid residues to Glu(209). A naturally occurring mutation of EC-SOD substituting Arg(213) for Gly enabled us to test these hypotheses. The mutation does not prevent proteolysis of the ECM-binding region but prevents a carboxypeptidase B-like enzyme from trimming residues beyond Gly(213). The R213G mutation is located in the ECM-binding region, and individuals carrying this mutation have an increased concentration of EC-SOD in the circulatory system. In this study, we purified the R213G EC-SOD variant from heterozygous or homozygous individuals and determined the C-terminal residue of the processed subunit to be Gly(213). This finding supports the two-step processing mechanism and indicates that the R213G mutation does not disturb the initial endoproteinase cleavage event but perturbs the subsequent trimming of the C terminus.  相似文献   

15.
Glutathione peroxidase activities (GSH-Px) of peritoneal exudate polymorphonuclear neutrophils, pulmonary alveolar macrophages, and peritoneal exudate macrophages of rats depleted of dietary selenium for four to six weeks were markedly lower than the corresponding activities in rats fed the same diet supplemented with 0.5 ppm selenium as sodium selenite. GSH-Px in phagocytes from selenium-supplemented rats adequate or deficient in tocopherol status did not differ significantly. In selenium deficient animals, the residual GSH-Px of polymorphonuclear neutrophils and peritoneal macrophages, but not of alveolar macrophages were slightly higher in tocopherol-deficient rats than in tocopherol-supplemented animals. Superoxide dismutase activities of each cell type were comparable and were not significantly affected by dietary selenium or tocopherol.  相似文献   

16.
Coxiella burnetii was examined for superoxide anion (O2-) production and superoxide dismutase and catalase activities. The organism generated O2- at pH 4.5 but not at pH 7.4. The rickettsia displayed superoxide dismutase activity distinguishable from that of the host cell (L-929 mouse fibroblast). Catalase activity was maximal at pH 7.0 and diminished at pH 4.5. These enzymes may account, in part, for the ability of this obligate intracellular parasite to survive within phagocytes.  相似文献   

17.
Four strains of Listeria monocytogenes were examined for catalase (CA) and superoxide dismutase (SOD) activities. The two strains having the highest CA activities (LCDC and Scott A) also possessed the highest SOD activities. The CA activity of heated cell extracts of all four strains examined decreased sharply between 55 and 60 degrees C. SOD was more heat labile than CA. Two L. monocytogenes strains demonstrated a decline in SOD activity after heat treatment at 45 degrees C, whereas the other two strains demonstrated a decline at 50 degrees C. Sublethal heating of the cells at 55 degrees C resulted in increased sensitivity to 5.5% NaCl. Exogenous hydrogen peroxide was added to suspensions of L. monocytogenes; strains producing the highest CA levels showed the greatest H2O2 resistance.  相似文献   

18.
Legionella pneumophila, the causative agent of Legionnaires' disease, contains two superoxide dismutases (SODs), a cytoplasmic iron enzyme (FeSOD) and a periplasmic copper-zinc SOD. To study the role of the FeSOD in L. pneumophila, the cloned FeSOD gene (sodB) was inactivated with Tn903dIIlacZ, forming a sodB::lacZ gene fusion. By using this fusion, expression of sodB was shown to be unaffected by a variety of conditions, including several that influence sod expression in Escherichia coli: aeration, oxidants, the redox cycling compound paraquat, manipulation of iron levels in the medium, and the stage of growth. A reproducible twofold decrease in sodB expression was found during growth on agar medium containing charcoal, a potential scavenger of oxyradicals, in comparison with growth on the same medium without charcoal. No induction was seen during growth in human macrophages. Additional copies of sodB+ in trans increased resistance to paraquat. Construction of a sodB mutant was attempted by allelic exchange of the sodB::lacZ fusion with the chromosomal copy of sodB. The mutant could not be isolated, and the allelic exchange was possible only if wild-type sodB was present in trans. These results indicate that the periplasmic copper-zinc SOD cannot replace the FeSOD. The data strongly suggest that sodB is an essential gene and that FeSOD is required for the viability of L. pneumophila. In contrast, Sod- mutants of E. coli and Streptococcus mutans grow aerobically and SOD is not required for viability in these species.  相似文献   

19.
The role of superoxide dismutase (SOD) in defense against SO2toxicity was investigated using leaves of poplar and spinach.Young poplar leaves having five times the SOD of the old leaveswere more resistant to the toxicity of SO2. Spraying spinachleaves with diethyldithiocarbamate caused a marked loss of SODactivity which resulted in a decrease in their resistance tothe toxic effects of SO2. The SOD activity in poplar leaveswas increased by fumigation with 0.1 ppm SO2, and this was moreevident in young leaves than in old ones. The increased SODactivity was inhibited by cyanide. The poplar leaves havinghigh SOD activity induced with SO2 fumigation were more resistantto 2.0 ppm SO2 than the control leaves. These findings suggestthat SO2 toxicity is in part due to the superoxide radical andthat SOD participates in the defense mechanism against SO2 toxicity. (Received February 12, 1980; )  相似文献   

20.
A method for copper- and manganese-containing superoxide dismutase (Cu- and MnSOD) assay in tissue homogenates such as liver and brain, based on the measurement of the longitudinal nuclear relaxation time (T1) of F-, has been developed as a preliminary approach to in vivo measurement of these enzymes. The relaxation rate of F-, which increases linearly with the SOD concentration, also depends on the oxidation state of the metal ion present in the active site of the enzyme. The relaxivity values of the oxidized, reduced and turnovering CuSOD were found to be 9.6 x 10(6), much less than 1 x 10(2) and 5.2 x 10(6) M-1 s-1, respectively, while for MnSOD the corresponding values were 2.9 x 10(6), 4.2 x 10(6) and 3.6 x 10(6) M-1 s-1, respectively. These high relaxivity values allow the detection of SODs in brain and liver homogenates where, under aerobic conditions, these enzymes appear in the steady-state. The contribution of the two types of SOD to the F- relaxation rate in the homogenates was measured by addition of either diethyldithiocarbamate or cyanide, both of which selectively inhibit the CuSOD. The comparison between NMR and activity data confirmed the possibility of carrying out accurate and precise measurements of SODs in homogenates by NMR.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号